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1. Introduction 

Oxide single crystals are known for wide application in electronics and optical industries, 

e.g. lasers, substrates, scintillators, nonlinear and passive optical devices (Brandle, 2004). 

The Czochralski technique has become an important method of choice for the growth and 

production of many bulk oxide materials owing to the possibility of growing crystals with 

large size, core free with good optical quality, and a high concentration of dopant, e.g., Nd3+, 

Yb+3 with better homogeneity (Zhaobing et al., 2007; Albrecht et al., 1998).  

Numerous researchers (Dupret and Bogaert, 1994; Cockayne et al., 1976; Valentino and 

Brandle, 1974; Brandle, and Barns, 1974; Jacobs et al., 2007; Mateika et al., 1982; Piekarczyk 

and Pajaczkowska, 1979) have studied the effect of different parameters on the quality of 

oxide crystals grown by Czochralski technique. They found that Crystal growth atmosphere 

composition and melt stoichiometry are strongly influenced on the quality of crystals as well 

as solid-liquid interface shape.  

However, the growth of oxides such as Gd3Ga5O12 [Brandle et al., 1972], ZnO [Klimm et al., 

2008a], SrLaGaO4 [Pajaczkowska et al., 2001], single crystals by standard melt growth 

techniques are difficult due to their high melting point and thermal decomposition upon 

heating. Otherwise, if the composition of melt would be serious, the chemical composition 

of these oxides melt will depart from the congruent point and superfluous components 

would become the harmful impurities for crystal growth.  

Due to the volatilization of oxide melts and the necessity of an oxidizing atmosphere, the 

crucible that contains the melt should consist of a noble metal. The only materials that 

have been found to tolerate these violent conditions are the platinum group of metals and 

their alloys (Day, 1963; Cockayne, 1974). Although the growth from platinum crucible can 

be performed in presence of oxygen, unfortunately, platinum with Tm=2042 K and its 

alloys cannot use for mostly oxides because of their high melting point (Darling et al., 

1970). Very often platinum or alloys of platinum are used only for oxides with low 

melting point (T<1850 K) (Uitert, 1970). Actually, it is necessary to choose materials of 

higher melting point, such as the rhodium-platinum alloys, or rhodium or iridium metals 

(Cockayne, 1968). Owing to a high melting point and high mechanical strength even at T> 

2250 Kº (Handley,1986), iridium crucible are widely used for growing high melting oxides 

such as GGG, Al2O3 and ZnO. It is important to note that, iridium is more sensitive to 
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oxidation than platinum or rhodium (Weiland et al., 2006), especially in the medium 

temperature (~870-1000 Kº) as the metal would oxidize to IrO2 (s) (Asadian et al., 2010). 

Consequently, the addition of oxygen to the furnace chamber reacts with iridium crucible 

at medium temperatures and it complicates the process of crystallization (Lipinska et al., 

2009).  

The ceramic oxide crucibles are usually utilized for melting metals (Day, 1963). Since they 

are all chargeable to chemical react by the molten oxides, unfortunately, they cannot apply 

as a part to contact directly to the oxides melt (Klimm and Schroder, 1999). The high melting 

point metal such as molybdenum (Tm=2896 K) and tungsten (Tm= 3680 K) are oxidized 

rapidly by oxygen at high temperatures and can only be used in reducing or neutral 

atmospheres (Klimm et al., 2008b).  

This chapter is organized as follows. An outline of thermodynamic background is illustrated 

in section 2. Section 3 contains a detailed discussion of the thermodynamic behaviour of 

construction materials (crucible, seed holder, after heater). Section 4 describes partial 

pressures effect of gases atmosphere. The short review of growth atmosphere effect on 

crystal growth process including two examples is presented in section 5. Section 6 concludes 

the chapter. 

2. Thermodynamic background 

Consider the general redox equilibrium reaction 

 aMxOy ↔ bMzOw + 1/2O2 (1) 

With 

   -1 -1
p

1 Hº
Log K ( Sº - )(J.K .mol )

2.30R T


   (2) 

The equilibrium constant (Kp) gives the required combination of the activities of the 

reactants as  

2

1/2

( )z w

x y

b
M O O

p a
M O

a P
K

a


 . 

R is the universal gas constant, ΔH° is the standard enthalpy change and ΔS° is the standard 

entropy change for the reaction. The choice of the pure material a standard states makes the 

activity of material has values of unity in equation (2). In which case for material oxides, if 

the oxide pure is solid oxides, the activity of solid oxides will be unit. Moreover, when the 

material oxides would be gas forms the activity of the oxides replace to their pressures 

(Gaskell, 2003). 

For the oxidation of (a)dn mole material oxide from the m valent state to the m- s valent 

state proceeds under the consumption of (s/2)dn mole oxygen. Herein m=2y/x and s=2/ax. 

m valent gives a number between 1-8 and always m s . The Table 1 indicates four possible 

conditions of the redox equilibrium reactions which are obtained with simplifying the 

equation (1). 
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m s The redox equilibrium reaction 

even even ( /2) ( )/2 22 2
2

m m s

s
MO MO O   

even odd ( /2) 2 ( ) 22
2

m m s

s
MO M O O   

odd even 2 2 ( ) 2
2

m m s

s
M O M O O   

odd odd 2 ( )/2 22
2

m m s

s
M O MO O   

Table 1. The different conditions of redox equilibrium reaction. 

The reaction equilibrium between pure material M, its oxide and oxygen gas where m=s 

would take place. In which case ΔG° is a linear function of temperature and a plot of 

ΔG°=RT Log (PO2) versus temperature gives the lines for each oxidation reaction on an 

Ellingham diagram (Elingham, 1944). These lines separate phase regions where one 

oxidation state overcomes and the whole graph represents a predominance phase diagram 

for the material M and its oxides.   

3. Construction materials 

Platinum group metals and their alloys can usually be safely heated for long periods in 

contact with the more refractory oxides without serious risk of contamination. Due to their 

excellent chemical stability, oxidation resistance, and resistance to the action of many molten 

oxides, the platinum group metals: iridium, platinum and rhodium are widely used for 

high-temperature applications involving simultaneous chemical attack and mechanical 

strength. Important applications of platinum group metals are as crucibles for oxides crystal 

growth from melt. Oxides of major optical interest and their most suitable crucible materials 

are listed in Table 2. 

 

Material 
Oxide melting point 

(K) 
Crucible Material use 

Lithium Niobate 

(LiNbO3) 
1523 

Platinum or 

rhodium-platinum 
Electro-optic 

Calcium Tungstate 

(CaWO4) 
1839 Rhodium Laser host 

Gadolinium 

Gallium Garnet 

(Gd3Ga5O12) 

2023 Iridium Laser host 

Zinc Oxide (ZnO) 2248 Iridium 
Green laser-UV 

light emitters 

Sapphire (Al2O3) 2327 Iridium Laser host 

Table 2. Application of oxides single crystal and appropriate crucibles. 
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3.1 Platinum 

The only materials that have been found to withstand high temperature chemical stability, 
oxidation resistance and resistance to react with many molten oxides are the platinum group 
of metals and their alloys. Although growth from Platinum crucibles can be performed in 
air, platinum does not appear to be widely used for the growth of oxide materials, probably 
due to its relatively low melting point (2042 K) in comparison to that for most refractory 
oxides or mixtures of oxides. The low melting point of lithium niobate (LiNbO3), Tm=1523 K, 
(Day, 1963) and the chemical inertness of platinum suggested that this metal might be a 
useful crucible material, while platinum also offered some advantage in cost over the 
platinum group metals. 

3.2 Rhodium 

In a few instances, unalloyed platinum crucibles have been found satisfactory, but generally, 
it is necessary to choose materials of higher melting point, such as the rhodium platinum 
alloys, or the metals rhodium or iridium. 
In the past, there has been some hesitation in the use of rhodium and iridium crucibles in 
oxidizing atmospheres at high temperatures through fear of high losses from the formation 
of volatile rhodium and iridium oxides. Based on this concept, Nassau and Broyer (1962) 
have used rhodium and iridium crucibles successfully for growing barium titanate single 
crystals. They were grown at about 1920 K from rhodium crucibles, when 0.36 weight 
percent of rhodium was detected in the crystals and from iridium crucibles when 0.02 
weight percent of iridium was observed. 
It is known that Rh reacts with oxygen above 1000 K (Chaston, 1965) forming Rh2O3 (s). Fig. 
1 shows the stability regions phase in the Rh-O system from available thermodynamic data 
(Binnewies and Milke, 2008). As illustrated in Fig. 1, Rh2O3 (s) is stable up to 1412 K where 
the oxygen pressure reaches 1.0 atm. Above this temperature, Rh2O3 (s) decomposes to 
gaseous phase according to the equation 

 Rh2O3 (s) = RhO2 (g) + 1/2O2 (3) 

As pointed out, the dissociation of Rh2O3 at very low oxygen pressure PO2 <10-35 (atm) and 
at room temperature, it maybe possible to take place this reaction  

 Rh2O3 (s) = Rh (s) + 3/2O2 (4) 

From Fig. 1, it is limited to apply rhodium at high oxygen pressure as crucible because of 
evaporate to RhO2. Therefore, the oxygen partial pressure must be low to avoid oxidation of 
crucible especially at low temperature. 

3.3 Iridium 

Owing to have a high melting point and high mechanical strength even at T> 2250 Kº, 
iridium is a particularly suitable material for applications such as the stress-rupture 
strength, creep behavior and thermal shock which preclude the use of platinum alloys or 
rhodium (Weiland et al., 2006). Important applications of iridium is as crucible for pulling 
refractory oxides crystals such as GGG (Tm=2023 K) and ZnO (Tm=2248 K). 
It is noticeable that iridium crucible are sensitive to oxygen, especially at the medium 
temperature (~870-1000 Kº) as the metal would oxidize to solid iridium oxide. IrO2 (s) 
decomposes to iridium metal at temperature higher than 1370 Kº according to the equation 
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 IrO2 (s) = Ir (s) + O2 (5) 

As illustrated in Fig. 2, IrO2 (s) is stable at the temperature less than 1370 Kº at standard 
condition. If oxygen were applied at higher temperature than 1370 Kº, iridium parts would 
not be oxidized. 
 

 

Fig. 1. Predominance diagram for Rh-O2 system. 

 

 

Fig. 2. Predominance diagram for Ir and IrO2 (s) in the temperature- PO2 plane. 
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Several studies (Cordfunke and Mayer, 1962; Schafer and Heitland, 1960) have been shown 
that the oxidation of iridium at high oxygen pressure forms IrO3 (g). As mentioned before, 
the decomposition temperature of IrO2 (s) in oxygen at 1 atm is about 1370 K. Hence, above 
this temperature the equilibrium forming IrO3 (g) follows 

 2Ir (s) + 3O2 = 2IrO3 (g) (6)  

Below 1370 K the volatile oxide dissociates to IrO2 (s) and oxygen by the reaction 
(Cordfunke and Meyer, 1962) 

 2IrO3 (g) = 2IrO2 (s) + O2 (7) 

The major volatile species in the iridium-oxygen system is IrO2 (g) (Chandrasekharaiah et 
al., 1981; Carpenter, 1989). For the reaction  

 Ir (s) + O2 = IrO2 (g) (8)  

The results of these thermodynamics calculation are plotted in Fig. 3 as Log PO2 against 
temperature. It can be seen that IrO3 (g) is identified as the major gaseous species at low 
temperatures (800 K- 1700 K). At 2033 K, Norman et al. (1965) determined the IrO2 (g) 
pressure to be 1.9×10-8 atm and the IrO3 (g) pressure to be 3.1×10-9 atm. This  
is indicated that at elevated temperatures IrO2 (g) is predominant gaseous species (seen 
Fig. 3).  
 

 

Fig. 3. Predominance diagram for Ir-O2 system. 

To sum up, although iridium is more sensitive to oxidation than platinum (E= -0.1474 V for 

Ir and E= -0.4422 V for Pt (Klimm et al., 2008c), it is the most chemically resistant of all 

metals. The high melting point of iridium (2716 K) and its resistance to attack by stable 
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oxide melts is maintained up to temperatures above 2250 K make it a particularly suitable 

material for oxides crystal growth from hot melt which preclude the use of platinum alloys 

or rhodium. 

4. Growth atmosphere 

The oxides crystal growth atmosphere should have two conditions  
1) Consider a type of oxide material Me, in Table 1, i. e.,  

 2 2 ( ) 2( , ) ( , , )
2

m m s

s
Me O s l Me O s l g O   (9) 

The oxygen partial pressure must be in that range where the favored valency of the oxide 
material (Me2Om) is stable. Always PO2 system should be more than (PO2)min to suppress the 
decomposition of oxide. Herein (PO2)min is the minimum partial pressure of O2 where the 
reaction (9) moves to the left side for the given growth temperature ((PO2)eq > (PO2)min). 
2) For the reaction equilibrium between a pure solid construction material M, its pure oxide 
and oxygen gas 

 2 ( /2)2 ( ) 2 ( , )
2

m

m
M s O MO s g   (10) 

The oxygen partial pressure should be low enough to avoid oxidation of construction parts 
(crucible, seed holder) being in contact with the melt. Herein PO2 system should be less than 
(PO2)max with (PO2)max - the maximum oxygen partial pressure where the construction 
material is equilibrium with its oxide in the m valency state ((PO2)max > (PO2)eq). Because the 
oxide construction parts are often stable at lower temperatures and oxide crystal almost 
decomposed at higher temperatures, both conditions are accomplished, if (PO2)min < (PO2)eq 

< (PO2)max. Commonly, amounts of oxygen, e.g. for the growth of Gd3Ga5O12 (GGG) is about 
1-2 vol% (Ganschow, 2010), add to the growth atmosphere to prevent volatile oxide. 
However, this value (PO2) often is more than (PO2)max at lower temperatures. Therefore, it 
causes that the construction material oxidized.  
A solution to this problem is that mixtures containing an oxygen bearing gas like CO2 or 
H2O would be utilized in the growth atmosphere. They produce a temperature dependent 
oxygen partial pressure in this manner that the O2 partial pressure increases with 
temperature. Hence, oxidation of construction parts decrease. 
Another solution is that the protective gas (N2, Ar) atmosphere would be charged into the 
furnace chamber in ambient temperature before heating the raw material and beginning the 
crystal growth process. The atmospheric pressure of the chamber should be more than 
ambient pressure. To prevent the evaporation of oxide, amount of oxygen should add into 
the during the crystal growth process at temperatures higher than temperature MOm/2 
decomposition. Growth experiments for Nd:GGG (Asadian, 2011) prove that the iridium 
crucible is not oxidized when the required oxygen was charged at T>1370 Kº. 

4.1 CO2-CO system 

CO2 decomposes into CO and oxygen with increasing temperature according to 

 2CO2 = 2CO + O2 (11)  
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If a moles of CO and 1 mole of CO2 are mixed (a=CO/CO2), then from stochiometry of Eq. 

(11), 2x moles of CO2 would decompose to form 2x moles of CO and x moles of O2 such that, 

at total pressure Pt, the PO2 in CO-CO2 system in various temperatures would be 

 
2

2

( 2 ) 29613.35
9.04

(1 )(1 2 )
t

x a x
Log P

Ta x x


 

  
 (12) 

Which,  

 2
1

t

x
PO P

a x


 
 (13) 

The partial pressure of oxygen can be ‘‘automatically’’ increased in the heating-up phase 

of the growth process by the thermal decomposition of carbon dioxide Eq. (11). 

Temperature dependence of PO2 with comparing different gases for the above reaction is 

shown in Fig. 4.  

 

 

Fig. 4. Temperature dependence of PO2 within different gases and gas mixtures comparing 

with stability regions for iridium (iridium metal and its solid oxide). 

Thermodynamic calculations (Tomm et al.,2000) of the chemical equilibria between Ga2O3 

(solid and liquid phase) and the surrounding gas-phase showed that an Ar+10% CO2 

atmosphere delivers an oxygen partial pressure that increases in such a manner with 

temperature, that Ga2O3 crystals can be grown from the melt. This amount of liberated 

oxygen is just sufficient to decrease the evaporation of molten Ga2O3 as well as low enough 

to allow the use of iridium crucibles, i.e., allowing Czochralski growth of Ga2O3. 
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4.2 H2O-H2 system 

H2O-H2 system are used when it is required that the partial pressure of oxygen in a gas 

phase be fixed at a very low value at low temperatures. For example, if it were required to 

have a gaseous atmosphere containing an oxygen partial pressure of 10-30 atm at 705 K, then 

such an oxygen potential pressure can be obtained with simple relation by establishing the 

equilibrium 

 2H2O = 2H2 + O2  (14) 

The partial pressure of oxygen in H2-H2O gaseous atmosphere in various temperatures from 

Eq. (14) 

 
2

2

( 2 ) 25302.15
4.56

(1 )(1 2 )
t

x c x
Log P

Tc x x


 

  
 (15) 

Which, 

C=H2/H2O 

 2
1

t

x
PO P

c x


 
 (16) 

The oxygen pressure of H2-H2O is shown in Fig. 4. Comparing the H2-H2O system with CO-

CO2 indicate that H2-H2O system products more oxygen at lower temperatures. However, at 

higher temperatures CO-CO2 system is the more efficient oxidant agent.    

4.3 NO2-NO system 

Similarly, the partial pressure of oxygen in NO2-NO system can be determined by 

establishing the reaction  

 2NO2 = 2NO + O2 (17)  

Thus 

 
2

2

( 2 ) 5985.45
7.67

(1 )(1 2 )
t

x b x
Log P

Tb x x


 

  
 (18) 

Which, 

b=NO/NO2 

 2
1

t

x
PO P

b x


 
 (19) 

The oxygen partial pressure in NO2-NO gaseous atmosphere in various temperatures is 

drawn in Fig. 4. Comparing with others gaseous components, at lower temperatures the 

released oxygen is too much in NO2-NO system. Therefore, the iridium crucible indeed 

would be oxidized.  
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4.4 NO2-CO2-CO-NO system 

Consider the reaction CO2 and NO2 are mixed in the molar ratio 1:1 to form NO, CO and O2 

according to 

 CO2 + NO2 = CO + NO + O2 (20) 

To obtain this gas mixture, CO2 and CO, NO2 and NO at total pressure Pt, would be mixed 

in the molar ratio CO/CO2=a, NO/NO2=b and allowed to equilibrate.  

Which,  

  2

( )( ) 17799.40
8.36

(2 )(1 )
t

x a x b x
Log P

Ta b x x

 
 

   
 (21) 

 2
2

t

x
PO P

a b x


    (22) 

According Fig. 4, NO2-NO and CO2-CO gas mixtures can be used when it is required that 

the partial pressure of oxygen very low at lowers temperature to suppress oxidation of 

iridium crucible. Also they can be utilized when it is required that the high partial pressure 

of oxygen at elevated temperature. In this case, ZnO crystal growth is a good example. For 

the growth of ZnO in iridium crucible by Czochralski method, the oxygen partial pressure 

of chamber at ZnO melting point (2248 K) should be more than (PO2)min=0.35 atm (Klimm et 

al. , 2009) to have ZnO melt. In order to suppress the oxidation of iridium crucible, the PO2 

of system should be less than (PO2 )max. According Table 3, NO2-NO and CO2-CO gas 

mixtures can be used for ZnO crystal growth.   

 

PO2 (atm) 
 
 
 
 

Temperature

(PO2)min 
(Ga2O3) 

(PO2)min

(ZnO) 

H2-H2O 
(PO2)eq 

 

CO-CO2 
(PO2)eq 

NO-
NO2 

(PO2)eq

CO2-
NO2-

CO-NO 
(PO2)eq 

(PO2)max 
(iridium) 

900 K 7.94×10-38 9.52×10-14 5.6×10-23 2.0×10-23 1.06 6.3×10-11 2.57×10-5 

(Tm(G2O3) ) 
2080 K 

1.12×10-5 1.53×10-2 4.89×10-7 1.01×10-4 1.33 0.63 102 < 

(Tm(ZnO) ) 2248 
K 

------ 7.76×10-2 4.0×10-6 1.20×10-3 1.41 0.89 102 < 

Table 3. Maximum, minimum and required PO2 that is supplied by different gas mixtures at 

different temperatures. 
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5. Oxides crystal growth 

Oxides crystal growth are often performed from melts contained in crucibles, e.g. by 

Czochralski or Bridgman technique. For oxide components, oxygen partial pressure during 
growth is one of the most important parameters to decide about success or failure of crystal 
growth process. Many oxides may be easily decomposed at high temperatures and low 
oxygen partial pressure. Therefore, oxides crystal growth is often carried out in a protective 
gas atmosphere such as Ar and N2 to avoid the oxidization of crucibles and to minimize 
dissociation of oxide. An amount of oxygen partial pressure is always necessary to remain 
the stability of the oxide. 

5.1 Ga2O3 

The growth of GGG single crystal by the Czochralski method, in high-quality and large-
sized is hard because of the dissociation of Ga2O3 (Luo et al. ,2005; Li et al. , 2007). At the T> 
1500 Kº (Klimm et al., 2008), reduction to evaporate Ga2O may occur, whereas, the serious 
evaporation of Ga2O3 takes place at high temperatures. Fig. 5 represents a schematic of the 
experimental setup employed for the Nd:GGG crystal growth.  
 

 

Fig. 5. Sketch diagram of GGG crystal growth setup. 
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Based on thermodynamic analysis, Ga2O (g) and Ga (l) is main decomposed constituent via 
heating Ga2O3. During single crystal growth process by the Czochralski method, Ga2O3 
sublimes by dissociation: 

 Ga2O3 (s,l) = Ga2O (g) + O2 (23)  

The diagram Log 
2OP  (T) for gallium oxides is shown in Fig. 6. At above 1500 Kº, the 

evaporation of Ga2O3 may take place but the most serious Ga2O3 volatile will be happened at 

temperatures than higher 1950 Kº. According to the chemical equilibria law, charging 

amount of oxygen into system decreases the volatilization of Ga2O3. For GGG crystal growth 

by Czochralski method, the pressure of oxygen (PO2) should be more than 10-4 atm to 

preserve stability of growth process. 
Additionally, it would be extracted from Fig. 6, at lower pressures (PO2<10-11 atm), the 
decomposition of Ga2O3 to liquid gallium may occur. 

 Ga2O3 (s) = 2Ga (l) + 1.5O2 (24)  

The liquid gallium will rapidly make to alloy with iridium crucible. Unfortunately, the 
formation of iridium-gallium alloys can definitely destroy the iridium crucible. Moreover, 
the Ga+ ions decomposed from the Ga2O3 enter the lattice of Nd:GGG crystal ultimately 
cause the spiral growth. 
 

 

Fig. 6. Predominance diagram for Ga-O2 system in dependence on T and the oxygen 
pressure PO2 at total pressure 1 atm. 

A solution to this problem is that the addition of oxygen would be replaced by carbon oxide 
(CO2) in the growth atmosphere. The O2 partial pressure increases with temperature; hence, 
oxidation of iridium crucible decreases (see Fig. 6). Matika et al. (1982) used a gas mixture of 
50% CO2 and 50% N2 to reduce the dissociation of Ga2O3 and to suppress the formation of 
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iridium within crystals. They obtained the densities of dislocations and inclusions for single 
crystals were below 5 cm-2. Tomm et al. (2000) reported the first successful growth of Ga2O3 
single crystal by Czochralski method. They have decreased evaporation of molten Ga2O3 by 
means of Ar plus 10% CO2 instead of O2 in the atmosphere. 

5.2 ZnO 

Zinc oxide is a group II-VI semiconductor that most commonly exhibits wurtzite structure 
in its unstrained phase (Park et al., 2006). Wurtzite crystals can be cleaved cleanly along 
several different planes. The c-plane (0001) intercepts only the z axis and in the case of zinc 
oxide produces polar surfaces as a result of the lack of inversion symmetry along the c axis 
(Miller, 2008). Furthermore, because of its wurtzite crystal structure and lattice parameter 
(a=3.25Aº in the a-direction) it is isomorphous with GaN and has potential as a substrate 
material for GaN-based epitaxial devices (Pearton, et al., 2005). It has a large exciton binding 
energy of 60 meV and, as a result, stimulated emission and lasing have been observed at 
room temperature (Bagnall et al., 1998)]. This means that ZnO excitons will remain bound at 
much higher temperatures than GaN and in doing so, offer the potential for greatly 
improved efficiency over GaN. This indicates that ZnO can be the preferred choice for 
future opto-electronic devices.  
Attempts are made to grow ZnO a large number of different methods. Bulk ZnO crystals 
can be grown using melt (Klimm et al.,2008a), hydrothermal (Suscavage et al.,1999) and 
vapor phase growth techniques (Look et al., 2002).  
Unfortunately, traces of the solvent are always incorporated in such hydrothermal crystals 
and hydrogen and lithium are found typically in concentrations of several 1018 cm-3. In 
addition, the suitability of ZnO crystals for epitaxy is highly dependent on surface 

preparation and subsequent characterization.Therefore; Attempts have recently been made 

to grow single crystal bulk from the melt.  
Single crystals of ZnO can be grown from the melt at high oxygen pressure and high 
temperature. The Czochralski (Klimm et al., 2008a) and Bridgman (Jacobs et al., 2009) 
methods are the most common melt-growth techniques used for production of the bulk 
single-crystal. The advantages of the Czochralski and Bridgman growth methods are 
relatively high growth rates (in the range of several millimeters per hour) and the nearly 
thermodynamically equilibrium conditions are capable to generate bulk crystals of high 
structural perfection. In addition, the doping techniques are well established in these two 
methods.  
There are technical obstacles to the growth of single crystal ZnO from the melt. The triple 

point of ZnO (the temperature and pressure at which all three phases of that substance, gas, 
liquid and solid phases, coexist in thermodynamic equilibrium) is 2248 K under the total (Zn 
and O2) vapor pressure of 1.06 atm.  

Figs. 7 and 8 show the predominance diagram in the relevant temperature range of the Zn-O 
system at total pressures 1 and 5 atm, respectively. As it can be seen from Fig. 7, before the 
melting point, ZnO evaporates under dissociation 

 ZnO (s) = Zn (g) + 1/2O2  (25) 

It has strongly impeded the development of bulk crystal growth from the melt. To maintain 
the ZnO melt stable, the total pressure of oxygen-containing atmosphere in the growth 

chamber must be considerably larger than 1.06 atm.  
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Fig. 7. Predominance diagram for Zn-O2 system in dependence on temperature and the 
oxygen pressure PO2 at total pressure 1 atm. 

 

 

Fig. 8. Predominance diagram for Zn-O2 system in dependence on temperature and the 
oxygen pressure PO2 at total pressure 5 atm. 
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However, an essential difficulty to overcome is the lack of a perfect crucible material. The 
only metal withstanding high temperatures and an oxidizing atmosphere appears to be 
iridium. The design of a crucible containing molten ZnO capable of withstanding highly 

oxidizing conditions (temperatures of about 2300 K in oxygen containing atmosphere) is a 
serious challenge. The growth of ZnO crystals from a melt contained in an iridium crucible 
is continuously investigated by several references (Klimm et al., 2008a; Jacobs et al., 2009). 
Indeed, it is well known that an atmosphere where iridium parts are to be heated must not 

contain more than 1-2% O2 to avoid oxidizing of the metal. A solution could be try to heat 
the growth set up in the protective gas (N2, Ar) –like GGG crystal growth- with an oxygen 
free atmosphere to 1000-1400 K and to add O2 later, but practically this is not a solution for 
the problem. Although iridium crucible would not oxidize when the required oxygen was 

charged at T>1370 Kº, crystal growth process would not stable growth because of 
sublimation of zinc oxide.  
Similar problems during the melt growth of Ga2O3 were solved by working in a CO/CO2 

gas mixture. CO2 yields an oxygen partial pressure well inside that corridor. At low 
temperatures, equilibrium reaction (11) is far on the left side and the oxygen partial pressure 
is very low. With increasing temperature, the equilibrium is shifted more and more to the 
right side and the resulting oxygen partial pressure is represented by curve in Fig. 9. Using 

CO2 at a total pressure of approximately 10 bars, the authors (Klimm et al., 2008a; Klimm et 
al., 2008c; Jacobs et al., 2009) have successfully grown ZnO crystals from the melt in a 
Bridgman-like configuration. 

 

 

Fig. 9. The Oxygen partial pressure of pure CO2 is against temperature at total pressure 20 atm.  

The researches on growth of ZnO single crystals by the Czochralski method were carried on 
until now. Unfortunately, all attempts to obtain crystallization of bulk ZnO failed. Only 
polycrystalline ZnO solidified on the iridium seed rod was reported (Klimm et al., 2008a). 
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The control of the Czochralski experiments failed as the evaporation rate of ZnO at the 
melting point is high, even under the pressures up to 20 atm that were used. However, the 
partial pressure of O2 at total pressure 20 atm that is supplied by pure CO2 barely reaches to 
1.90×10-1 atm at the melting point of ZnO crystal (seen Fig. 9). As shown in Fig. 10, the 
evaporated material forms white fume laying above the melts surface making optical control 
of the seeding process almost impossible (Klimm et al., 2008a). Moreover, evaporated ZnO 
condenses partially on the iridium seed rod, especially where it is lead through the thermal 
insulation. The sublimate creates mechanical contact between both parts, thus hindering 
mass control of the crystallizing ZnO by the balance on top of the seed rod that would 
otherwise allow automatic diameter control of the Czochralski growth process. 
 

 

Fig. 10. Left: A schematic illustration of the ZnO crystal growth apparatus,  
Right: polycrystalline ZnO solidified on the iridium seed rod. (Klimm et al., 2008a) 

The Table 3 shows that at Tm=2248 K (melting point of ZnO), the pressure of oxygen at total 
pressure 5 atm should be between (PO2)min and (PO2)max points (-1.11<Log PO2<2) in order 
to have growth stability and suppress the burning of the construction parts (crucible, seed 
holder). Based on Table 3, the oxygen partial pressure of gas mixtures containing (CO-NO-
CO2-NO2) with (CO/CO2)=0.25 and (NO/NO2)=0.25 is reached to Log PO2=-0.05 atm. 
Compared with NO-NO2 system, It is not only placed among of (PO2)min and (PO2)max at the 
melting point of ZnO but also it is less than the partial pressure of oxygen at lower 
temperatures of 1370 K. Best of all, the ZnO crystal growth can be performed at lower total 
pressures (< 5 atm) compared with CO-CO2 system (>20 atm).  

6. Conclusion 

During the growth of refractory oxides crystal from melt, appropriate partial pressure of O2 

in the chamber is needed to keep the growth process stable. On the other hand, the partial 

pressure of O2 should be kept low adequate in lower temperatures to suppress the oxidation 
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of constructive parts specially crucible. The best solution to this problem is that the PO2 that 

is supplied by–depends on thermodynamic behavior of oxide- pure CO2 or by a mixture of 

CO-CO2 or NO-CO-CO2-NO2 would be utilized in the growth atmosphere. They produce a 

temperature dependent oxygen partial pressure in this manner that the O2 partial pressure 

increases with temperature. This amount of liberated oxygen is just sufficient to decrease the 

evaporation of molten oxides as well as low enough to allow the use of iridium crucibles, 

i.e., allowing Czochralski growth of Ga2O3 or ZnO. 
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