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1. Introduction 

In acute pancreatitis, reductions in blood flow and alterations of microvascular integrity 

resulting in impaired tissue oxygenation play an important part in the progression and 

possibly the initiation of the disease. Independently of the initial noxa, the intra-pancreatic 

activation of trypsinogen to trypsin is the crucial trigger of acute pancreatitis. The central 

events for the further course are the release of local mediators (cytokines, vasoactive 

substances, free oxygen radicals) and subsequently the development of microcirculatory 

disturbances and the activation of leukocytes and their infiltration into the tissue. At 

present, the deterioration of microcirculation is seen as the most important pacemaker in the 

progression to a necrotizing pancreatitis. In addition to its potentiatory role, severe 

pancreatic ischemia can play a pathogenetic role in the initiation of acute pancreatitis. The 

acute edematous pancreatitis is characterized by an increased and homogeneous 

microperfusion. The experimental necrotizing pancreatitis shows a progredient decrease of 

capillary perfusion despite stable macrohemodynamics.  

There is increasing evidence that ischemia alone may be the primary cause of pancreatitis or 

may be the exacerbating promotor for the progression from edematous to necrotizing 

pancreatitis. In clinical studies there was evidence, that ischemia during cardiopulmonary 

bypass triggered acute pancreatitis and acute pancreatitis was found in up to 25% of 

autopsies of patients dying after shock. In animal models severe pancreatitis could be 

induced by obstruction of terminal pancreatic arterioles. The study by Mithöfer et al. [1] 

demonstrates, that temporary hemorrhagic hypotension in rats per se initiates acute 

pancreatitis.  

The hypothesis, that the manifestation of microvascular injury in acute pancreatitis involves 

ischemia/reperfusion(I/R)-associated events, is supported by the study of Menger et al. [2], 

who analyzed the pancreatic microcirculation of rats during postischemic reperfusion by 

use of intravital fluorescence microscopy (Fig. 1, 2). In this investigation, post-ischemic 

reperfusion was characterized by a significant reduction of functional capillary density (no-

reflow) and by a marked increase of the permanently adherent leukocytes in postcapillary 

venules (reflow paradox) (Fig. 3). In addition, the functional and histomorphological 

alterations in this study were similar to the alteration seen in edematous pancreatitis. 

Postischemic activation of leukocytes has been reported to determine the outcome of I/R 

injury. Kusterer et al. [3] have demonstrated that sodium taurocholate-induced pancreatitis 
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is characterized by early arteriolar vasoconstriction with ischemia, followed by arteriolar 

vasodilation with reestablishment of blood flow (reperfusion). Increased leukocyte-

endothelial cell interactions in postcapillary venules - mimicking the I/R event - were 

observed during vasodilation. The concept of I/R-induced pancreatitis is mostly reflected in 

the clinical situation of post-transplant pancreatitis. Experimental studies using the model of 

syngeneic pancreas transplantation in rats show microcirculatory disturbances and cellular 

damages similar to those seen in the beginning of an acute pancreatitis [4]. Pancreatitis after 

hemorrhagic shock or hypotension with hypoxia, but not complete ischemia/anoxia may 

also involve pathomechanisms associated with ischemia/reperfusion. A recent study 

demonstrates, that hemorrhagic hypotension in rats induces intermittent capillary 

perfusion, which is characterized by periods of normal blood flow followed by periods of 

complete cessation of blood flow [5]. This type of regional ischemia and reperfusion may 

contribute to the manifestation of pancreatitis, independent of the etiology.  

2. Cell-cell interactions 

By means of intravital microscopy (Fig. 1-3) in conjunction with technique of selected cell-

labeling, direct impairments of pancreatic microcirculation induced by controlled 

haemorrhage or interruption of arterial blood supply to the pancreas in the early phase of 

acute pancreatitis have been observed [6], suggesting the pancreatic microcirculation being 

highly susceptible to ischemia [7-9]. The nature of blood cell–endothelium, especially 

leukocyte–endothelium, interactions as an early step in the inflammatory response has been 

characterized in experimental pancreas transplantation and in models of I/R-induced acute 

pancreatitis [4, 10].  

 

 

Fig. 1. Processing of intravital microscopy of the rat pancreas.  
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Fig. 2. In-vivo microscopic image of pancreas microcirculation.  

 

 

Fig. 3. In-vivo microscopic image of sticking platelets in a postcapillary venule of a post-
ischemic rat pancreas.  

2.1 Leukocytes 

The neutrophils play a central part in the inflammatory process of acute pancreatitis. Their 

activation and that of the endothelium by cytokines (IL-6, TNFa, IL-8, IL-1b and others) and 

of proinflammatory mediators (platelet-activating factor (PAF), free radicals and others) will 

allow a narrow interaction between them that will result in a significant concentration of 

neutrophils activated in the interstitium [11-14]. This interaction takes place in three parts: a 

weak adhesion of the neutrophils to the endothelium, followed by a stronger adhesion and, 

finally, the neutrophil migration (Fig. 4). Three families of adhesion molecules are 

implicated: selectins, b2-integrins and immunoglobulins (Table 1). The selectins are surface 

glycoproteins implicated in weak adhesion. The L-selectin, expressed by the endothelial 

cells and the neutrophils, plays a part at the beginning of reperfusion. It interacts with the P-

selectin on the neutrophils and a specific ligand present on the membrane of the neutrophil, 

the E-selectin-specific ligand-1 (ESL-1) [15]. Endothelial P-selectin will be expressed later 
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from the Weibel–Palade bodies after activation of the endothelium by reactive oxygen 

species (ROS), hypercalcaemia, complement or thrombin. Its peak of expression occurs 10–

20 min after the beginning of reperfusion [14]. It interacts with P-selectin glycoprotein 

ligand-1 (PSGL-1) expressed by the neutrophils. These interactions are very weak, giving the 

neutrophils a weak, transitory, reversible adhesion known as ‘leukocyte rolling’. This phase 

prepares the neutrophil and the endothelium for the following stage. A more important 

stowing of neutrophils in the endothelium utilizes other leukocyte and endothelium 

proteins that have a stronger affinity for each other. 


Leukocyte adhesion receptor  Endothelial ligand   Function 

 

a4b7 (unactivated)   MadCAM-1    Rolling 

 

a4b1 (unactivated)   VCAM-1    Rolling 

 

PSGL-1                   P-selectin    Capture, Rolling 

 

L-selectin                  P-selectin    Capture 

                                                              Peripheral node                                    Rolling 
                                                              addressin (PNAd) 

                                                              E-selectin 

                                                              MadCAM-1 

a4b7 (activated)                  VCAM-1/MAdCAM-1   Firm adhesion 

 

a4b1 (activated)                  VCAM-1    Firm adhesion 

 

CD11a /CD18   ICAM-1, ICAM-2                 Firm adhesion,  
 (LFA-1)                                                                                                               Emigration 

CD11b/CD18    ICAM-1                   Firm adhesion,  
(Mac-1)                                                                                                                Emigration 

PECAM-1    PECAM-1    Emigration 

Table 1. Leukocyte-endothelium interactions. Adhesion receptors and their ligands on 
activated endothelial cells. Modified from [17]. 

The ROS, PAF and leucotriene (LTB4) stimulate the expression by neutrophils of b2-

integrins from the intracellular granules. This family of membrane proteins consists of 

CD11a/CD18, CD11b/CD18 and CD11c/ CD18 and interacts with the ICAM-1 endothelial 

protein whose expression is enhanced by TNFa and IL-1 [16, 17]. This interaction fastens the 

neutrophil to the surface of the endothelial cell and allows the next stage. ICAM-1 and 

PECAM-1 are adhesion molecules belonging to the superfamily of immunoglobulins which 

take part and orchestrate the transfer of the neutrophils towards the interstitium. The 

leukocyte extravasation utilizes many stages, not all of which are yet clear. Nevertheless, it 

seems that PECAM-1, localized at the level of the intercellular endothelial junctions, is 
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necessary to allow neutrophil migration [18]. This transfer is facilitated by the inflammation 

mediators, the connection of CD11/CD18–ICAM-1 and the ROS making the endothelial 

barrier receptive by decreasing the expression of cadherin and phosphorylation of vascular 

endothelial cadherin and cathenin, components of the intercellular junctions [19, 20]. 

 

 

Fig. 4. Multistep adhesion cascade of leukocyte-endothelium interactions. Modified from 
[183]. 

Arriving at the interstitium, the activated neutrophil will cause considerable damage to a 
tissue, which has already suffered from hypoxia. These lesions are mainly related to the 
massive ROS production, to the release of the contents of the neutrophilic granules and to 
the metabolites of arachidonic acid. The last, metabolized by phospholipase A2, generates 
PAF and LTB4, two powerful chemoattractive components that stimulate the adhesion of 
neutrophils to the endothelium and their degranulation in the interstitium. The neutrophilic 
granules, filled with proteases, collagenases, elastases, lipooxygenases, phospholipases and 
myeloperoxidases, will digest and disorganize the protein network of extracellular matrix 
(Table 2). The proteic network of extracellular matrix is important in healing while being 
used to guide tissue formation. The inflammation induced by reperfusion is a major cause of 
the lesions observed after restoration of blood flow in an ischemic organ. The massive 
production of cytokines, the activation of the complement and a complex choreography of 
the neutrophils are the key factors and are therefore being examined in research to modulate 
the inflammatory reaction.  

2.2 Platelets 
Considerable evidence has accumulated that platelets can also contribute to I/R injury in 
several organs, such as the heart [21], lung [22], and pancreas [23]. Upon activation, platelets 
are able to generate reactive oxygen species and nitric oxide (NO) and can release pro-
inflammatory mediators, such as chemokines, cytokines, growth factors, and cytotoxic 
proteases [24]. Therefore, platelets can potentially contribute to the manifestation of 
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pancreatitis after normothermic I/R injury. In the liver of a rat model, Khandoga et al. [25] 
have demonstrated that platelets interact with the hepatic endothelium after 90 min of warm 
ischemia and 20 min of reperfusion and evoke the development of hepatic microvascular 
and hepatocellular injury. 
 

Leukocytes Platelets

Cytokines/chemokines 
IL-1, IL-2, IL-6, IL-8, IL-12 
IFN-a, IFN-b 
TNF-a, TNF-b 
Transforming growth factor-b 
Monocyte chemotactic factor-1 
 

Reactive oxygen species 
Superoxide 
Hydrogen peroxide 
 

Proteases 
Cathepsin-G 
Elastase 
Collagenase 
 

Oxidases 
Myeloperoxidase 
 

Lipid mediators 
Leukotrienes B4, C4 
Platelet activating factor 
 

Miscellaneous 
Cationic proteins 
Histamine 
VEGF 

Cytokines/chemokines 
IL-1, IL-7, IL-8 
RANTES 
TNF-b 
CD40 ligand 
 

Reactive oxygen species 
Superoxide 
Hydrogen peroxide 
 
Growth factors 
PDGF 
Transforming growth factor-b 
VEGF 
 
Lipid mediators 
Thromboxane A2 
12-HETE 
 
Procoagulants 
Thrombin 
ADT and ATP 
Platelet factor-4 
Polyphosphates 
 
 

Table 2. Activation products released by leukocytes and platelets that may impair 
endothelial barrier function. Modified from [18]. 

Platelet activation was accompanied by leukocyte activation in a study of Hackert et al. [7]. An 

interaction between these two cell types has been demonstrated by different authors in the 

past [26-28]. Among others, P-selectin seems to be one of the most important adhesion 

molecules, which links the inflammatory and procoagulatory cascades and has the potency to 

activate leukocytes and platelets as the cellular elements of either pathway [27-30]. Besides 

their adherence to endothelial cells, activated platelets form stable aggregates with leukocytes. 

This results in a combined inflammatory and coagulatory contribution to thrombus formation 

and is also mediated by P-selectin and beta-integrins [31, 32]. Especially, the formation of 

microthrombotic vessel occlusion with microcirculatory perfusion failure and consequent 

ischemia, hypoxia, and tissue necrosis promote organ damage. 
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2.3 Lymphocytes 

Recent studies have implicated peripheral blood lymphocytes in Ag-independent 
inflammatory-mediated injury following organ reperfusion [33-36]. The contributory role of 
lymphocytes in I/R is likely a multifactorial one.  
Evidence is mounting on the importance of T cells in mediating both short- and long-term 
damage during I/R injury, which in turn could explain why I/R contributes to poor late 
allograft function [37, 38]. The demonstration that systemic immunosuppression (CsA, 
FK506) attenuates hepatocellular injury following I/R implies the involvement of T 
lymphocytes in the pathophysiology of the injury [39, 40], data supported by Shen et al. in 
T-cell-deficient (nude) mice [41, 42], as well as in rats in which treatment with FTY720 
prevented hepatic I/R insult in parallel with massive redistribution of recirculating T cells 
from host peripheral blood into the lymph node compartment [43]. The adherence of 
lymphocytes in hepatic sinusoids occurs early duringreperfusion and impairs liver function 
following prolonged cold ischemic times [44]. Recent data have also shown that circulating 
CD4+ T lymphocytes may act as a cellular mediator in subacute PMN recruitment following 
hepatic I/R injury [38] (Table 3). 
 

Platelet receptors Ligand Function 
 

P-selectin PSGL-1 Rolling, adhesion, RANTES 
deposition 

PSGL-1 
 

P-selectin Rolling, adhesion and P/L 
interactions 

GP1bα vWF 
P-selectin 
Mac-1 

Aggregation, rolling, 
adhesion and P/L 
interactions 

GPIIb/IIIa GPIIb/IIIa 
ICAM-1 
(via fibrinogen) 
av b3 
Mac-1 

Aggregation and adhesion 

JAM-A PSD95/ZO-1 Aggregation and adhesion 

PECAM-1 PECAM-1 Aggregation and adhesion 

Table 3. Platelet–endothelium interactions: Potential molecular determinants. Modified from 
[157] 

JAM-A junctional adhesion molecule-A 
PECAM platelet endothelial cell adhesion molecule-1 
PSGL-1 P-Selectin glycoprotein ligand-1 
vWF von Willebrand factor 
ZO-1 zona occludens protein-1 

3. Adhesion molecules 

A variety of adhesion molecules are implicated in the progression of disease. Intercellular 
adhesion molecule, platelet endothelial cell adhesion molecule 1 and endothelial leukocyte 
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adhesion molecule 1 (ELAM-1) are up-regulated, expression of P- and E-selectin enhanced, 
and leukocytes become CD18 positive in acute pancreatitis [11].  

3.1 Intercellular Adhesion Molecule-1 (ICAM-1)  

ICAM-1, a single-chain transmembrane glycoprotein with a molecular weight of 80-110 
KDa, consists of five Ig-like domains, a hydrophobic transmembrane domain and a short 
cytoplasmic C-terminal domain [45]. Its ligand includes lymphocyte function- associated 
antigen-1 (LFA-1) and macrophage antigen-1 (Mac-1) [46]. ICAM-1 is an immunoglobulin 
molecule mainly expressed in vascular endothelial cells, and plays an important role 
especially in the process of inflammation. Under normal circumstances, it will not be 
expressed or just with low expression in most vessels. However, when its expression 
increased, it can interact with integrin on the surface of granular cells. Therefore, it can cause 
leukocyte migration through capillary endothelial barriers to inflammatory regions, and 
then cause excessive architectonic inflammatory response [47]. Experiments show that 
ICAM-1 high expression may cause leukocyte adhesion through endothelial cells – 
leukocyte interaction, increase capillary permeability, reduce capillary blood flow velocity, 
cause pancreatic microcirculation disorder [48-50]. ICAM-1 expression correlates with 
histological severity and leukocyte infiltration [51], and can be upregulated by trypsin in 
vivo and in vitro [49]. This upregulation is mirrored by increased tissue infiltration of 
leukocytes and increased endothelium-leukocyte interaction. 
Whereas the binding of endothelial ICAM is directly to CD18 on the leukocyte surface, the 

binding of platelets to the endothelium is possible via the following mechanism. I/R leads to 

fibrinogen deposition on microvascular endothelial cells and a corresponding accumulation 

of firmly adherent platelets. Experimental interventions (i.e., anti-fibrinogen antibody or 

ICAM-1 deficiency) that reduce the I/R-induced fibrinogen accumulation also blunt the 

accumulation of adherent platelets in both arterioles and venules, suggesting that the 

binding of fibrinogen to endothelial cell ICAM-1 creates a scaffold on the vessel wall onto 

which platelets can adhere using GPIIb/IIIa [52] (Table 3). 

3.2 Platelet–endothelial cell adhesion molecule (PECAM)-1 

The pancreatic circulation during acute experimental edematous pancreatitis may also be 
influenced by the expression of platelet-endothelial cell adhesion molecule on 
polymorphonuclear leukocytes. PECAM-1 expression was up-regulated in the peripheral 
circulation and down-regulated in the pancreatic microcirculation, suggesting that 
inhibition of PECAM-1 expression may improve the pathological changes associated with 
acute edematous pancreatitis in rats [53, 54]. 

3.3 P-selectin 

P-selectin is normally stored in granular structures of both platelets (┙-granules) and 
endothelial cells (Weibel–Palade bodies), from which it can be rapidly mobilized to the cell 
surface upon endothelial cell activation. Some vascular beds (e.g., intestine) exhibit 
significant basal expression of P-selectin [55], with little basal expression on inactivated 
circulating platelets. Several studies have addressed the contributions of platelet vs. 
endothelial cell P-selectin to the platelet adhesion induced by stimuli such as I/R [56, 57], 
[58], endotoxin [59], and TNF-┙ [60]. In I/R models of platelet adhesion, it appears that 
those models that elicit a rapid adhesion response in both venules and arterioles are entirely 
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dependent on endothelial P-selectin [56], while I/R models exhibiting slow, time-dependent 
platelet adhesion only in venules involve both platelet and endothelial cell P-selectin [57]. A 
blocking mAb directed against PSGL-1, a ligand for P-selectin that is expressed on 
leukocytes and platelets [61], is also effective in attenuating the I/R-induced platelet 
adhesion observed hours after reperfusion, which further supports a role for platelet-
derived P-selectin [57]. 
 

Influenced Paramter  Treatment Effect References 

Leukocytes Neutrophil depletion 
Diannexin 
Tacrolimus  
Anti-fibrinogen antibody 
Erythropoeitin 

+ 
+ 
+ 

[57] 
[42] 
[158, 7] 
[159] 
[160, 161] 

Platelets Platelet depletion, anti-
platelet serum 

+ [162] 

Lymphocytes FTY720 
Tacrolimus 

+ 
+ 

[43, 163, 33] 
[158, 7] 

ICAM-1 Anti-ICAM-1 antibody 
ICAM-1-deficiency 
Phloretin 
Erythropoeitin 

+ 
+ 
+ 

[51, 164, 165]  
[52] 
[166] 
[160, 161] 

P-selectin CP-96,345 
Statins 

+ 
+ 

[167] 
[168-170]  

ET ETA receptor antagonist + [79, 171-173] 

NO L-arginine 
Sodium nitroprusside 

+ [174-176]  

TNF-┙ Receptor antagonist 
Knockout mice 
Polyclonal antibody 

+ 
+ 
+ 

[177] 
[178] 
[90] 

IL-1 Receptor antagonist 
Knockout mice 

+ 
+ 

[177] 
[178] 

IL-10 IL-10 administration + [108, 109]. 

PAF PAF antagonist + [179], [180], [111] 

Serotonin 5HT2 receptor antagonists + [119], [118] 

Bradykinin Bradykinin B2 receptor 
antagonist 

++ [181], [132] 

TXA2 TXA2 receptor blocker + [182] 

VEGF tyrosinekinase inhibitor 
PTK787/ZK222584 

+ [146] 

COX2 Inhibition, depletion + [136, 137] 

Table 4. Therapeutic approaches to prevent or treat microcirculatory disturbances in acute 
pancreatitis. 

The platelet adhesion elicited by bacterial endotoxin also appears to involve endothelial P-

selectin [59]. However, glycoprotein (GP) Ib┙ is the platelet ligand that appears to mediate 

this interaction. This glycoprotein and PSGL-1 are two platelet ligands that have been 
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implicated in P-selectin-mediated platelet interactions (primarily rolling) with venular 

endothelial cells. Platelet GPIb┙ also exhibits the capacity to bind to endothelial cells in a P-

selectin-independent manner. vWF, which is released from Weibel–Palade bodies during 

endothelial cell activation, can bind to GPIb┙. vWF–GPIb┙ interactions have been 

implicated in the platelet recruitment in mouse mesenteric venules stimulated with either 

calcium ionophore, A23187, or histamine [62, 63]. 

4. Vasoactive mediators 

4.1 Endothelin 

Endothelin-1 (ET-1) is a potent vasoconstrictor of the pancreatic microcirculation mainly 
produced by endothelial cells. The intact microvasculature is balanced by the constricting 
action of ET-1 and the dilating features of nitric oxide (NO), made constitutively by 
endothelial nitric oxide synthase (eNOS). It has been shown that ET-1 production is 
controlled at the transcriptional level. Up-regulation of prepro-ET-1 mRNA can be induced 

by numerous factors such as cytokines, angiotensin, thrombin, and TGF- [64]. Released 
from endothelial cells, ET-1 mediates transient vasodilation followed by a profound and 
longlasting vasoconstriction. Furthermore, ET-1 is able to induce an inflammatory response 
in human vascular smooth muscle cells by stimulating the synthesis and release of pro-
inflammatory cytokines such as interleukin-6 [65]. ET-1 does not only mediate local injury, 
but also systemic disease. 
ET affects microcirculation by:  
- constriction of arterioles and venules [66, 67] 
- release of prostaglandine E2, IL-6 and IL-8 from monocytes [68] 
- stimulation of phospholipase A2 [69] 
- reinforced formation of free oxygen radicals in neutrophiles [70] 
- expression of adhesion molecules [71, 72] 
- stimulation of catecholamine release [73] 
Beside its vasoconstrictive effects endothelin as multifunctional cytokine modulates the 
motility and secretion of the intestinum, stimulates mitogenesis and acts as a growth factor.  
Several investigators have shown that the pancreas is especially susceptible to ET-1 [74], 
[75]. The study of Hildebrand et al. showed that the rat pancreatic acini possess ETA and ETB 
receptors [76]. At doses of 100 to 1000 pmol/kg via intravenous injection, endothelins cause 
sustained reduction in pancreatic blood flow in the rabbit and dog of up to 80 % [75, 77]. In a 
study in rats, intravenous infusion of endothelin-1 or alcohol significantly reduced 
pancreatic capillary blood flow. The deterioration of capillary blood flow was more 
pronounced when alcohol and ET-1 were combined [78]. Liu et al. observed a decrease of 
pancreatic blood flow and a reinforcement of morphological changes after application of 
endothelin to rats with cerulein-induced edematous pancreatitis [47]. Foitzik et al. found in 
transgenic rats with an overexpression of endothelin receptors a more severe course of a 
necrotizing pancreatitis, which could be moderated by the application of a selective ETA 
receptor antagonist [79]. Plusczyk et al. showed that topical ET-1 application leads to a 
decrease in blood flow in the pancreas [80]. In intravital microscopy a strong heterogeneity 
of erythrocyte velocity, a decrease in the number of perfused capillaries and a reduction of 
the capillary width were seen. This group suggests that high local ET concentrations can 
cause complex microcirculatory disturbances, leading to acinar cell necrosis and therefore to 
the development of necrotizing pancreatitis [80]. There is some evidence that endothelins 
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also increase pancreatic capillary permeability [74, 81], though this might be explained by 
the resulting portal venous vasoconstriction.  

4.2 Nitric oxide 

Nitric oxide (NO) is synthetized through NO synthases from the amino acid L-arginine. For 

the first time, this pathway was described in endothelial cells [82], but it is also found in 

platelets, macrophages and in cells of the pancreas [68, 69]. NO causes a relaxation of 

vascular smooth muscle cells, depression of platelet aggregation and adhesion and reduces 

the leukocyte activation in vitro [72, 83]. Reduced NO formation reinforces leukocyte 

adhesion and migration [84-87]. These effects are regulated by the activation of the soluble 

guanylatcyclase which leads to increased concentrations of cGMP in the effector cells [86]. 

NO may also act as scavanger of oxygen free radicals [88]. However, also cytotoxic effects 

are described [89]. The overproduction of NO by inducible NO synthetase is an important 

factor in the hemodynamic disturbances of several inflammatory states. 

5. Cytokines 

During acute pancreatitis, some inflammatory cells and pancreatic tissues release 

inflammatory mediators and cytokines, which influence the whole process of inflammation. 

The most important cytokines are tumor necrosis factor-a (TNF-a), interleukins (IL) and 

transforming growth factor (TGF).  

5.1 TNF-α 

Lipsett [90] and Hirota et al. [91] independently proved that the levels of inflammatory 

cytokines always increase during acute pancreatitis and that the degree of the increase is 

closely linked to the severity of the disease. Many other studies have reported that self-

tissue injured with over-activated neutrophil leucocytes is an important causal factor of 

systemic complications [92-94]. One proposal is that the neutrophilic granulocyte may 

generate and release inflammatory cytokines such as TNF-┙ following inflammatory 

stimulation [95, 96]. TNF-┙ is an important species of inflammatory cytokines that 

participates in the pathomechanism during pancreatitis. Hughes et al. [97] found that 

injecting TNF-┙ antibody into rats can markedly improve the state and survival of rats with 

necrotizing pancreatitis, thereby indicating the important role of TNF-┙ in the onset and 

progression of the disearse. A number of mechanisms have been proposed for TNF-┙-

induced pancreatic injury. TNF-┙ can directly injure pancreatic duct cells and cause 

microthrombus, pancreatic acinus ischemia, hemorrhage, necrosis, inflammation and edema 

[6]. When the quantity of produced TNF-┙ exceeds that of the tissue TNF receptor, the 

excessive free TNF-┙ will enter the blood circulation, activate neutrophilic granulocytes and 

cause their aggregatione. It then stimulates the release of cytokines, such as IL-1b, IL-8 and 

IL-6 [98], causing a cytokine cascade reaction that promotes the local and systemic injury. 

The continuous existence of TNF-┙ may enhance the expression of endothelium adhesion 

molecules, which is necessary for the aggregation of inflammatory cells. Numerous 

granulocytes invade the pancreatic and renal tissues, increase granulocyte phagocytosis and 

degranulation, generate oxygen-derived free radicals, lysosomes, elastin enzyme, among 

others, and cause cell metabolic disturbances and renal failure [99]. 
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5.2 IL-1 

Interleukin (IL) IL-1 is a pro-inflammatory cytokine generated by the pancreas that plays an 
important role in the early stage of severe acute pancreatitis. In a animal model, the IL-1 
receptor antagonist (IL-1r) has been found to decrease case fatality by 30% [100]; in addition, 
the IL-1 receptor can markedly lower the concentrations of IL-6 and TNF-┙ [101]. Fink et al. 
[102] administered the IL-1 receptor antagonist before inducing the pancreatitis model and 
found that the IL-1 receptor block markedly lowered the release of amylopsin and 
pancreatic necrosis in a dose-dependent manner. 
The generation of IL-1b formed from IL-1 through the mediation of IL-1 convertase (ICE). 
IL-1┚ and TNF-a have many of the same biological activities, including pyrogen functions, 
the promotion of cell catabolism, the production of protein in the acute reaction period, 
effecting the secretion of PGI2 by epithelial cells and platelet activating factor, among others, 
that will cause the expansion of the inflammation area and increase the levels of 
inflammatory mediators, destructive enzymes and ROS secretion. IL-1b can interact with 
TNF-a to induce or aggravate organ injury. It also has chemotaxis and activating effects on 
granulocyte and can stimulate the production of other inflammatory mediators, such as IL-
8, IL-6 and other inflammatory cytokines, through autocrine or paracrine mechanisms.  

5.3 IL-6 

IL-6 is mainly generated by mononuclear macrophages, which have extensive 
inflammation-promoting effects, such as promoting the activation and proliferation of B 
cells and their final differentiation into plasmocytes, increasing immunoglobulin synthesis, 
promoting T cell differentiation and proliferation, promoting the acute period reaction and 
injuring tissue. The level of IL-6 in the serum can reflect the state of necrotizing acute 
pancreatitis. There are marked differences between acute pancreatitis patients without 
complications and severe acute pancreatitis patients with complications in terms of IL-6 
levels. When present at levels of over 40 µl, IL-6 is considered to be an indication index of 
severe acute pancreatitis [103]. Relevant data show that IL-1 and IL-6 can act on endothelial 
cells, causing them to lower their thrombomodulin activity, aggravate renal ischemia, form 
thrombus [104] and activate inflammatory cells to release NO and ROS to directly cause 
renal injury.  

5.4 IL-8 

IL-8 is a potent neutrophilic granulocyte chemotatic factor and activating factor that is 
mainly generated by neutrophilic granulocytes. Generated by mononuclear/ macrophages 
and endothelial cells, it can activate and induce T and B cell differentiation, enhance NK 
cells for killing target cells, promote phagocytosis and play an important role in tissue injury 
mediated by neutrophilic granulocytes. It is currently believed that most inflammatory 
reactions induced by TNF-a, IL-1 and IL-6 are realized by inducing the generation of 
chemotactic factors, mainly IL-8. Studies have shown that during necrotizing acute 
pancreatitis the levels of IL-6 and IL-8 always increase concurrently and that these positively 
correlate with the state of severe acute pancreatitis [105].  

5.5 Transforming growth factor (TGF) 

Kimura et al. [106] studied the expression of TGF-b1 by means of immune electron 
microscopy and found that a marked effusion of the polymorphonuclear leukocyte and 
deposition of fibronectin and TGF-b1 among pancreatic lobules and inside lobules within 
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12–24 h after inducing pancreatitis. They therefore believed that this kind of change at the 
early stage of pancreatitis is related to the generation of fibronectin and type III collagen in 
the extracellular matrix during the reparative process of pancreatic tissues. Konturek et al. 
[107] proposed that TGF-b can induce non-inflammatory apoptosis to repair injured 
pancreatic tissues. 

5.6 IL-10 
Interleukin-10 (IL-10) is an anti-inflammatory cytokine. Its plasma levels are elevated in 
animal models of endotoxemia and inhibit the release of pro-inflammatory cytokines (i.e. IL-
1┚, IL-6 and TNF-┙) from monocytes/macrophages thus preventing subsequent tissue 
damage. IL-10 also stimulates production of naturally occurring IL-1 receptor antagonist (IL-
1ra) and release of soluble p75 TNF receptor [108]. IL-10 is believed to have a protective role 
in acute pancreatitis. Administration of IL- 10 in experimental acute pancreatitis reduces the 
local inflammatory response and subsequent mortality [108, 109]. 
 
 
 

 

 

Fig. 5. Interaction between cytokines and oxidative stress in the inflammatory response in 

acute pancreatitis (IL-1┚: interleukin-1┚; IL-10: interleukin 10; MnSOD: Mn-superoxide 

dismutase; PAP-I: pancreatitis-associated protein I; TNF-: tumor necrosis factor ┙; NF-kB: 

nuclear factor kappaB; ERK: extracellular signal regulated kinases; JNK: c-jun N-terminal 

kinases; p38: p38 kinase). Modified from [184]. 
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6. Other mediators 

6.1 Platelet activating factor (PAF) 

PAF, 1-O-octadecyl-2-acetyl-sn-glycero-3-phosphocholine, is a potent inflammatory 
mediator produced by endothelial cells, platelets, monocytes, neutrophils, and basophils. It 
is considered to be the key inflammatory mediator in severe acute pancreatitis external 
secretion and local/systemic inflammatory reactions [110]. 
PAF has been shown to be released into the peritoneal fluid as well as the bloodstream and 
the lung after the induction of acute experimental pancreatitis. Locally, PAF acts on 
microvascular diameter, permeability and platelet and leukocyte rolling, adhesion and 
migration through different mechanisms, including synthesis and release of NO and 
arachidonic acid metabolites, and up-regulated expressions of ICAM-1 and CD11/CD18. 
Secondary actions include the elevation of adhesion factor b2-integrin, changes in the 
endothelial cell skeleton, increases in capillary permeability, massive effusion of plasma, 
increase in blood viscosity and a slowdown of blood flow. It also participates in I/R injury 
and stimulates other vasoactive substances, including the generation of cytokine and 
inflammatory mediators. In acute pancreatitis, PAF levels rise due to the cytokine cascade 
reaction activated by elevated levels of TNF-a [98]. On the one hand, PAF promotes 
granulocyte aggregation and aggravates inflammatory reactions; on the other hand, it 
increases capillary permeability and aggravates renal tubule injury. The imbalance between 
PAF and vasoactive substances can initiate a vicious cycle that leads to a series of chain 
reactions and amplifying reactions—the cascade reaction. This reaction can increase tissue 
and organ injury, cause systemic inflammatory reaction syndrome (SIRS) and, eventually, 
multiple organ dysfunction syndrome (MODS) and/or multiple organ failure (MOF), or 
even death [98], [48]. Clinical studies have found that PAF antagonist Lexipafant has clear 
treatment effects on multiple organ failure of severe acute pancreatitis patients and also 
lowers the serum levels of inflammatory mediators such as IL-8 and IL-6 [111]. 

6.2 Activation of complement 

I/R activates the complement and the formation of many inflammatory mediators, 
including the anaphylatoxins C3a, C4a and C5a. These recruit and stimulate the 
inflammatory cells and increase the expression of adhesion molecules such as vascular cell 
adhesion molecule-1 (VCAM-1), ICAM-1, E-selectin and P-selectin on the surface of the 
endothelium and the neutrophils [112, 113]. C5a is a chemotactic factor that directly 
stimulates the synthesis and the leucocyte secretion of cytokines such as IL-1 and 6, the 
monocytes chemo-attractive protein-1 (MCP-1) and TNFa. The iC3b takes part in the 
adhesion of the neutrophils on the endothelium. C5b-9, known as the ‘final cytolytic 
membrane attack complex complement’, is a powerful chemotactic agent, which causes 
direct lesions to the endothelial cells, stimulates the endothelial production of IL-8, MCP-1 
and ROS and inhibits endothelium-dependent vasodilatation [13, 113, 114]. 

6.3 Serotonin 

Platelet serotonin (hydroxytryptamine; p-5HT) is an index of platelet activation [115, 116]. 

Furthermore, the administration of human pancreatic fluid caused the release of 5HT in 

parallel with platelet activation [117]. Several studies showed that the production of 5HT 

can induce further platelet aggregation and 5HT release [118, 119], a positive feedback that 

may lead to thrombus formation [120]. Furthermore, 5HT is also a potent vasoconstrictor 
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[116]. Thus, these proprieties may mean that this bioamine is an aggravating factor for acute 

pancreatitis. The release of serotonin is considered to be the “gold standard” assay for the 

detection of platelet activation [121]. 

6.4 Bradykinin 

The neuropeptide bradykinin is well known for its actions as an endothelium-dependent 

vasodilator. Bradykinin induces relaxation of vascular smooth muscle via stimulation of B2 

receptors, which in turn stimulates constitutively expressed endothelial nitric oxide (NO) 

synthase (eNOS) to produce NO, induces cyclooxygenase-dependent production of 

prostacyclin and other prostanoids, as well as superoxide, activates charybdotoxin-sensitive 

K+ channels, and induces the formation of epoxyeicosatrienoic acids by cytochrome P-450 

epoxygenase [122-124]. In addition to its actions on arterial and arteriolar vascular smooth 

muscle, bradykinin also exerts powerful pro-inflammatory effects in postcapillary venules. 

For example, it generates the release of endothelium-derived mediators from cultured 

endothelial cells that are chemotactic for neutrophils, eosinophils, monocytes, and 

pulmonary alveolar macrophages; induces the expression of endothelial adhesion 

molecules; and provokes leukocyte and platelet adherence to endothelial monolayers and 

postcapillary venules [125-129]. 

The specific mechanisms of bradykinin in the pancreas can be listed as follows: bradykinin 

can promote the synthesis and release of NO, bradykinin influences the pancreatic 

microcirculation by stimulating the formation of reactive oxygen species, PAF, ET, and 

different inflammatory mediators. 

6.5 Thromboxane A2 (TXA2) 

TXA2 is a potent capillary vasoconstrictor substance and platelet aggregation promoter that 

is able to induce platelet release and secretion, cause local and/or systemic disturbance of 

hemorrhage blood coagulation and destroy the cell-protection mechanism [130, 131]. 

Effected by increased phospholipase during acute pancreatitis condition, the cell membrane 

phospholipids decompose arachidonic acid, evoke TXA2 increase, lead to platelet 

aggregation, thrombosis, induce platelet deformation, adhesion, result in coagulation 

dysfunction, precipitate pancreatic ischemia and microcirculation, and increase pancreatic 

pathology injury [132]. In addition, it can promote neutrophil cell activation, release ROS, 

injure capillary endothelial cells, result in increased capillary permeability, and plasma 

extravasation [133]. 

6.6 Cyclooxygenase (COX) 

COX, the key enzyme for prostaglandin synthesis, exists in two isoforms as COX-1 and 

COX-2. COX-1 is constitutively expressed in most tissues and has been suggested to mediate 

the synthesis of prostaglandins required for physiological functions and maintenance of 

organ integrity. COX-2 is undetectable in most tissues in normal condition, but is highly 

inducible by cytokines, mitogens, and endotoxins, and is responsible for an increased 

production of prostaglandins during inflammation [134, 135]. The role of COX-2 in 

pancreatic pathology is unclear. Studies performed by Song et al. [136], and Ethridge et al. 

[137], with mice have shown that pharmacological inhibition of COX-2 or COX-2 gene 

disruption reduces the severity of pancreatitis and pancreatitis-associated lung injury.  
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Furthermore, Foitzik et al. [138], found some beneficial systemic effects of COX-2 inhibition 

on acute pancreatitis, such as an improvement of renal and respiratory function, but they 

have not observed any significant effect of COX-2 inhibition on histological score of 

pancreatic damage or plasma level of trypsinogen activation peptides. Warzecha et al. [135] 

investigated the role of the blockade of COX-1 or COX-2 and found a significantly reduction 

of serum lipase and serum poly-C ribonuclease activity, as well as decreased pancreatic 

edema and inflammatory infiltration in morphological features in animals with cerulein-

induced pancreatitis.  

6.7 Prostaglandin I2 (PGI2) 

PGI2 is also one of the arachidonic acid metabolites with a strong vasodilator effect. The 

main influence on pancreatic microcirculation in pancreatitis can be listed as follows: 

expansion of the pancreatic bed to increase pancreatic blood supply, improvement of 

pancreatic microcirculation, and increase of pancreatic blood flow by inhibiting platelet 

aggregation, adhesion and deformation. Furthermore, PGI2 can also stabilize 

lysosomalmembrane to prevent cytokine release and attenuate inflammatory response [139], 

[140]. 

6.8 Nuclear factor-kappa B (NF-kappa B) 

NF-kappa B is a multi-purpose nuclear transcription factor, mainly involved in the 

regulation of expression referring to immune and inflammatory molecules [141]. Under the 

normal physiological circumstances, the NF-kappa B exists in the cytoplasm of other cells in 

the form of inactivity. When it is activated, it will promote a variety of cytokines gene 

transcription, and it plays an important role in cytokine-mediated infection, inflammation, 

oxidative stress, cell proliferation and apoptosis, the process of microcirculation and so on. 

Shi et al. showed that NF-kappa B activation can aggravate acute pancreatitis 

microcirculation disorder and gradually reduce the amplitude of pancreatic blood flow, and 

slow down blood flow velocity with the gradual increase of NF-kappa B P65 expression. The 

possible acting mechanism of NF-kappa B is that the excessive expression of NF-kappa B 

induces inflammatory cells' excessive secretion of nitric oxide, and then causes dysfunction 

of endothelial cells and smooth muscle cells, and capillary tension disorders, and leads to 

capillary pathological expansion, increase in capillary permeability due to endothelial cell 

injury, and plasma extravasation, which eventually leads to reduction of effective blood 

volume, pancreatic tissue hypoperfusion, and induces increases microcirculation disorder 

[142]. 

6.9 Vascular endothelial growth factor (VEGF) 

VEGFs are endogenous vascular peptides that result in angiogenesis, vasodilatation and 

increased microvascular permeability in vivo [143]. Induction of VEGF mainly occurs in 

response to hypoxia [144]. Warzecha et al. found an increase in the immunohistochemical 

expression of VEGF even in the early course of I/R-induced acute pancreatitis [145]. Using 

the novel tyrosinekinase inhibitor PTK787/ZK222584, von Dobschuetz et al. observed a 

significant decrease of macromolecular permeability and a slightly increased functional 

capillary density with reduced leukocyte–endothelium interactions in the treatment group 

supporting a beneficial effect of this approach [146]. 
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6.10 Role of endotoxin 

Endotoxin, which is mainly produced by Gram-negative bacteria, is a component of the 
lipopolysaccharide present in cell walls. Clinical studies show that endotoxemia occurs in 
acute pancreatitis and particularly in severe acute pancreatitis, and that it is closely related 
to the onset, progression and complication of multiple organ failure in severe acute 
pancreatitis. Windsor et al.’s [147] study demonstrated the link between endotoxin and the 
state of pancreatitis. Other researchers studying the relation between plasma endotoxin 
levels of acute pancreatitis patients and multiple organ injury have found that endotoxin has 
an important promoting effect during the progression of multiple organ injury. As the most 
potent stimulant of endothelin, endotoxin can elevate the endothelin level in vivo and in 
blood, potently contracting medium-sized arteries and arterioles. Increased endothelin 
levels will also aggravate ischemia in other tissues, enhance bacterial translocation, raise 
blood endotoxin and renin-angiotensin levels and form a vicious cycle chain of tissue 
ischemia and endothelin that aggravates tissue ischemia endlessly [148]. 

6.11 Influence of reactive oxygen species (ROS) 

The ROS is an oxygen-containing chemical group with high chemical reaction activities, 
mainly those involving the peroxide anion-free radical (O2–) and the hydroxy radical (OH ּ◌). 
By causing lipid oxidation, it can increase mucosa permeability, further enhance phagocyte 
activity, generate more ROS and finally cause histiocyte injury. Scott et al. [149] 
demonstrated that in the pathological state, excessive ROS can cause tissue and cell injury. 
ROS can also participate in the formation of acute pancreatitis pancreatic edema and, 
possibly, in pancreatic necrosis and mediate leukocytes and platelets activated by TNF-┙ in 
all organs to 

6.12 Toll-like receptor-4 (TLR4) 

In the early stage, acute pancreatitis mainly manifests as a chemical inflammation, which is 

a pancreatic nonspecific inflammatory process resulting from the action of a variety of 

factors. This inflammatory process is an inflammatory cascade reaction dominated by the 

body’s innate immune system. Toll-like receptors are a kind of protein that can trigger this 

inflammatory cascade reaction. It is currently thought that TLRs might play a central role in 

the recognition of endogenous or exogenous antigen in the immune system and in the 

initiation of signal transduction in the process of inflammatory reaction during acute 

pancreatitis. Therefore, investigating the tissue-specific expression of TLRs (mainly TLR4) in 

pancreas and exploring their roles have great significance for understanding the 

pathogenesis of acute pancreatitis. A report has indicated that in the early stage of acute 

pancreatitis, the expression levels of TLR4, TNF-┙, and IL-6 in pancreas of acute pancreatitis 

patients are significantly higher than those in the control ones, the level of plasma TNF-┙ in 

acute pancreatitis patients increases subsequently, and the increase of plasma TNF-┙ level is 

positively correlated with the expression of TLR4, suggesting that the up-regulation of TLR4 

expression on the surface of peripheral blood monocytes in patients with early acute 

pancreatitis might be associated with the activation of the innate immune system in the 

early stage of the disease [150]. Results of animal experiments have shown that TLR4 

messenger RNA is also up-regulated in the pancreas of rats with cerulein-induced 

edematous pancreatitis in the early stage, the serum levels of cytokines such as TNF-┙ are 

subsequently elevated, and the two phenomena are correlated [151].  
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Some researchers believe that TLR4 may play an important role in the synthesis and release 

of pro-inflammatory cytokines, and the up-regulation of the TLR4 gene may be related with 

the development and progression of organ injury during acute pancreatitis [152, 153]. Some 

studies have indicated that when severe acute pancreatitis is stimulated by LPS, the 

expressions of cytokines and cell adhesion molecules are significantly up-regulated in 

pancreas, thereby promoting the accumulation of excessive neutrophils in inflammatory 

region and leading to the injury of pancreas and other organs [154, 155]. Although it has 

been known that the translocation of intestinal bacteria and endotoxins is a key to secondary 

bacterial infection in necrotic pancreatic tissue, the mechanism of how multiple organ failure 

develops during pancreatitis has not yet been fully clarified [156].  

7. Conclusions 

Recent advances in experimental research have helped witness the pathophysiology of acute 
pancreatitis. The phenomena of microcirculatory changes observed in acute experimental 
pancreatitis during the past few years gradually underlie the disturbance of the local 
microcirculation in acute pancreatitis, but several challenges remain. Still some questions 
remain unexplained concerning the mechanisms: (1) Which is the first event in the 
pathogenesis of acute pancreatitis? (2) Which factor determines the edematous or 
necrotizing pancreatitis in a given experimental or clinical situation? (3) What is the role of 
impaired distribution of blood supply in early steps of acute pancreatitis? The potential 
mediators responsible for the progression of the disease severity and suggestions for 
therapeutic intervention have largely remained subjecting to speculation and debate. 
Further research may help to find sufficient therapeutic approaches, eventually by affecting 
microcirculatory mechanisms, to influence development and progression of this disease. 
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