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1. Introduction  

Spinal and epidural anesthesia have been widely used in clinical settings for the 
management of peri-operative, neuropathic and cancer pain (Dureja et al., 2010; Hong, 2010; 
Mercadante, 1999). They provide another route for the analgesic administration in addition 
to oral or systemic absorption. Since the pain pathway initiate with primary and secondary 
neurons located in dorsal root ganglion and spinal cord, respectively, the intrathecal 
(spinal) route may provide an effective alternative for less drug dosage and fewer side 
effects, compared with systemic administration.  
In recent decades, many animal pain models have been developed to explore the possible 

mechanisms involved in the pathogenesis of clinically relevant pain statuses, such as 

postoperative (Brennan et al., 1996), neuropathic (Kim & Chung, 1992), inflammatory 

(Wheeler-Aceto et al., 1990) and cancer pain (Clohisy & Mantyh, 2003). These studies not only 

help to extent our understanding on pain mechanisms but also provide novel promising 

agents or targets for the management of different pain situations (Mogil et al., 2010). In this 

chapter, we present various animal pain models, emphasizing on intrathecal studies, and 

potential therapeutic molecular targets and analgesics found in latest years. In addition, the 

related neurotoxicity studies and morphine-induced tolerance will be mentioned.  

2. Intrathecal animal pain studies 

The first mentioned intrathecal study using rat animal model was reported by Yaksh, 
beginning with the study of intrathecal morphine (Yaksh et al., 1977). For intrathecal drug 
administration, a polyethylene catheter is inserted intrathecally in rats during inhalation 
anesthesia (LoPachin et al., 1981). The catheter is passed caudally from the cisterna magnum 
to the level of lumbar enlargement. Since the development of intrathecal catheterization, lots 
of studies explored the pharmacology and pain pathways using intrathecal space as a route 
of drug administration, either in basic researches or clinical studies. The intrathecal studies 
on various pain models provide a lot of promising analgesics for the management of 
different pain statuses.  

2.1 Postoperative pain model  

The postoperative or incisional pain model was proposed by Brennan in 1996 (Brennan et 
al., 1996). A 1-cm longitudinal incision is made through skin, fascia and muscle of the 
plantar aspect of the hindpaw in anesthetized rats. The lesion produced reliable and 
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quantifiable mechanical allodynia and thermal hyperalgesia around the wound and 
spontaneous nociceptive behaviors for about one week, which mimics the clinical course of 
postoperative pain. Selective denervations of the rat hindpaw prior to foot incision reveal 
both the sural and tibial nerves are responsible for the nociception transmission from the 
incision. This model helps to better understand mechanisms of sensitization caused by 
surgery and provide promising therapeutics for postoperative pain management (Kang & 
Brennan, 2009). 

2.2 Inflammatory formalin pain model  

The formalin test involves subcutaneous injection of 5% formaldehyde (50 l) at the plantar 

surface of the rat hindpaw, using a 27-gauge needle. After injection, the rat displays 

characteristic nociceptive behaviors, flinching, shaking, biting and licking of the injected 

paw. Two phases of nociceptive behaviors are observed after formalin injection as described 

previously (Abbott et al., 1995). Phase 1 is initiated within seconds after injection and it lasts 

for about 5–10min. After several minutes quiescent, a second phase of flinching occurs and 

peaks at 25–35 min after injection.  

The formalin-induced nociceptive response in rats is believed to be an inflammatory pain 
and involves central sensitization in the spinal cord (Abbott et al., 1995). The hindpaw 
injection of formalin induces tissue injury leading to acute (phase 1) and facilitated (phase 2) 
states of pain. The phase 2 response is believed to be a persistent input-induced nociceptive 
behavior mediated through central sensitization (Coderre & Melzack, 1992). LTP of C-fiber-
evoked field potentials in the spinal superficial dorsal horn has been reported in the 
formalin-injected rats (Sandkuhler & Liu, 1998). Intrathecal injection of T-type Ca2+ channel 
blockers (mibefradil and Ni2+) has been reported to attenuate formalin-induced pain 
behaviours, either phase 1 or 2, indicating the important role of T-type Ca2+ channel in the 
spinal central sensitization (Cheng et al., 2007). Other chemical irritants, such as complete 
Freund's adjuvant (CFA), carrageenan or capsaicin, could also be used to be injected 
subcutaneously into the plantar surface of rat hindpaw to induce pain behaviors (Duarte et 
al., 2011; Thorpe et al., 2011; Yu et al., 2011).  

2.3 Nerve injury-induced neuropathic pain model 

Nerve injuries due to trauma, chemotherapy, diabetic mellitus or tumor invasion may 
induce neuropathic pain, which is usually refractory to conventional analgesic agents, 
including opioids and non-steroid anti-inflammatory agents. For the past decades, several 
animal models have been developed to mimic the clinical conditions and explore the 
possible mechanisms underlying neuropathic pain. Among these neuropathic pain models, 
nerve injury-induced neuropathic pain (NINP) models, such as spinal nerve ligation, spared 
nerve injury and chronic constriction injury, are most often studied (Ji & Strichartz, 2004 ).  
Several targets have been proposed to be involved in the pathogenesis of NINP, such as 
NMDA receptors (Szekely et al., 2002) and ion channels (Rogers et al., 2006). Recently, new 
molecules have been emerging as promising targets for the treatment of NINP, such as 
purinergic receptors (Donnelly-Roberts et al., 2008), cannabinoid receptors (Lynch & 
Campbell, 2011), transient receptor potential V1 (TRPV1) receptor (Facer et al., 2007), 
chemokine receptors (White et al., 2007), acid-sensing ion channel (Mazzuca et al., 2007; 
Poirot et al., 2006), annexin 2 light chain p11 (Foulkes et al., 2006) and matrix 
metalloproteinase (Kawasaki et al., 2008a). 
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The L5/6 spinal nerve ligation neuropathic pain model was reported by Kim and Chung in 
1992 (Kim & Chung, 1992). This model involves a tight ligation of L5 and L6 spinal nerves of 
animals under anesthesia. The nociceptive behavioral assessments also consist of von Frey 
hair test (Chaplan et al., 1994) and radiant heat test (Hargreaves et al., 1988) for the 
quantification of mechanical allodynia and thermal hyperalgesia, respectively, on the 
affected hindpaw. Compared with postoperative pain model and formalin inflammatory 
pain model, this model induced chronic nociceptive behaviors lasting for several weeks. 
This chronic pain model helps to reveal the possible mechanisms involved in the 
development and maintenance of nerve injury-induced pain, either the neuronal 
components or glial components. 
Spared nerve injury pain model was developed by Decosterd and Woolf in 2000 (Decosterd 
& Woolf, 2000). An adaptation of spared nerve injury surgery was later developed in the 
mouse (Bourquin et al., 2006). This model involves a lesion of two of the three terminal 
branches of the sciatic nerve (tibial and common peroneal nerves) leaving the remaining 
sural nerve intact. The spared nerve injury model differs from the L5/6 spinal ligation pain 
model in that the co-mingling of distal intact axons with degenerating axons is restricted, 
and it permits behavioral testing of the non-injured skin territories adjacent to the 
denervated areas. The mechanical (von Frey and pinprick) sensitivity and thermal (hot and 
cold) responsiveness is increased in the ipsilateral sural territory. 

2.4 Cancer pain model 
Cancer pain significantly affects the diagnosis, quality of life and survival of patients with 
cancer. Tumor growth may produce inflammation in tumor bearing tissues, which will 
release inflammatory mediators to stimulate nociceptors. Tumor growth may also compress 
the peripheral nerves in tumor bearing tissues, inducing nerve injury. Therefore, cancer pain 
is likely to share mechanisms of inflammatory pain and neuropathic pain, although this 
pain may have distinct mechanisms (Ghilardi et al., 2010). Whether inflammation or nerve 
injury dominates during tumor growth may depend on the interactions between tumor cells 
and surrounding tissues (Cain et al., 2001).  
In recent years, several laboratories have developed cancer pain models by inoculation of 
tumor cells into a hindpaw of mouse (Constantin et al., 2008). Animals inoculated with 
melanoma cells into the plantar of the hindpaw show marked pain hypersensitivity and 
peripheral nerve degeneration (Gao et al., 2009a). We have used this melanoma cancer pain 
model to test the anti-tumor growth and analgesic effects of JNK inhibitor (Gao et al., 2009a). 
Other cancer pain models include breast, prostate and bone cancer pain models (Bloom et 
al., 2011; Ghilardi et al., 2010; Jimenez-Andrade et al., 2010). These cancer pain models may 
possess different pathophysiologies for pain induction. For example, intramedullary 
injection of breast cancer cells could induce periosteal sprouting of CGRP(+) sensory fibers 
and pain, both of which could be blocked by anti-nerve growth factor (NGF) (Bloom et al., 
2011). Inhibitor of NGF receptor TrkA has been shown to attenuate bone cancer pain and 
tumor-induced sprouting of sensory nerve fibers (Ghilardi et al., 2010). Similarly, NGF also 
plays an important role in the induction of prostate cancer-induced sensory fiber sprouting 
and bone pain (Jimenez-Andrade et al., 2010). 

3. Potential therapeutic molecular targets for pain management   

Voltage-gated ion channels and glial cells have all been found to be promising therapeutic 
targets for pain management. Voltage-gated ion channels are a class of transmembrane ion 
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channels that are activated by changes in membrane potential; these types of ion channels 
are especially critical in excitable cells, including neuronal, cardiac and skeletal cells (Szu-Yu 
Ho & Rasband, 2011), or even cancer cell migration (Cuddapah & Sontheimer, 2011). Since 
voltage-gated ion channels are important for neuronal excitability, conduction and 
transmission, they have long been the targets of interest in the field of pain research. 

3.1 Voltage-gated Na
+
 channels  

Voltage-gated Na+ channels are essential for the initiation of action potentials which are 
crucial for nerve conduction. Their activation and inactivation are strongly gated by the 
membrane potential of neuronal cells, but their properties can also be modulated by G-
proteins or protein kinases (Kakimura et al., 2010). Voltage-gated Na+ channels are 
constituted by the pore-forming ǂ−subunit and auxiliary ǃ-subunits. Up to now, nine 
ǂ−subunits (Nav1.1-1.9) and four ǃ-subunits (ǃ1-4) have been identified (Catterall et al., 
2005). The Na+ channels can be either sensitive (Nav1.1, Nav1.2, Nav1.3, Nav1.6) or resistant 
(Nav1.4, Nav1.5, Nav1.7, Nav1.8, Nav1.9) to tetrodotoxin (TTX), a toxin found in the liver of 
puffer fish. Neuronal cells contain most of the Na+ channel subtypes but Nav1.4 and Nav1.5, 
respectively, are mainly in skeletal and cardiac muscles (Jarecki et al., 2010). Nav1.1, Nav1.3, 
Nav1.6, Nav1.7, Nav1.8 and Nav1.9 have been found in adult dorsal root ganglion (DRG) 
sensory neurons and these isoforms can be important for the firing properties of sensory 
neurons (Hunanyan et al., 2011). After spared nerve injury in rats, altered neuronal 
electrogenesis in DRG neurons, such as accelerated re-priming of TTX-sensitive Na+ 
currents, was observed and may be due to a complex regulation of voltage-gated Na+ 
channels (Berta et al., 2008; Wang et al., 2011).  
Several lines of evidence indicate that Nav1.7, and Nav1.8 are involved in pain regulation, 
especially NINP (Lampert et al., 2010). Nav1.7 and Nav1.8 channels have been shown to 
accumulate in neuroma endings in humans with neuropathic pain (Kretschmer et al., 2002). 
This accumulation may be due to a loss of myelin inhibition or target determined transfer of 
Na+ channels (Aurilio et al., 2008). Loss of Nav1.7 function may lead to complete 
insensitivity to pain in humans (Cox et al., 2010). Compounds possessing Nav1.7 blocking 
effects have been reported to reverse nerve injury-induced mechanical allodynia 
(Tyagarajan et al., 2010). Nav1.8 is increased in sciatic nerve after nerve injury and intrathecal 
antisense oligoneucleotide directed against Nav1.8 is effective in neuropathic pain models 
(Joshi et al., 2006). A μΩ-conotoxin MrVIB was found to be a preferential Nav1.8 blocker and 
could reverse partial sciatic nerve ligation-induced mechanical allodynia and thermal 
hyperalgesia, when given intrathecally (Ekberg et al., 2006). Intraperitoneal administration of 
A-803467, a selective Nav1.8 blocker, has been reported to attenuate nerve injury-induced 
mechanical allodynia (Jarvis et al., 2007). Nonetheless, Nassar et al. found that mice lacking 
Nav1.7 and Nav1.8 still develop neuropathic pain after spinal nerve ligation (Nassar et al., 
2005). Recent studies also revealed a role of Nav1.3 (Mo et al., 2011) and Nav1.9 (Leo et al., 
2010) in the development of neuropathic pain. For normal nerve conduction, Nav1.1 family 
is involved (Catterall et al., 2010). Therefore, the selective Nav1.3, Nav1.7, Nav1.8 and 
Nav1.9 channel blockers will have clinical potential in the treatment of neuropathic pain 
since they do not affect normal neuronal conduction.  
Besides the pore-forming ǂ-subunit, ǃ2 subunit was reported to be up-regulated in injured 
and non-injured sensory neurons after peripheral nerve injuries (Pertin et al., 2005) and the 
development of spared nerve injury-induced mechanical allodynia is attenuated in ǃ2-null 
mice (Lopez-Santiago et al., 2006), suggesting the important role of ǃ2 subunit in NINP. The 
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involvement of Na+ channel ǃ2 subunit in neuropathic and inflammatory pain has been 
extensively reviewed (Brackenbury & Isom, 2008). 
In addition to changes in protein expression, phosphorylation-induce change of 
conductance or gating property of Na+ channels may also lead to enhanced neuronal 
excitability and NINP (Aurilio et al., 2008). The activation of presynaptic delta-opioid 
receptor by enkephalin has been reported to prevent the increase in neuronal NaV1.7 in DRG 
through inhibition of PKC and p38 (Chattopadhyay et al., 2008). Tumor necrosis factor-ǂ 
(TNF-ǂ), a pro-inflammatory cytokine involved in NINP formation (Schafers et al., 2003), 
was found to enhance TTX-resistant Na+ currents in isolated DRG neurons via a TNF 
receptor 1- and p38-dependent mechanism (Jin & Gereau, 2006). The Na+ currents of 
isolated sensory neurons can be enhanced by protein kinase A and protein kinase C (Gold et 
al., 1998; Mo et al., 2011), both of which are involved in NINP (Gao et al., 2005; Song et al., 
2006). Phosphorylation of TTX-S and TTX-R sodium channels involving both 
serine/threonine and tyrosine sites has been reported to contribute to painful diabetic 
neuropathy (Hong et al., 2004). Further studies are required to reveal the exact role of Na+ 
channel phosphorylation in the pathogenesis of NINP.  

3.2 Voltage-gated Ca
2+

 channels  
Voltage-gated Ca2+ channels are involved in neuron excitability, neurotransmitter release, 

synaptic transmission and gene expression (Dolmetsch et al., 2001). Ca2+ channels are 

constituted by the pore-forming ǂ-subunit and auxiliary subunits, ǃ- and ǂ2ǅ�subunits. 

They are classified into Cav1, Cav2 and Cav3 families based on their structure homology, 

but are categorized as L- (Cav1.1, Cav1.2 and Cav1.3), P/Q- (Cav2.1), N- (Cav2.2), R- 

(Cav2.3), and T- (Cav3.1, Cav3.2 and Cav3.3) type based on their sensitivity to specific 

blockers, activation/inactivation characteristics and current conductance (Catterall et al., 

2002). Various Ca2+ channel blockers have been tested in the postoperative, inflammatory 

and neuropathic pain models (Cheng et al., 2007). The potential use of Ca2+ channel blockers 

for neuropathic pain treatment and roles of Ca2+ channels in ascending pain pathway have 

been well reviewed (Yaksh, 2006; Zamponi et al., 2009). 

3.2.1 N-type Ca
2+

 channels  
N-type Ca2+ channels are distributed in the dorsal root ganglia and spinal dorsal horn. It is 
generally believed that N-type Ca2+ channels are involved in the neurotransmitter release of 
spinal dorsal horn (Smith et al., 2002). Substance P, one of the neurotransmitter of primary 
sensory neurons, has been found to be mostly co-localized with N-type Ca2+ channels in the 
spinal dorsal horn (Westenbroek et al., 1998). 
Several lines of evidence indicate that N-type Ca2+ channels play an important role in NINP. 
Mice lacking N-type Ca2+ channels exhibit reduced signs of neuropathic pain after spinal 
nerve ligation (Saegusa et al., 2001). Intrathecal small interference RNA knockdown of N-
type Ca2+ channels reversed sciatic nerve constriction-induced tactile allodynia and thermal 
hyperalgesia (Altier et al., 2007). 
New non-peptide compounds with N-type Ca2+ channel blocking property have been 
recently developed in pharmaceutical companies for the treatment of neuropathic pain 
(Knutsen et al., 2007). A highly reversible ω-conotoxin FVIA, a potent N-type Ca2+ channel 
blocker with fewer side effects, was found to possess analgesic effect in the formalin test and 
neuropathic pain models (Lee et al., 2010). Recent findings suggest that diminished Ca2+ 
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influx through N-type Ca2+ channels may contribute to sensory neuron dysfunction and 
pain after nerve injury (McCallum et al., 2011). 

3.2.2 T-type Ca
2+

 channels 
T-type Ca2+ channels are low-voltage activated Ca2+ channels. It can serve as an initiator to 
trigger the opening of high-voltage activated ion channels. In spinal dorsal horn, it may be 
involved in spontaneous neurotransmitter release and long term potentiation (LTP) (Ikeda 
et al., 2003). LTP, a form of synaptic plasticity, in the spinal dorsal horn is believed to 
contribute to the central sensitization of pain transmission (Ji et al., 2003), a wiring 
phenomenon usually observed in neuropathic pain (Romanelli & Esposito, 2004). 
Among three subtypes of T-type Ca2+ channels, CaV3.1, CaV3.2 and CaV3.3, CaV3.2 mRNAs 
are mostly abundant in the spinal dorsal horn and are limited to the superficial layers 
(Talley et al., 1999). Intrathecal injection of the antisense oligonucleotide targeted to the ǂ1-
subunit of CaV3.2, but not CaV3.3 or CaV3.1, produced analgesic effect in both acute and 
neuropathic pain states (Bourinet et al., 2005), suggesting that CaV3.2 is much more involved 
in spinal nociceptive pathway than CaV3.1 and CaV3.3.  
Subtype-specific blockers of T-type Ca2+ channels are not commercially available. However, 
mibefradil, a non-selective T-type Ca2+ channel blocker, when given systemically or 
intraplantarly, can reverse mechanical allodynia and thermal hyperalgesia induced by L5/6 
spinal nerve ligation (Dogrul et al., 2003). Our recent work on intrathecal T-type Ca2+ channel 
blockers (mibefradil or Ni2+) revealed their effectiveness in the second phase of formalin test 
(Cheng et al., 2007). In these years, small molecules with potent blocking effect on T-type 
Ca2+ channels, such as KYS05090, have been developed (Doddareddy et al., 2007; Seo et al., 
2007). Recent studies revealed spinal T-type Ca2+ (Cav3.2 and Cav3.3 but not Cav3.1) 
channels may play an important role in the pathogenesis of chronic compression of DRG-
induced neuropathic pain (Wen et al., 2010). In addition, Cav3.2-dependent activation of 
extracellular signal-regulated kinase in the anterior nucleus of paraventricular thalamus was 
found to contribute to the development of acid-induced chronic mechanical hyperalgesia 
(Chen et al., 2010). 

3.2.3 P/Q- and R-type Ca
2+

 channels  
Compared with N-type Ca2+ channel, it seems P/Q type is much less important in NINP. 
Only one study using transgenic mice revealed its involvement in chronic constriction 
injury-induced mechanical allodynia (Luvisetto et al., 2006). The hypoalgesic behaviors of 
P/Q-type Ca2+ channel mutant mouse suggest P/Q-type Ca2+ channel has a pro-nociceptive 
role (Fukumoto et al., 2009). As for R-type Ca2+ channel, its blocker SNX-482 could inhibit C-
fiber and Aǅ-fiber-mediated neuronal responses after L5/6 spinal nerve ligation, when 
administered intrathecally (Matthews et al., 2007). Moreover, the responses to innocuous 
mechanical and thermal stimuli were more sensitive to SNX-482 in nerve-ligated rats than 
control animals (Matthews et al., 2007). These findings suggest spinal R-type Ca2+ channel 
could be a potential therapeutic target for NINP. Blocking the R-type Ca2+ channel has been 
reported to enhance morphine analgesia and reduce morphine-induced tolerance 
(Yokoyama et al., 2004). 

3.2.4 2 subunit of Ca
2+

 channels 
ǂ2ǅsubunit is one of the modulatory subunits of Ca2+ channels, which could modulate the 
membrane targeting and conductance of ǂ1 subunit of Ca2+ channel (Felix, 1999). Four 
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isoforms (ǂ2ǅ-1~4) were identified (Qin et al., 2002). The ǂ2ǅ-1 subunit is up-regulated in 
dorsal root ganglion and dorsal spinal cord after peripheral nerve injury (Li et al., 2004). 
Intrathecal injection of ǂ2ǅ-1 antisense oligonucleotide could block this up-regulation in 
spinal dorsal horn and diminish injury-induced tactile allodynia (Li et al., 2004). Over 
expression of ǂ2ǅ-1 in spinal dorsal horn neurons could enhance Ca2+ currents, exaggerate 
dorsal horn neuronal responses to external stimuli and increase the nociceptive responses in 
neuropathic pain models (Li et al., 2006). 
ǂ2ǅ subunit is the specific binding site in the central nervous system of gabapentin and its 
analogue pregabalin (Klugbauer et al., 2003), both of which have been shown to be effective 
in preclinical and clinical studies of neuropathic pain (Cheng & Chiou, 2006). Gabapentin 
was first designed as a chemical analogue of Ǆ-aminobutyric acid, an inhibitory 
neurotransmitter, to treat spasticity and was later found to have anticonvulsant and 
antinociceptive activities in various seizure and pain models. A point mutation of the 
arginine 217 of ǂ2ǅ-1 subunit, which is critical for gabapentin binding (Wang et al., 1999), 
was found to cause a loss of gabapentin-induced analgesia (Field et al., 2006). Recently, 
chronic intrathecal infusion of gabapentin was found to prevent nerve ligation-induced 
mechanical allodynia and thermal hyperalgesia without causing obvious neuropathological 
changes in spinal cord and cauda equine (Chu et al., 2011).  
Gabapentin has been found to attenuate morphine-induced tolerance (Lin et al., 2005) and 
this finding may encourage the combined use of gabapentin with morphine in the treatment 
of neuropathic pain. It is interesting to note that ǂ2ǅ-1 subunit was identified to be a 
receptor involved in excitatory synapse formation and gabapentin may act by blocking new 
synapse formation (Eroglu et al., 2009).     

3.3 Voltage-gated K
+
 channels  

The opening of K+ channel may lead to cell repolarization and make the neuron less 
excitable and down-regulation of K+ channel in nociceptive neurons may decrease pain 
threshold. There are 12 different families of voltage-gated K+ channels (Kv1 to Kv12) and all 
Kv channels are tetramers of ǂ subunits (Ocana et al., 2004). A-type K+ channel (A-channels) 
is a group of Kv channels that are activated transiently and inactivated rapidly. Five A-
channels Kv1.4, Kv3.4, Kv4.1, Kv4.2, and Kv4.3 were found in mammals (Chien et al., 2007; 
Mienville et al., 1999; Serodio et al., 1996). Except for Kv3.4 with high-voltage activation, the 
other four are activated at low voltages (Coetzee et al., 1999). Kv1.4 proteins in the somata of 
DRG neurons are greatly reduced in the L5/6 spinal nerve ligation pain model (Rasband et 
al., 2001). The expression of Kv1.4 is also reduced in the small-/medium sized (A-/C-) 
trigeminal ganglion neurons after temporomandibular joint inflammation (Takeda et al., 
2008). Gene expressions of Kv1.2, Kv1.4, and Kv4.2 are down-regulated in the DRG 
following sciatic nerve transection (Park et al., 2003). Recent study also revealed the Kv1.2 
expression is decreased in DRG neurons from rats with irritable bowel syndrome, a visceral 
pain model (Luo et al., 2011). The expression of Kv3.4 and Kv4.3 in DRG neurons were 
found to be also decreased after spinal nerve ligation and intrathecal injections of antisense 
oligodeoxynucleotides against Kv3.4 or Kv4.3 in naïve rats could induce mechanical 
hypersensitivity (Chien et al., 2007). New compounds with A-type K+ channel opening 
activity, such as KW-7158 (Sculptoreanu et al., 2004), may prove to be effective for the 
treatment of NINP. 
The Kv7 channel (also known as KCNQ) opener retigabine has been reported to be effective 
in sciatic chronic constrict injury (Blackburn-Munro & Jensen, 2003) and L5 spinal nerve 
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ligation (Dost et al., 2004) pain models. It is important to note that the antiallodynic effect of 
retigabine could be inhibited by linopirdine, a selective KCNQ channel blocker, indicating 
the involvement of KCNQ channel opening in the effect of retigabine (Dost et al., 2004). 

When directly applied to the spinal cord, retigabine inhibited the A and C fiber-mediated 
response of dorsal horn neurons to noxious stimuli (Passmore et al., 2003). Recently, the 
selective cyclooxygenase-2 (COX-2) inhibitor celecoxib was found to enhance Kv7.2-7.4, 
Kv7.2/7.3 and Kv7.3/7.5 currents expressed in HEK 293 cells, providing a novel mechanism 
for its antinociceptive effect (Du et al., 2011b). Based on these reports, further efforts may be 
needed to develop subtype-specific K+ channel openers and to test their effects in NINP 
models.  
Just as voltage-gated Na+ channels, K+ channels could also be modulated by 
phosphorylation (Sergeant et al., 2005). The Kv4.2 current of spinal dorsal horn neurons 
could be inhibited by extracellular signal-regulated kinase (ERK)-induced phosphorylation 
(Hu et al., 2003). Genetic elimination of Kv4.2 increases excitability of dorsal horn neurons 
and sensitivity to tactile and thermal stimuli (Hu et al., 2006). This modulation of Kv4.2 by 
ERK may underlie the induction of central sensitization, a cellular mechanism of NINP (Ji et 
al., 2003). The role of Kv channels in different trigeminal neuropathic and inflammatory 
pain models was recently reviewed (Takeda et al., 2011). 

3.4 Other K
+
 channels  

In addition to Kv channels, there are other K+ channels that are important for pain 
modulation, such as G-protein coupled inwardly rectifying (GIRK or Kir3), ATP-sensitive 
(KATP or Kir6), Ca2+-activated (KCa) and two-pore (K2P) K+ channels (Gutman et al., 2003). 
Activation of KATP channels was recently found to antagonize nociceptive behavior and 
hyper-excitability of DRG neurons from rats (Du et al., 2011a). Following partial sciatic 
nerve ligation, elevated tyrosine phosphorylation (pY12) of Kir3.1 was observed in the 
spinal superficial dorsal horn of wild type, but not Kir3.1 knock-out, mice (Ippolito et al., 
2005). This phosphorylation may suppress channel conductance and accelerate channel 
deactivation (Ippolito et al., 2002), leading to enhanced neuronal excitability and could 
possibly contribute to the genesis of NINP. It is interesting to note that induced expression 
of Kir2.1 in chronically compressed DRG neurons can effectively suppress the neuronal 
excitability and, if induced at the beginning of the chronic compression, prevent the 
development of compression-induced hyperalgesia (Ma et al., 2010). 
The TREK-1 channel is a member of mechano-gated K2P family, one of the targets of 
inhalation anesthetics (Patel et al., 1999). TREK-1 is highly expressed in small sensory 
neurons and extensively co-localized with TRPV1 (Alloui et al., 2006). Mice with a disrupted 
TREK-1 gene are more sensitive to painful heat and low threshold mechanical stimuli and 
display an increased thermal and mechanical hyperalgesia in conditions of inflammation 
(Alloui et al., 2006). On the other hand, the TREK-1 null mice showed decreased sensitivity 
to acetone (less cold allodynia) after sciatic nerve ligation (Alloui et al., 2006). The 
chemotherapy drug oxaliplatin, which induces cold hypersensitivity, could lower the 
expression of TREK-1 (Descoeur et al., 2011). Future studies are needed to elucidate the role 
of TREK-1 channels in NINP. Similar as TREK-1, TREK-2 is also a member of the K2P family. 
TREK-2 provide the major background K+ conductance in cell body of small to medium-
sized DRG neurons (Mathie, 2007), which are the major component of nociceptors. Based on 
these findings, it is also intriguing to investigate the role of TREK-2 in NINP (Huang & Yu, 
2008). 
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Changes in the expression and function of voltage-gated ion channels in the pain pathway 

may contribute to the development and maintenance of NINP. Manipulations aiming at 

voltage-gated ion channels may provide novel strategies for the treatment of NINP. In 

addition to ion channel modulators, recent studies also reveal the promising roles of glial 

inhibitors, such as minocycline, and morphine in the management of NINP. 

3.5 Microglia and astrocyte activation in nerve injury-induced neuropathic pain  
During the last decade, the neuroimmune system, such as spinal glial cells, has been found 

to be critical for the development and maintenance of nerve injury-induced neuropathic 

pain (Watkins et al., 2007). Nerve injury not only induces morphological changes of 

microglia but also biochemical changes to induce pain. Nerve injury results in a up-

regulation of P2X4 receptor (Tsuda et al., 2003) and CX3CR1 receptor in spinal cord 

microglia (Verge et al., 2004; Zhuang et al., 2007). Intrathecal blockade of P2X4 and CX3CR1 

signaling attenuates NINP (Tsuda et al., 2003; Zhuang et al., 2007). The chemokine receptor 

CCR2 and the Toll-like recepotor-4 (TLR4) are also important for the formation of 

neuropathic pain via microglial activation (Abbadie et al., 2003; Tanga et al., 2005). 

Phosphorylation of p38 in microglia via activation of P2X4 receptor could increase the 

synthesis and release of the neurotrophin BDNF and pro-inflammatory cytokines (IL-1, IL-

6, and TNF-, all of which could enhance nociceptive transmission in the spinal cord (Coull 

et al., 2005; Ji & Suter, 2007; Kawasaki et al., 2008b; Wang et al., 2010) 

Our study using continuous intrathecal infusion of minocycline, a microglia inhibitor, 
revealed its effectiveness in attenuating the development of nerve injury-induced pain 
and no obvious spinal neurotoxicity was observed after the infusion (Lin et al., 2007). 
Other glial modulators, such as AV-411 (Ledeboer et al., 2006) and pentoxifylline (Mika et 
al., 2007), also possessed analgesic effect in NINP models. In addition to glial activation, 
compliment activation was recently found to participate in spinal nerve ligation-induced 
pain (Levin et al., 2008). Similar with gabapentin, minocycline could also attenuate 
morphine-induced tolerance (Cui et al., 2008) and this made itself a promising drug to be 
co-administered with morphine in the treatment of neuropathic pain. It is worthwhile to 
note that the attenuation effect of minocycline on morphine-induced tolerance is 
associated with inhibition of p38 activation in spinal microglia caused by chronic 
morphine (Cui et al., 2008). 
In contrast to microglia, which is important for the development phase of NINP (Ji & Suter, 
2007), astrocytes activation was critical for the maintenance phase of NINP (Zhuang et al., 
2006). JNK-induced MCP-1 production and JAK-STAT3 pathway in spinal cord astrocytes 
was found to contribute to the maintenance of NINP (Gao et al., 2009b; Tsuda et al., 2011). 
The role of astrocyte activation and kinases involved in glial activation after nerve injury 
have been well reviewed (Gao & Ji, 2010; Ji et al., 2009).  

4. Morphine in nerve injury-induced neuropathic pain 

Morphine is the main drug used in pain clinics, especially in cancer pain. Recent animal 

studies also revealed the effectiveness of morphine in NINP models (Mika et al., 2007; 

Zhang et al., 2005). However, acute and chronic use of morphine can induce hyperalgesia 

and analgesia tolerance (Mao et al., 1994), which often lead to increased drug consumption 

and unwanted side-effects. 
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4.1 Glial non-opioid/p38 pathway in morphine-induced analgesia and tolerance 
Using the tail flick test, Tseng’s group has shown that morphine could induce anti-analgesia, 

which could be prevented by levo-, dextronaloxone (a non-opioid ligand) and p38 inhibitor 

via a glial non-opioid mechanism (Wu et al., 2006a; Wu et al., 2006b; Wu et al., 2005). From 

the works of Tseng’s group, it could be summarized that 1) both dextro- and levo-morphine 

and lipopolysaccharide (LPS), a toll-like receptor (TLR)-4 agonist, could induce anti-

analgesia, which could be prevented by dextro-, levo-naloxone and p38 inhibitor; 2) the anti-

analgesia-inducing potency is: dextro-morphine > levo-morphine, and the reversal potency is: 

levo-naloxone > dextro-naloxone, which may imply the different binding affinities of 

dextro/levo- morphine and naloxone to the putative non-opioid receptor or TLR-4 

(Hutchinson et al., 2007). 
Inspired by the studies of Hong’s group showing naloxone could attenuate LPS-induced 
microglial activation and neuronal damage (Liu et al., 2000), Watkin’s group further tested 
the possible involvement of the putative nonopioid/TLR-4 pathway in NINP. They found 
dextro-naloxone, levo-naltrexone, and LPS-antagonist possess analgesic effects in chronic 
constriction neuropathic pain model (Hutchinson et al., 2007). Taken together with the role 
of glial p38 activation in NINP (Jin et al., 2003) and morphine-induced tolerance (Cui et al., 
2006), it is possible that the putative glia non-opioid/TLR-4 pathway is important for the 
development of NINP and morphine-induced tolerance (Cui et al., 2006). 

4.2 Intrathecal studies on morphine tolerance  
Morphine has long been used intrathecally in the management of cancer and non-cancer 
chronic pain (Plummer et al., 1991; Roberts et al., 2001). However, the long-term use of 
morphine is associated with severe side-effects and tolerance (Osenbach & Harvey, 2001). 
Recently, many studies have revealed that intrathecal morphine could induce glial activation 
and neuro-inflammation in the spinal cord (Muscoli et al., 2010; Zhang et al., 2011). Several 
therapeutic targets have been found, including cytokine receptors, kappa-opioid receptors, 
N-methyl-D-aspartate receptors, and Toll-like receptors (Hameed et al., 2010; Lewis et al., 
2010). Recently, tumor necrosis factor (TNF)-ǂ antagonist etanercept was found to reverse 
morphine-induced tolerance and block morphine-induced neuroinflammation in the 
microglia (Shen et al., 2011). Intrathecal gabapentin and minocycline could also enhance the 
antinociceptive effects of morphine and attenuate morphine-induced tolerance (Habibi-Asl 
et al., 2009; Hutchinson et al., 2008; Lin et al., 2005). These promising agents may be co-
administered with intrathecal morphine to improve the pain management for cancer patients 
(Christo & Mazloomdoost, 2008; Mercadante et al., 2004). 

5. Intrathecal neurotoxicity studies 

For a drug to be tested intrathecally in clinical trials, it is imperative to examine its neurotoxic 
effects first in animals (Bennett et al., 2000; Smith et al., 2008). For instance, intrathecal 
lidocaine has been found to induce neuropathological changes in the spinal cord and cauda 
equina (Kirihara et al., 2003). Other analgesics, such as adenosine, sufentanil, alfentanil and 
morphine have all been tested intrathecally in animal studies to examine their potential 
neurotoxicity (Chiari et al., 1999; Sabbe et al., 1994; Westin et al., 2010). Recently, chronic 
intrathecal infusion of minocycline or gabapentin has been reported to cause no grossly 
neurotoxicity in animal studies (Chu et al., 2011; Lin et al., 2007), supporting the intrathecal 
use of these agents for pain management.      
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6. Conclusion  

Intrathecal space has been a route for spinal anesthesia and analgesics. This space also 
provides us a way to explore the possible mechanisms involved in pain transmission. Since 
pain is a major world-wide issue in clinical settings, more and more intrathecal animal 
studies have been undertaken to explore the possible mechanisms involved in the formation 
of different pain statuses and help to develop promising analgesics to alleviate the suffering 
of pain patients. These efforts will eventually help to provide better pain managements in 
clinical settings. 
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