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1. Introduction 

Mood disorders are among the most prevalent forms of mental illness and a major cause of 
morbidity worldwide. Depression is one of the top ten causes of morbidity and mortality 
worldwide based on a survey by the World Health Organization (Berton and Nestler, 2006). 
Depression (major depressive disorder, major depression, unipolar depression, clinical 
depression) is a chronic, recurring and potentially life-threatening mood disorder that has 
been estimated to affect 21% of the world population (Schechter et al., 2005). It is estimated 
that 40% of the risk for depression is genetic, though the specific genes involved in the risk 
is still limited understanding. The other 60% non-genetic risk remains poorly defined, with 
suggestions as diverse as acute or chronic stress, childhood trauma, viral infections and even 
random processes during brain development might be involved (Akiskal, 2000; Berton and 
Nestler, 2006). 
Stress occurs in every day life. Among psychiatric disorders, depression is probably the 
most common stress-related diseases. The theoretical premise is that depression is the 
outcome of an eventual inability to cope with a stream of dissimilar unpleasant stimuli 
imposed by the environment (Ferretti et al., 1995). The link between genetic predisposition 
and life stressors in the etiology of depression remains unclear because the mode of 
transmission of mood disorders is likely to be complex. However, interactions between a 
genetic predisposition and some environmental stressors are probably necessary to induce 
depression (Caspi and Moffitt, 2006). In addition, not only the hypothalamic-pituitary-
adrenal (HPA) axis, but also brain neuronal systems, including the monoaminergic systems 
and in particular the serotonin (5-HT) containing neuronal one, play critical roles in stress-
related disorders (Lanfumey et al., 2008; Xu et al., 2006). The structural alterations of 
neurons in stress-induced depression, such as a progressive decrease in the volume of the 
frontal cortex and hippocampus, have also been found to be related to dysfunctions of HPA 
axis, abnormalities in 5-HT and its receptors (Drevets, 2000; Reinés et al., 2008; Tsuji et al., 
2001). But, so far, no clear consensus has evolved in pathological mechanism of inter-
neuronal communication and post-receptor signal transduction of depression. 
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Early theories of depression focused on imbalance of neurotransmitter system, especially 
depletion of the serotonin (5-HT), norepinephrine (NE) and/or dopamine in depression and 
related mood disorders, since the efficacy of tricyclic antidepressants and monoamine 
oxidase inhibitors (MAOIs) in the treatment of these disorders. Current theoretical and 
experimental developments in serotonin and noradrenaline research extend the previous 
studies, the robust therapeutic effects of newer antidepressants are discovered, such as 
selective serotonin reuptake inhibitors (SSRIs), noradrenaline reuptake inhibitors (NRIs) and 
serotonin and noradrenaline reuptake inhibitors (SNRIs). However, the current therapeutic 
options of depression are far from ideal: most of the pharmacological interventions are not 
effective in more than 50% cases, and are often associated with a range of serious side effects 
and drug-drug/drug-food interactions (Baker et al., 2003; Meijer et al., 2004). 
Polyphenolic nutraceuticals (phytochemicals) present in vegetables and fruits are believed 
to reduce the risk of several major diseases including cardiovascular, autoimmune and 
neurodegenerative disorders. Six such polyphenols are curcumin, low molecular 
proanthocyanidin, resveratrol, fisetin, piceatannol and ferulic acid, which have been used 
throughout Asia as traditional herbal medicines. They show strong antioxidant and anti-
inflammatory properties. The wide ranging activity of these compounds and the repeated 
demonstration that they can decrease the stress response, oxidative damage, inflammation, 
neuronal damage and act as neuroprotectants, strongly suggest these compounds might 
have a significant impact on stress-induced depression and other affective disorders. 
In this review, we integrate our current knowledge to define the present state of depression 
and assessment of the position of serotoninergic function in the pathophysiology of 
depression. We also summarize the status of a few novel approaches and compounds that 
are under investigation for the treatment of major depression. We attempt to provide a 
progress report on the pharmacological profile of multiple polyphenolic phytochemicals as 
promising herbal antidepressants. 

2. Biological correlates of stress-induced depression and neurogenesis: 
Evidence for serotoninergic function 

2.1 Stress, corticosterone and depression  
Glucocorticoid release is regulated by the HPA axis in physical conditions. Corticotropin-
relaesing hormone (CRH) released by the paraventricular nucleus of the hypothalamus 
stimulates the release of corticotropin (ACTH) from the anterior pituitary, which, in turn, 
stimulates glucocorticoid secretion from the adrenal cortex. HPA axis is an essential 
component of an individual’s capacity to cope with stress (Berton and Nestler, 2006). Stress 
may be described as any environmental change, either internal or external, that disturbs the 
maintenance on homeostasis (Leonard, 2005). The stress response is to maintain 
homeostasis, which includes a series of physiological reactions such as endocrine activation 
(especially of the HPA axis) and cardiovascular changes (Sapolsky, 2003). The 
symptomatology, such as irritability, anxiety and a feeling of being unable to cope with, 
may ultimately result in depression when exposure to a prolonged and sustained stress 
(Lanfumey et al., 2008). Chronic stress often acts as a trigger to the onset of major depression 
and is associated with a decreased sensitivity to HPA axis feedback inhibition by cortisol in 
primates or corticosterone in rodents. Excessive stimulation of the axis further increases the 
secretion of glucocorticoids, which affects many aspects of peripheral and neuronal 
function, including immune, epithelial cell growth and energy mebabolism, neuronal 
connections, and synaptic transmission (McEwen and Stellar, 1993). 
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It is a common finding that around 50% of depressed patients (80% if severely depressed) 
show hyperactivity of the HPA axis (Young et al., 1991). Interestingly, similar changes in the 
hyperactivity of the HPA axis have been reported in animals subjected to chronic stress 
(Leonard, 2005). Elevated corticosterone level is a hallmark of HPA axis feedback inhibition 
evidenced by animal studies (Centeno and Volosin, 1997). This feedback is mediated by two 
types of corticosteroid receptors in the brain, the mineralocorticoid receptor (MR) and the 
GR (McEwen, 2000). The MR is a high-affinity receptor which binds corticosterone at low 
concentration (Kd ~0.5nM). MR is almost completely occupied (90%) by basal corticosterone 
levels and this contributes to maintaining homeostasis. When normal secretion of 
glucocorticoids is altered during stress, leading to increased levels of corticosterone, GR 
becomes substantially occupied by the hormone ligand. GR has a widespread distribution in 
limbic regions such as the hippocampus, paraventricular nucleus (PVN), the locus coeruleus 
and the dorsal raphe nucleus (DRN) (Harfstrand et al., 1986; Reul and de Kloet, 1986). 
Glucocorticoids diffuse passively through cellular membranes and bind to intracellular 
glucocorticoid receptors (GR), causing their translocation into the nucleus (Gillespie and 
Nemeroff, 2005). In the nucleus, these ligand-activated transcription factors bind to specific 
DNA response elements and alter gene expression. In the brain, glucocorticoid-regulated 
gene changes mediate a variety of effects on neuronal excitability, neurochemistry and 
structural plasticity (McEwen, 2000). 

2.2 Serotonin and its receptors in depression 

5-HT was discovered in 1948 and is a phylogenetically conserved neurotransmitter (Rapport 
et al., 1948; Barnes and Sharp, 1999). It is synthesized from L-tryptophan both in the 
peripheral nervous system and the CNS, via tryptophan hydroxylase 1 and 2, respectively 
(Walther et al., 2003). In the CNS, 5-HT neurons are localized in the raphe nuclei and project, 
via ascending and descending pathways, to a wide range of brain regions (Dahlström and 
Fuxe, 1964). These receptors affect a wide range of physiological and psychopathological 
processes such as mood disturbances, sleep, temperature control appetite, sexual behavior, 
movement, pain perception, and gastrointestinal motility. It is well established that the 5-HT 
is a phylogenetically conserved monoaminergic neurotransmitter which is crucial for a 
number of physiological processes and is dysregulated in several disease states including 
depression, anxiety and schizophrenia. As an important neurotransmitter, serotonin exerts 
its functions through 14 5-HT subtypes receptors. Exposure of experimental animals to 
various stressors, such as restraint stress and electroshock, has been shown to increase the 
turnover of serotonin and its receptors in the frontal cortex, hippocampus, amygdala and 
other brain regions (Inoue et al., 1994).  
Fourteen different 5-HT receptors have been cloned and pharmacologically characterized 
(Barnes and Sharp, 1999; Dahlstrom and Fuxe, 1964; Walther et al., 2003; Millan et al., 2008). 
The human 5-HT receptors are divided into 7 distinct families (5-HT1–7) (Davis et al., 2002). 
With the exception of the 5-HT3 receptor as a ligand-gated ion channel, all other serotonin 
receptors (5-HT1A-E, 5-HT2A-C, 5-HT4, 5-HT5, 5-HT6, 5-HT7) are G protein-coupled receptors 
that activate an intracellular second messenger cascade to produce an excitatory or 
inhibitory response. Activation of the specific G-protein can affect enzymes (5-HT1- and 5-
HT5-class receptors decrease cAMP formation; 5-HT2-class receptors increase inositol 
triphosphate and diacylglycerol formation; and 5-HT4, 5-HT6 and 5-HT7 receptors increase 
cAMP formation) and the function of cation channels especially K+ and Ca2+ (Kushwaha and 
Albert, 2005). 
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5-HT, as an important neurotransmitter, has long been reported to exert an important 
mitogenic action in the central neural system (CNS) during development (Lauder et al., 
1981; Whitaker-Azmitia,1991). In the adult CNS, serotonin is involved in neuronal and 
synaptic plasticity, and its action on the serotonin 5-HT1A receptor is particularly significant 
in this regard (Azmitia and Whitaker-Azmitia, 1997). It was also found that the powerful 
mitogenic effect of fenfluramine (a releaser of serotonin throughout the CNS) on the granule 
cell layer of the adult rat dentate gyrus (DG) could be completely blocked by pretreatment 
with a specific 5-HT1A antagonist (Jacobs, 2002).  
The 5-HT1A and 5-HT2A receptors are the most studied receptors in relation to affective 
disorders. It has been shown, in both human and animal studies, that 5-HT1A (Blier et al., 
1993; Nishi et al., 2009), 5-HT1B (Benjamin et al., 1990; Clark et al., 2002; Kaiyala et al., 2003; 
O'Connor et al., 1994; Saudou et al.,1994; Sari, 2004), 5-HT2A (Bhagwagar et al., 2006), and a 
5-HT transporter (5-HTT) (Bhagwagar et al., 2007) play important roles in affective disorders 
as well as the action of antidepressants. Evidence is accumulating that dysfunction in the 
brain serotonergic system relates to mood and behavior disorders (Soares and Mann, 1997). 
The 5-HT1A receptor is not only a presynaptic autoreceptor (as described earlier) but also a 
postsynaptic receptor, which is similar to the 5-HT2A receptor and highly distributed in 
limbic areas and hypothalamus. In rodents, 60% of the neurons in the prefrontal cortex are 
expressing 5-HT1A and/or 5-HT2A receptors (Amargós-Bosch et al., 2004). Both of these 
receptors are expressed in different cell types including pyramidal cells and GABAergic 
inter neurons in both frontal cortex and hippocampus. The 5-HT neurons in the dorsal raphe 
are regulated by somatodendritic presynaptic 5-HT1A receptors and distal feedback via 
postsynaptic 5-HT receptors which regulate the glutamatergic neurons in the prefrontal 
cortex (Celada et al., 2001; Martín-Ruiz et al., 2001; Puig et al., 2003). 
The potential role of 5-HT1A receptors in the function and structure (e.g. DG neurogenesis) 
of hippocampus-related depressive disorders has been reported earlier (Gould, 1999; Radley 
and Jacobs, 2002), and the 5-HT1A receptor is present at a particularly high concentration in 
the hippocampus, especially in the DG. The consistent neuroendocrine evidence in 
depression has already demonstrated a reduction in 5-HT1A receptor function and number 
(Porter et al., 2004; Riedel et al., 2002; Drevets et al., 1999). The clinical reports have pointed 
out that the low level of 5-HT1A receptors represents a risk factor in mood disorders (O'Neill 
and Conway, 2001; Cryan et al., 2005). Animal studies also suggest that the increase in the 
neurotransmission at postsynaptic 5-HT1A receptors may mediate the therapeutic effects of 
some antidepressants (Welner et al., 1989). In addition, many studies suggest that increases 
in adult neurogenesis after the SSRI administration require the activation of 5-HT1A 
receptors (Santarelli et al., 2003), which is consistent with the results that 5-HT1A receptor 
antagonists or knockout mice decrease or lack cell proliferation in the dentate gyrus, 
respectively (Radley and Jacobs, 2002; Santarelli et al., 2003). Furthermore, it has been 
reported that the antidepressant effect of SSRIs are mediated by 5-HT1A receptors 
(Tatarczynska et al., 2002; Hirano et al., 2002) by changing the receptor-medicated G-
protein-coupled inwardly rectifying potassium (GIRK) currents (Cornelisse et al., 2007). 
Therefore, 5-HT1A is definitely involved in depression as well as the action of 
antidepressants.  
Recent studies have also pointed out an important role for 5-HT2 receptors in the pathology 
of depression as well as the action of many antidepressants (Cryan and Leonard, 2000; 
Cryan and Lucki, 2000; Boothman et al., 2006). Treatment of some established 
antidepressants results in a reduction of 5-HT2 receptor density in rat frontal cortex (Klimek 
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et al., 1994; Subhash et al., 1997). Indeed, most antidepressants can primarily down-regulate 
5-HT2A receptors, which indicates the therapeutical potential of this receptor (Toth and 
Shenk, 1994). In addition, some 5-HT2A/2C receptor antagonists are found to enhance the 
antidepressant-like effects of SSRIs when given jointly (Redrobe and Bourin, 1997; Redrobe 
and Bourin, 1998), which suggests that the antagonism of these receptors may be implicated 
in the action of such antidepressants. Moreover, it has been reported that mRNA levels of 5-
HT1A and 5-HT2 remained unchanged after the treatment of imipromine or citalopram, 
implying that the antidepressant outcome may involve the changes of the 5-HT receptor 
density as well as the functional effects of 5-HT receptors (Butler et al., 1993; Burnet et al., 
1994; Spurlock et al., 1994).  

2.3 Neurotrophic mechanisms in depression 

Animal studies have already shown that acute or chronic stress can activate HPA axis and 
inhibit the cell proliferation in adult hippocampus (Warner-Schmidt and Duman, 2006; 
Paizanis et al., 2007). It has been shown that the psychosocial and physical stressors can 
inhibit the neurogenesis in various animal models and thus lead to decreased cell 
proliferation and survival (Joëls et al., 2007). In the chronic stressed model, both 
neurogenesis and proliferation were reduced in all rats (Joëls et al., 2007, Li et al., 2006). 
Moreover, treatment with diverse antidepressants, such as lithium, will reverse these 
changes (Knijff et al., 2007).  
It is widely accepted that both stress and corticosteroid can decrease the levels of some 
neurotrophic factors in hippocampus while many classes of antidepressant as well as 
electroconvulsive shock treatment can reverse the decrease and prevent the action of stress, 
which is the base of the neurotrophic mechanism of depression (Duman and Monteggia, 
2006). Neurotrophic factors, such as BDNF, NGF, neurotrophin-3 (NT-3), NT-4, NT-5 and 
NT-6, have been shown to enhance the cell proliferation and neurogenesis in the 
subgranular layer of the dentate gyrus (Banasr et al., 2004). These neurotrophic factors are 
critical to the viability and function of the neurons. Local infusion of BDNF into the 
midbrain or hippocampus regions has antidepressant-like effects in behavioral animal 
models of depression (Siuciak et al., 1994; Duman and Monteggia, 2006). For human studies, 
reduced levels of BDNF were detected in postmortem brain tissues of the depressed patients 
while antidepressant treatment can reverse it (Chen et al., 2001). All these data suggest that 
the action of antidepressants might be mediated via activating BDNF signaling in the 
hippocampus.  
Increasing evidence has shown that the neuroprotective effects of the neurotrophic factors 
are mainly mediated by inhibiting the cell death/apoptosis pathways (Du et al., 2003). 
BDNF, as a major neurotrophic factor, can initiate various signaling pathways, such as 
MAPK/ERK and PI-3K/Akt pathways, through binding to its tyrosine kinase TrkB receptor 
and thus activate the downstream molecules which can promote neurogenesis and cell 
survival. The phosphor-ERK and PI-3K/Akt can further phosphorylate and activate cyclic 
adenosine monophosphate (cAMP) response element binding (CREB) (Banasr et al., 2004; 
Chen and Manji, 2006). For instance, BDNF and CREB levels are decreased in cerebral cortex 
of depressive patients, while the treatment of antidepressants can enhance the BDNF levels 
in patients (Karege et al., 2002). In the CREB knockout mice, BDNF up-regulation is 
abolished after the antidepressant treatment (Conti et al., 2002). Moreover, a variety of 
antidepressants, regardless of their mechanisms, up-regulate the BDNF expression in rodent 
hippocampus, while the non-antidepressant drugs are not effective (Duman and Monteggia, 
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2006). In addition, the phosphorylation of CREB will consequently activate the transcription 
of many survival-promoting genes, such as B-cell lymphoma 2 (bcl-2) and BDNF.  
Bcl-2, a critical anti-apoptotic protein, has been shown to be upregulated by mood stabilizers 
in multiple animal studies (Chen et al., 1999; Manji et al., 2000; Chang et al., 2009). Reduced 
level of bcl-2 was also observed after stress: bcl-2 mRNA level was decreased by 70% when 
exposed to aggressive social stress after ischemia. Moreover, overexpression of bcl-2 will 
attenuate the infracts caused by high level of corticosterone (DeVries et al., 2001). Actually, 
the survival-promoting effect of CREB might be attributed to its induction of bcl-2 
transcription (Finkbeiner, 2000). There is accumulating evidence that CREB is a common 
target for different classes of antidepressants. Various kinds of antidepressants significantly 
increase the Phospho-CREB level as well as CREB binding activity in rat hippocampus 
(Nibuya et al., 1996; Koch et al., 2003). Moreover, the activation of CREB will in turn 
promote the transcription and synthesis of more BDNF (Riccio et al., 1999). 
As discussed above, the serotonergic system is intensely involved in the pathology and 
treatment of depression (Mattson et al., 2004). It is also widely accepted that 5-HT receptor 
activation is important for the pharmacotherapeutic effects of antidepressants (Ivy et al., 
2003). Actually, there exist interactions between BDNF and serotonin systems (Martinowich 
and Lu, 2008). A critical pathway following 5-HT stimulation is cAMP/PKA signaling 
transduction which results in the phosphorylation of CREB (Nestler et al., 2002). Moreover, 
the CREB activation can induce BDNF transcription and then increase cell proliferation (Tao 
et al., 1997). Indeed, there is crosstalk between the two pathways: the activation of 5-HT 
receptors coupled to cAMP production and CREB activation can induce transcription of 
BDNF gene; on the other hand, increased BDNF synthesis will promote the growth and 
sprouting of 5-HT neuron axons which can increase the neuronal plasticity and survival 
(Mamourias et al., 1995). For example, BDNF can promote the neurogenesis of 5-HT neurons 
(Mamounas et al., 1995) and change the 5-HT receptor expression (Lyons et al., 1999). 
Moreover, the activation of 5-HT receptors will lead to the phosphorylation of the 
transcription factor cAMP responsive element binding protein (CREB), which will start the 
transcription of BDNF (Mattson et al., 2004). All these observations indicate the 
downregulation of neurotrophic factors might mediate, at least in part, the decreased 
neurogenesis and structural damage in the stressed brain. Under the “neurogenesis 
hypothesis”, neurtotrophic factors might also serve as promising targets for the treatment of 
depression.  

3. Phytochemicals as antidepressants 

3.1 Phytochemicals and serotonergic system 

Health benefits associated with Mediterranean diets are due to the large intake of functional 
plant foods and beverages, i.e., fruits, vegetables, cereals, legumes, nuts, wine, beer, and 
olive oil, containing a great array of bioactive phytochemicals or nutraceutical compounds. 
Therefore, the low risk of chronic diseases, such as coronary hearth disease and certain 
cancers, observed in some population groups, results from a diverse eating style, either in 
term of foods or food components. The paradigm of the relationship between the chemical 
diversity of a particular food and the array of its biological activities may be symbolized by 
grape. Despite the extensive knowledge about phenylpropanoids, principally polyphenols 
(stilbenes and anthocyanins) and condensed tannins (proanthocyanidins), in grape and 
wine, little it is known about the other compounds, such as tetrahydro-b-carbolines. 
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Recently, it has been attached importance to the dietary indoleamines, melatonin, and 
serotonin, in different plant foods, including grape, thus further supporting the hypothesis 
that health benefits, associated with Mediterranean dietary style, are due to plant food 
chemical diversity. Besides, because of plant sessile status, synthesis of phytochemicals 
represents a major strategy for counteracting unfavorable conditions, in terms of natural 
selection, biological evolution, and biodiversity. 
Plant natural products can be roughly ascribed to three main classes of compounds, 
phenylpropanoids, isoprenoids, and alkaloids, widely distributed in plant foods and 
medicinal herbs (Facchini, 2001; Holstein and Hohl, 2004; Iriti and Faoro, 2004). 
Polyphenolic phytochemicals, which are active components found in many medicinal plants 
and regulate a variety of enzymes as well as cell receptors, are a group of plant secondary 
metabolites characterized by the presence of more than one phenolic unit which is linked 
directly to the aromatic rings (Bravo, 1998). These compounds are categorized by the 
number of phenol rings as well as the structural elements linked between the rings. The 
major classes include phenolic acids, flavonoids, stilbenes and lignans (Manach et al., 2004). 
A growing number of researchers have shown interests in polyphenolic phytochemicals. 
The major reasons include their antioxidative effects and potentials in preventing oxidative 
stress-induced diseases, such as neurodegenerative diseases and cancer (Scalbert et al., 
2005).  
Curcuma longa, one of the most extensively studied phytochemicals, is a major constituent 
of many traditional Chinese medicines, such as Xiaoyao-san, and has been used widely in 
Asian countries to manage mental disorders effectively. Curcumin is a major active 
component of C. longa and its antidepressant-like effect has been previously demonstrated 
in animal models of depression such as the forced swimming test (Xu et al., 2005) and 
chronic unpredictable mild stress modle (Li et a., 2009). Moreover, the antidepressant effect 
of curcumin can be potentiated by various kinds of antidepressants when given jointly, such 
as fluoxetine, venlafaxine, and bupropion. Enhanced serotonin level has also been found in 
mice after curcumin administration (Kulkarni et al., 2008). The concomitant administration 
of curcumin and piperine, a bioavailability enhancer, showed a significantly enhanced level 
of serotonin (Bhutani et al., 2009). Wang et al., also demonstrated that the antidepressant 
effect of curcumin in the forced swimming test may involve 5-HT receptors, especially 5-
HT1A/1B and 5-HT2C subtypes (Wang et al., 2008). The recent study also showed that 
curcumin attenuated the stress-induced decrease in 5-HT1A mRNA level in rat hippocampus 
(Xu et al., 2007). 
Resveratrol is a key antioxidant that present in grapes and red wine. The trans-resveratrol, 
as the active component of Polygonum cuspidatum which is traditionally used to treat 
neropsychiatric disorders in Asia countries, has been studied for anti-inflammation, 
amelioration of learning and memory impairment, and neuroprotection (Tredici et al., 1999; 
Chen et al., 2007; Kumar et al., 2007; Ranney and Petro, 2009). The recent studies have 
already shown the inhibitory effects of resveratrol on noradrenaline and 5-HT uptake 
activity in rats (Yáñez et al., 2006). Moreover, significantly decreased immobility time in 
mouse model of despair tests as well as the enhanced levels of serotonin and noradrenaline 
in brain regions have been demonstrated after trans-resveratrol application (Xu et al., 2010). 
The reduced activity of MAO, which catalyze the oxidative deamination of dietary amines 
and monoamine neurotransmitters, such as 5-HT, have been shown in both in vivo and in 
vitro experiments (Mazzio et al., 1998; Xu et al., 2010). All these data indicate the 
antidepressive effect of Resveratrol.  
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Proanthocyanidins, known as oligonols (catechin-type monomers, dimmers and trimmers) 
and oligomeric proanthocyanidins (oligomers), exists commonly in plants, such as grape 
seeds (DalBó et al., 2006). People have shown that proanthocyanidins have a wide range of 
pharmacological activities, including antioxidant effect, antinociceptive and 
cardioprotective properties (Preuss et al., 2000; Uchida et al., 2008; Sato et al., 2001). 
Recently, Xu et al. have shown that proanthocyanidin  can reduce the duration of 
immobility in both tail suspension and forced swimming test. Moreover, significantly 
enhanced 5-HT concentrations were found in frontal cortex, hippocampus and 
hypothalamus of mice after the proanthocyanidin administration (Xu et al., 2010). However, 
the mechanisms underlying the antidepressant effect of proanthocyanidin is still not clear.  

3.2 Phytochemicals and neurotrophic mechanisms 

The emerging neurotrophic hypothesis of antidepressant actions suggests that the stress-
induced BDNF reduction could, at least in part, induce the structural damage as well as the 
reduced neurogenesis, and most antidepressant treatment share the effect of increasing 
BDNF and neurogenesis, which might be via downstream mechanisms (Duman et al., 1997; 
Duman, 2004). Through cAMP-PKA and IP3-Ca2+ dependent protein kinase secondary 
messenger systems, CREB can be regulated by 5-HT receptors (Duman, 1998; Rajkumar and 
Mahesh, 2008). The activation of CREB will start the BDNF transcription, which leads to the 
activation of downstream cascades including Ras-Raf-ERK and PI-3K/AKT via the TrkB 
receptor (Berton and Nestler, 2006). Accordingly, the chronic treatment of antidepressants 
increases cell proliferation and neurogenesis, accompanied with enhanced phosphorylated 
CREB (Sasaki et al. 2007; Li et al., 2009).   
A number of researches have suggested that phytochemicals are neuroprotective. In the 
transient middle cerebral artery occlusion animal model, Cyanidin-3-O-beta-D-
glucopyranoside extracted from mulberry extract showed a neuroprotective effect against 
the brain injury (Kang et al., 2006). Low concentration of (–)-epigallocatechin-3-gallate from 
green tea can reduce the neuronal cell death in serum-starved cells, and promote the neurite 
outgrowth (Reznichenko et al, 2005). Low dose of curcumin has been shown to activate the 
ERK signaling and enhance the neurogenesis in adult hippocampus, which indicates its 
capability to enhance neural plasticity and repair (Kim et al., 2008b). The oral administration 
of 10 and 20 mg/kg curcumin to mice can prevent the stress-induced decrease of BDNF 
level in hippampus and enhance the hippocampal neurogenesis, which suggests that 
curcumin might protect hippocampal neurons from further damage in response to chronic 
stress via up-regulating BDNF in hippocampus (Xu et al., 2007). Curcumin application also 
prevents the cultured rodent cortex cells against glutamate excitotoxicity (Wang et al., 2008). 
Recently, it has been demonstrated in the chronic unpredictable mild stress (CUMS) rats, 
curcumin was also able to improve the CREB activity (Li et al., 2009). More importantly, 
studies have also shown that curcumin exerts the neuroprotective effects via BDNF/TrkB-
mediated PI-3K/Akt and MAPK/Erk cascades, and thus stimulating the transcription factor 
CREB (Wang et al., 2008; Wang et al., 2010). 
It has been reported that resveratrol and its methylated derivertives exhibit neuroprotective 
effects in SH-SY5Y cells against parkinsonian mimetic 6-hydroxydopamine (6-OHDA)-
induced neurotoxicity (Chao et al., 2010). Pretreatment of resveratrol has been shown to 
provide neuroprotection in animal models of cerebral ischemia (Della-Morte et al., 2009), 
which might be mediated through NMDA and estrogen receptor (Saleh et al., 2010). 
Moreover, Piceatannol (3,4,3',5'-tetrahydroxy-trans-stilbene) isolated from the seeds of 
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Euphorbia lagascae, is a metabolite of resveratrol existing in grapes and red wine (Ferrigni et 
al., 1984; Larrosa et al., 2004). Previous studies have shown that piceatannol exhibited 
protective effect against Aβ-induced neuronal cell death in cultured PC-12 cells (Kim et al., 
2008). The following studies further demonstrated that the neuroprotective effect against 
oxidative stress is likely due to the inhibition on JNK (Kim et al., 2008) or c-Jun N-terminal 
kinase activity (Jang et al., 2009). Although the mechanisms of the neuroprotective effects of 
resveratrol and piceatannol are still unclear, their diverse pharmacological properties have 
already attracted wide attention.  
Fisetin (3,3’,4’7’-tetrahydroxylflavone) is a flavonoid which exists in many plants and foods, 
such as strawberries (Arai et al., 2000). Recently, people have demonstrated that fisetin can 
protect neuronal cells from oxidative stress induced cell death, and demonstrate 
neurotrophic effect of improving the differentiation of PC-12 cells (Ishige et al., 2001), which 
might depend on the activation of ERK signaling pathway (Sagara et al., 2004). Moreover, 
the recent studies found that fisetin can facilitate long-term memory in rats, which is 
mediated via ERK signaling and the CREB phosphorylation (Maher et al., 2006). All these 
data indicate that fisetin has neurotrophic effect and can promote cell proliferation, and 
therefore it may be useful in treating mental disorders, including depression.  
 

 

Fig. 1. Neuroprotective pathways targeted by phytochemicals. The activated BDNF receptor 
TrkB will initiate ERK and PI-3K signaling pathways. 5-HT receptors, which are usually 
coupled to G proteins, will activate the AC/PKA cascade. Phytochemicals can stimulate 
both 5-HT and BDNF signaling cascades which interweave and result in activation of CREB, 
and thus exert their neuroprotective effects.  
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Ferulic acid (4-hydroxy-3-methoxycinnamic acid; FA) is an ample phenolic phytochemical 
found in plant components (Srinivasan et al., 2007). Ferulic acid has been reported to have a 
number of pharmacological activities including antioxidative, anti-inflammatory, anti-
cancer, anti-diabetic, anti-atherogenic and neuroprotective effects (Mukhopadhyay et al., 
1982; Kawabata et al., 2000; Balasubashini et al., 2004; Kim and Kim, 2000; Yogeeta et al., 
2006). Ferulic acid can prevent neurons from Aβ-induced cell death, which is associated 
with its antioxidative activity (Sultana et al., 2005; Picone et al., 2007). The recent studies 
found that oral administration of ferulic acid can attenuate the stress-induced behavior in 
the depression-like model mice. Moreover, treatment of ferulic acid can increase the CREB 
phophorylation. Accordingly, BDNF mRNA level in the hippocampus is also enhanced 
(Yabe et al., 2010). Although the molecular mechanisms of the antidepressant effect of ferulic 
acid still needs to be clarified, the current result indicated its therapeutic potential in the 
treatment of depressive disorder.  

4. Future directions 

It is widely accepted that phytochemicals are neuroprotective. The actions of the 
antidepressive effects of phytochemicals appear to involve many mechanisms, including 
monoamine neurotransmitters-based mechanism, HPA axis-based mechamism, and 
neurotrophic factors, or neurogenesis, based mechanisms. All these effects seem to be 
associated with the activation of the signaling cascades in brain, which can trigger a number 
of responses, such as promoting the neuronal survival and differentiation and inhibiting 
neuronal apoptosis. Despite the great advances in our understanding of depression, little is 
known about the antidepressant mechanisms of many phytochemicals because their 
antidepressant effects always involve multiple complex mechanisms. Therefore, it is very 
important to identify the bio-molecules and signaling network that can be specifically 
regulated by individual phytochemical.  
There are many advantages of phytochemicals in regard to application to development of 
antidepressants. For instance, phytochemicals are natural products, or even isolated from 
some herbal medicines, so they can be readily moved to the clinical trials on humans. 
Moreover, chemical analogues of the druggable phytochemcals can be developed for better 
bioavailability and lower toxicity. However, although the consensus is developing that 
phytochemcals are potential antidepressant candidates, our understanding and knowledge 
of the active phytochemicals as well as their mechanisms of actions are limited. It is 
therefore of critical need to develop high-throughput assays to identify antidepressive 
phytochemicals. Further in vivo and in vitro studies are required to reveal in more details 
about the antidepressive mechanisms of phytochemcals. 
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