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Managing the Effects of the Climate Change  
on Water Resources and Watershed Ecology 

Ali Erturk 
Istanbul Technical University, Department of Environmental Engineering,  

Maslak, Istanbul, 
Turkey 

1. Introduction 

Based on the monitoring data and climate projections, scientists highly agree that freshwater 
resources are vulnerable and have the potential to be strongly impacted by climate change 
in the long-run. However, there is no consensus about the degree of impact of human 
activities on climate change. Using simulation techniques, Intergovernmental Panel for 
Climate Change (IPCC) estimates the expected changes in the climate on a global scale for 
different emission scenarios. The results from global estimations are used to drive other 
simulations that run on regional scaled smaller domains at higher spatial resolution. 

Assuming that climate change scenarios will be realized in the future, it is possible to foresee 
that there will be effects of climate change on watershed ecology and on the water resources. 
Considering only two of the climate change related variables; temperature and precipitation 
one can conclude that 

• Risks of flooding may increase. 

• Droughts may happen more frequently and for longer periods directly affecting the 
water demand changing the quantity and quality of available water. 

• Increase in water demand may result in insufficient capacity of reservoirs and transfer 
of water from other watersheds might be necessary. 

• Changes in water quantity and quality will in turn affect food availability, stability, 
access and utilization. 

• Water quality of surface runoff from urban and rural areas may change. 

• Function and operation of existing water infrastructure (including water treatment, 
hydropower, drainage and irrigation systems) may be affected.   

This chapter is devoted to the impacts of climate change on freshwater resources; their 
availability, quality, quantity, uses and management is evaluated. Impacts on ecology are 
mentioned. Several management alternatives to reduce the potential adverse effects of 
climate change are identified; merits and tradeoffs involved are discussed. The discussions 
on this chapter is about what the ecological impacts of climate change on aquatic ecosystems 
and water resources will be and what precautions can be taken to sustain watershed 
ecosystems and water resources together with the demands of our socioeconomic system 
rather than “how we can prevent the climate change”. 
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1.1 A general summary of climate change  

In the last two decades, global climate change has continuously been gaining importance. 
Scientists from different disciplines agree that our climate is continuously changing. The 
question open to discussion and debate is the importance and the relative influence of 
human activities on the climate. 

The first study related to climate change was initiated in California University by a 
climatologist named Charles Keeling. In 1958, he started to monitor the amount of 
atmospheric carbon dioxide in Mauna Loa observatory located on Hawaii. His studies, 
which were continued by his son Ralph Keeling after his death, indicated that atmospheric 
carbon dioxide is continuously increasing. Figure 1, also known as the Keeling Curve 
illustrates the trend of this increase. 

 

Fig. 1. Keeling curve 

The atmospheric carbon dioxide investigation of Charles Keeling is considered to be the first 
milestone in climate change studies. 

In 1970’s and 1980’s climate change was usually considered as global warming by scientist 
from various disciplines and interpreted according their knowledge. In late 1980’s however 
it was clear that a more integrated approach is needed to investigate the climate change. 
Global climate change was considered a complex topic with many aspects and policy and 
decision makers needed objective information on climate change including 

• Its reason 
• Environmental and socioeconomic effects 
• Possible solutions 

To cover these needs, World Meteorological Organization (WMO) and United Nations 
Environmental Programme (UNEP) founded together the International Panel of Climate 
Change (IPCC) in the year 1988. 

Since early 1990’s, IPCC published comprehensive reports in regular intervals the last one 
being published in 2007 (IPCC, 2007). Simulation results from IPCC modelling studies 
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indicated that without any limitations in human activities related to industrial emissions, 
1.8ºC of global temperature increase and 6 – 30 cm sea level rise may be expected 2030 
taking the beginning of the industrial revolution (second half of the 18th century) as 
reference. 

Intergovernmental Panel on Climate Change (IPCC, 2007) refers in the Fourth Assessment 
Report, AR4, to the warming of the global climate system and states that “most of the 
observed increase in globally averaged temperatures since the mid-20th century is very 
likely [this likelihood statement can be interpreted as probability in excess of 90%; comment 
added] due to the observed increase in anthropogenic greenhouse gas concentrations” 
(Szwed et al., 2010). It is also expressed that on the global average, surface temperatures 
have in¬creased by about 0.74°C between years 1906 and 2005 during which the warming 
has not been steady and not kept the same both temporally and spatially (IPCC, 2007). 
According to the recordings taken since 1901 only a few areas have been cooled, among 
which one of the most notable one is the northern North Atlantic near southern Greenland. 
However, during this period warming has been experienced more over the continental 
interiors of Asia and northern North America. As referred by IPCC (2007), the most evident 
warming signal has occurred in parts of the middle and lower latitudes whereas the 
duration of the frost-free season has increased in most mid- and high-latitude regions of 
both hemispheres. Besides, most mountain glaciers and ice caps have been shrinking since 
1850s.  

Observations so far indicate that over most land areas, cold days and nights have got 
warmer and fewer, while hot days and nights have got warmer and more frequent. Area 
affected by drought has been increased. This trend is expected to continue in the future.  

The effects of climate change have been highly sensed in sectors like agriculture, energy and 
water related applications. As stated by Szwed et al., (2010), agriculture in the northern 
Europe has been temperature-restricted, while in the south it has been water-restricted. Both 
conditions may have lead to decrease in the crop yields and require the selection of new 
irrigation techniques, new crop patterns etc. for the sustainability of agricultural production. 
Water-related studies frequently mention that water budgets may become increasingly 
stressed. High evapotranspiration and low precipitation in summer leads to depletion of the 
water storage.  

Moreover, researches and model-based studies indicate that weather-related extremes are 
expected to get more frequent and/or more severe and coping with these events will 
become more difficult. Countries facing such conditions are attempting to take mitigation 
measures and develop national and/or regional adaptation strategies. 

2. Simple methods to quantify the climate change 

2.1 Data 

Data related to climate change are on two different temporal scales. The first of these data is 
the so-called paleoclimatological data that is indirect. Stable isotope data dating back hundreds 
thousands of years back is used to reconstruct the past atmospheric composition and basic 
atmospheric conditions such as temperature, precipitation. The second type of data is the 
historical data from observations dating approximately two centuries back at most. Long term 
time series of meteorological data can be used to analyse the recent climate dynamics.  
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Meteorological data can be obtained from state agencies; some of the free data is available 
on the internet as well. WMO is responsible to organize and manage the meteorological data 
globally. Meteorological data on territories without meteorological stations can be interpolated 
using many techniques included models. Results obtained using these techniques are post 
processed, reanalyzed and published; usually on regional scale such as Europe for example. 
There are several European community projects that provide such data. 

Globally, meteorological data from 1960 to 2000 was used to calibrate and validate global 
climate change models that will be briefly described in the next section. 

2.2 Models related to prediction of climate change 

There is not a general term of “climate change prediction model”. Several models on 
different spatial and temporal scales are linked to provide high resolution hydrological 
forcing data on changed climate, which will help to predict the response of watershed 
ecosystems. Each of these type models are described before. 

2.2.1 General circulation models 

Global Circulation Models (GCM) solve the geophysical fluid dynamics of the atmosphere. 
They have the same general structure as the numerical meteorological models used for 
weather prediction. The main difference is that weather prediction models are run for 
several days or a week, while GCMs are run years even centuries. Therefore GCMs have to 
be developed using energy conserving algorithms. Another difference is the spatial and 
temporal discretization. The weather prediction models are run on a horizontal resolution of 
several ten kilometres, whereas GCMs have a horizontal resolution of several degrees of 
longitude and latitudes.  

Climate change related studies are conducted using global Atmosphere-Ocean General 
Circulation Models (AOGCM). AOGCMs provide results that give general information on 
global scale and boundary forcing for higher resolution regional climate change models. 
Seveal well known AOGCMs are briefly described in following paragraphs. 

Hadley Centre Coupled Model, version 3 (HadCM3) is a coupled atmosphere-ocean general 
circulation model (AOGCM) developed at the Hadley Centre in the United Kingdom 
(Gordon et al., 2000; Pope et al., 2000; Collins et al., 2001). It was one of the major models 
used in the IPCC Third Assessment Report in 2001. HadCM3 includes two components; the 
atmospheric model HadAM3 and the ocean model that includes a sea ice model. 
Simulations often use a 360-day calendar, where each month is 30 days. HadAM3 has a 
horizontal resolution of 3.75×2.5 degrees in longitude × latitude. This gives 96×73 grid 
points on the scalar (pressure, temperature and moisture) grid; the vector (wind velocity) 
grid is offset by 1/2 of a grid box resulting in a resolution of approximately 300 km. The 
timestep is 30 minutes (with three sub-timesteps per timestep in the dynamics). 

The coupled global model ECHAM4/OPYC3 was developed in co-operation between the 
Max-Planck-Institute for Meteorology (MPI) and Deutsches Klimarechenzentrum (DKRZ) in 
Hamburg, Germany. The ECHAM model is an atmospheric circulation model. The reference 
horizontal resolution is 300 km , but the model is set up to use finer and coraser resolutions. 
The time step at reference horizontal resolution is 40 minutes. ECHAM4 is coupled with 
ocean circulation model OPYC3. 
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2.2.2 Regional climate models 

Regional climate models (RCM) have a higher spatial and temporal resolution. They 
provide more detailed information then the GCMs, however they work on a smaller 
domain. RCMs work by increasing the resolution of the GCM in a small, limited area of 
interest. An RCM usually cover an area the size of Western Europe or southern Africa. 
GCMs determine very large scale effects of changing greenhouse gas concentrations, 
volcanic eruptions etc. on global climate. The climate (temperature, wind etc.) calculated by 
the GCM is used as input at the open boundaries of the RCM. RCMs can resolve the local 
impacts given small scale information about orography, land use etc., giving weather and 
climate information at fine horizontal resolutions such as 50 or 25km. The outputs of RCMs 
are used to force finer spatial resolution models that are used to predict the response of 
watershed ecosystems to climate change that are briefly explained in the next section. 

2.3 Models related to prediction of response of watershed ecosystems to climate 
change 

Many environmental models that are useful to predict the response of watershed 
ecosystems to climate change are available. Most of these models are freely available, even 
open source. Giving detailed information about environmental modelling is beyond the 
scope of this text. For such information, the reader is referred to other standard texts such as 
Schnoor (1996), Chapra (2008) or Simonovic (2009). 

Basically, there are two general types of models that are used to predict the response of 
watershed ecosystems to external forcing such as climate change: The watershed models 
and the aquatic ecosystem models. 

2.3.1 Watershed models 

Watershed models are derived from hydrological models, usually from a formerly known 
hydrological model so that they contain all the key hydrological processes. They also 
contain sediment transport and terrestrial biogeochemical cycle related processes. 

Since 1960’s many hydrological models were developed and some of them evolved to 
general purposed watershed models. However, just a minor fraction of them were designed 
to simulate the hydrology and ecology of entire watershed using the coupled modelling 
approach and even fewer of them were continuously developed and became widely used, 
freely available open-source modelling tools. SWAT (Arnold et. al., 1999) and HSPF 
(Brickner et. al, 2001) are good examples for such modelling tools. WASH123D (Yeh et. al, 
2005) is more comprehensive than SWAT and HSPF as a hydrological model but has simpler 
water ecology related facilities. MIKE-SHE is also capable to simulate the watershed 
hydrology and ecology; however it is neither free nor open source; and needs additional 
products such as MIKE-11 to be coupled with. Other models such as SWAP (Van Dam, 2000; 
Van Dam et al., 2008), PIHM, Hydrogeosphere (Therrien et al, 2010) are general hydrological 
model taking almost all the compartment of the hydrological and can be easily linked to 
landscape and water ecology models.  

Among all the models discussed SWAT and HSPF are the most widely used ones and 
generally most applicable ones. The applicability of SWAT was reviewed by Gassmann et al 
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(2007). There is also a literature database on SWAT website, which indicates that SWAT and 
its variants were applied 816 times in studies published by peer reviewed journal articles 
reporting hundreds of applications on different watersheds all over the world. HSPF on the 
other hand is widely used as well. The bibliography provided by developers contains more 
than 300 entries. The performance of SWAT and HSPF were compared by several authors 
(Im et al., 2003; Nasr et al., 2004; Saleh and Du, 2004; Sigh, et al., 2004), where both models 
were applied to the same watersheds. In these studies, both models produced comparable 
results; however HSPF produced slightly more accurate results in river discharges, whereas 
SWAT was better in reproducing the nutrient loads. 

2.3.2 Aquatic ecosystem models 

Aquatic ecosystem models are the successors of water quality models; however there is not 
a standard definition of a “water quality model” and “a water ecology model” or a very 
strict border between them. Many well known aquatic ecosystem models or their 
predecessor water quality models were developed in late 1970s. There are many well 
written texts related to water quality and aquatic ecosystem modelling, so the reader is 
referred to those texts. Information related how to obtain them can be reached by simple 
internet queries. Following paragraphs will give brief information on some well known 
models that may be useful for aquatic ecosystem modelling especially on estimating the 
possible impacts of climate change on aquatic ecosystems. 

The Water Quality Analysis Simulation Program (WASP) is a water quality model that was 
developed in early 1980s by United States Environmental Protection Agency. It is a good 
model for initial studies. The latest version of WASP (Version 7.5) includes an advanced 
eutrophication module that can simulate the nutrient cycle and primary production up to 
three phytoplankton groups as well as the detritus cycle. Unfortunately higher trophic levels 
of the aquatic food web are not covered by the advanced eutrophication module. WASP can 
be driven by external hydrodynamic simulation models. 

CE-QUAL-W2 is a hydrodynamic and water quality model in 2D (longitudinal-vertical). It is 
applicable to large watershed/water resource systems that contain these types of water 
bodies such as lakes, rivers and reservoirs. The current model release enhancements have 
been developed under research contracts between the Corps and Portland State University. 
The model can simulate basic eutrophication processes such as temperature-nutrient-algae 
(multi groups)-dissolved oxygen-organic matter and sediment relationships. Additionally, 
zooplankton (muti groups) can also be simulated. 

CE-QUAL-R1 is a one dimensional (vertical) reservoir model developed by Hydrologic 
Engineering Center (United States Army Corps of Engineers). It can simulate nutrients and 
phytoplankton (three groups) and zooplankton like CE-QUAL-W2. Additionally, a simplified 
simulation of fish can be conducted. The model is designed to simulate anaerobic processes 
and dynamics of reduction processes as well. 

AQUATOX is originally developed to assess the fate and effect of chemicals in experimental 
containers. With the improvements of former versions of AQUATOX, the model has 
reached the 3rd release, which has the capability of risk assessment combined with the fate 
and effect of pollutant and toxic chemicals in the aquatic environments. The way AQUATOX 
characterizes the aquatic system is different from many other models do. Mostly the 
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ecosystem models represent the individuals by the changes in their numbers; hence, they 
called as population models. However, AQUATOX simulates the ecosystem by changing the 
concentrations of all components such as chemicals, sediments, and even organisms including 
the ones on the higher trophic levels of food web. The model is intended to assess dynamic 
effects of various stressors such as temperature, toxic chemicals, nutrients, sediment; which 
is applied to aquatic environments from experimental tanks to lake systems. 

3. Effects of climate change on water resources and watershed ecology 

Climate change may have short and long term effects on watershed ecosystems resources. 
Short term effects take place because of the extreme events that are related to climate 
change. Floods are good examples for such extreme events. During a flood shock loading of 
sediments, organic matter and nutrients can be transported into lentic freshwater 
ecosystems such as lakes and reservoirs. Aquatic ecosystems respond to such sudden 
forcing by instantaneous changes in water quality. Recovery of the system that may take 
from a couple of weeks up to a couple of years depends on following factors: 

• the intensity of the effect 

• internal structure of the system 

• operating schedule (in case of engineered systems) 

Long term effects on water resources occur due to climatic trends and extended periods of 
droughts.  

The relation between the components of the historical water balance and climatic variables 
may be needed as reference in order to quantify the effect of climate change on the water 
balance of a watershed. This task is straightforward if historical data on both; the climatic 
variables and the water balance components exist. If one of them is missing the other one 
can be reconstructed using simulation techniques. Kavvas et al., (2009) used a regional 
hydro climatic model (RegHCM-TE) for Tigris-Euphrates watershed located in the Middle-
East for reconstructing the historical precipitation data to perform water balance 
computations for infiltration, soil water storage, actual evapotranspiration and direct runoff. 

3.1 Change of water quantity reaching the water resources 

Climate change may result in average temperature and total precipitation increase. 
However the temporal and spatial heterogeneity of meteorological parameters may increase 
as well resulting in prolonged dry season and increased in flood frequencies in wet season. 
Average temperature in the warm season may increase and average temperature in the cold 
season may decrease as well.  

Changes in precipitation and temperature do not only change the total amount of runoff to 
freshwater systems from their catchments but also the temporal distribution of water inputs. 
Generally, intensification of the global hydrological cycle is expected as a result of 
temperature increase. However, if the land surface hydrology is dominated by the winter 
snow accumulation and spring melt, temperature increase is likely to cause a change in the 
outflow hydrographs of the watersheds where time of peak flow will be shifted towards 
winter. Detailed information related to this phenomenon is provided by Barnett et al., (2005) 
in great detail. Forbes et al., (2011) analyzed the water cycle in a small snow dominated 
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Canadian catchment (Beaver Creek, Alberta) using a hydrological simulation model (ACRU 
agro-hydrological modeling system) and concluded that regions with snowmelt-dependent 
water supply may experience severe changes to the hydrological regime due to temperature 
increase. The consequences were reported by Forbes et al., (2011) as less available soil water 
with potential negative impacts on agriculture, and also increased stresses for the natural 
vegetation, lower streamflows in late summer and fall with potentially adverse impacts on 
the aquatic ecosystem and anyone who withdraws water from the river. 

Furthermore, as temperatures rise the winter precipitation may shift from snow to rain and 
the timing of peak streamflows in many continental and mountainous regions will change. 
The spring snowmelt peak flow may shift to earlier days of the year or even get eliminated 
entirely and winter flows increase (Kundzewicz et al., 2008). 

Changes in frequencies and intensities of extreme events such as floods and droughts are 
projected as well. According to IPCC (2007), the proportion of total rainfall from heavy 
precipitation events will increase and tropical and high latitude areas will experience 
increases in both the frequency and intensity of heavy precipitation events. 

Döll & Flörke (2005) stated that many of the current water-stressed areas will suffer from 
decreasing amount of water since both the river flows and the groundwater recharges are 
expected to decline. In addition, Kundzewicz et al., (2008) reported that drought frequency 
is projected to increase in many regions, in particular, in those areas where reduction of 
precipitation is projected. 

3.2 Capacity shortage in river/reservoirs systems because of the increased water 
demand and water transfer among watersheds 

Temperature increase may increase evaporation from surface waters and evapotranspiration 

and thus water loss from plants and soil will result in increased irrigation water demand. 

However, Barnett et al., (2005) states that there is little agreement on the direction and the 

magnitude of historical and/or predicted evapotranspiration trends. Temperature increase 

alone is expected to enhance evaporation and eventually evapotranspiration. On the other 

hand, temperature increase also affects other variables such as wind speed, humidity, 

cloudiness that have their amplifying/dampening effects on the evaporation and 

evapotranspiration as well. Therefore, the magnitude and the direction of the total response 

of evapotranspiration to temperature increase should be considered as spatially and 

temporally variable. This should be considered when deciding on the operational schedule 

of reservoir systems and especially on those that have the purpose of irrigation water 

storage and supply. 

Temperature increase may also stimulate water consumption. Increased water consumption 

may result in future shortage of reservoir capacity that is sufficient today. In this case two 

options are available:  

1. Promoting decreased water consumption 

- change in way of life in urban areas 

- change in crop patterns/irrigation methods 

- shifting to water saving processes in the industry 

- application of ecological sanitation in rural areas 
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2. Transfer of water from another watershed. Water transfer from other watersheds 
should be planned carefully and managers should not only consider the quantity but 
also take into account the ecological effects on both watersheds. More information on 
this topic is given in the mamagement section. 

According to Mirza et al., (2003) the benefits of expected annual runoff in several regions 
such as South-Eastern Asia will be tempered by negative impacts of increased variability 
and seasonal runoff shifts on water supplies. Flood risk will increase especially in low-lying 
river deltas. Furthermore, additional precipitation during the wet season in those regions 
may not solve the water stress problem occurring in dry season if the extra water cannot be 
stored because of the shortage of reservoir capacity. Similarly; Barnett et al., (2005) states 
that changes in precipitation patterns will not offset the problems as associated with 
warming. 

3.3 Change of water quality in runoff 

Another response of ecosystems to climate change is the change in the quality of surface 
runoff from agricultural land, forests and urban areas. 

Changing meteorological conditions may necessitate changes in crop patterns and thus 
manure/fertilizer/pesticide applications and irrigation schedules may change. Some areas 
may loose the ability of any agriculture whereas other frozen wastelands may become 
appropriate for agriculture. Hence, water quality of surface runoff from agricultural areas 
is expected to be affected in the future due to the direct and indirect impacts of climate 
change. 

Forests, depending on their ecological characteristics emit nutrients and organic matter 
that are transported into aquatic ecosystems sooner or later. Forest ecology is complex and 
more inertial compared to aquatic ecology. In other words, their response to external 
forcing is slower and less predictable making it much harder to estimate the short term 
effects of climate change on surface runoff quality from the forests. Annual and seasonal 
average temperature increase generally eases the photosynthesis rate and plant yield 
changing vegetation and forests. Increase in temperature and changes is other 
meteorological variables may cause forests to succeed in higher elevations. However, 
extreme increase in temperature may result in higher plant respiration rates and shift the 
photosynthesis-respiration balance towards respiration. Droughts have an adverse effect 
on forests favouring succession of steppes and shrubs. Soil organisms will be affected by 
climate change as well, thus the biogeochemical cycles are likely to be shifted to different 
equilibria.  

Change in both natural vegetation and soil biology will cause different water quality and 
quantity from forest runoff. 

Increase in storm event intensities and frequencies will result in more wastewater 
containing storm water release to receiving water bodies in case of combined sewer systems. 
Also sudden events related to precipitation and temperature may also affect the 
performance of wastewater treatment systems. In case of droughts, accumulation of 
contaminants on land can be expected as there will not be storm event for extended periods. 
Hence, a storm event following an extended dry period will have an increased shock 
loading effect on water resources. 
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3.4 Deteoration of water quality in aquatic ecosystems 

Climate change may affect the ecological processes in lentic ecosystems which in turn will 
affect the water quality. Increase in average annual water temperature affects the primary 
producers following ways: 

• Temperature changes will affect both; the photosynthesis and the respiration rates. 
Initially, increases in temperature will promote higher photosynthesis and respiration 
rates. However, for each group of primary producers, there is an optimum temperature 
range. If the water temperature exceeds the upper limit for optimum conditions, 
temperature stress will decrease photosynthesis rates and increase respiration rates. 
This mechanism will accelerate the nutrient recycle and making nutrients available for 
primary producers adapted to higher temperatures causing a shift in dominant 
phytoplankton group. More increase of temperature may completely suppress some 
phytoplankton groups and/or cause sudden breakdown of their blooms eventually 
leading to decreased water quality. 

• Phytoplankton groups that can adapt to higher temperatures for example cyanobacteria 
will be favoured. Cyanobacteria that are generally better adapted to higher temperatures 
may dominate the algal community. Genera such as Anabaena and Aphonizomenon 
produce algal toxins, taste and odour problems. Some species of cyanobacteria are 
capable of nitrogen fixation and hence increase nitrogen in aquatic ecosystems through 
internal loading.  

• More days with suitable light conditions for algal blooms or longer photoperiods 
during a day may occur if the cloud cover changes due to the climate change. Those 
conditions may extend the vegetation period as well as earlier blooms may be possible. 
A large portion of the nutrient inputs to lotic ecosystems generally occur in late winter 
and early spring related to rain events and snowmelt. In this period although the 
nutrient concentrations increase in water, lower water temperatures limit 
phytoplankton growth. However, if the water temperatures increase, two factors 
needed for phytoplankton growth, more suitable temperature and high nutrient 
concentrations, will synergistically favour phytoplankton growth. If these conditions 
are followed by better light availability, phytoplankton blooms will be stronger and 
more frequent and adversely affect the water quality. 

Increase in water temperature will increase the biological activity in aquatic ecosystems, 
hence increase the oxygen demand. Ironically, higher temperature decreases the saturation 
concentration of dissolved oxygen in water as well. Combining these effects with 
accelerated primary production and more internal detritus loads as its conclusion, it is 
possible to foresee that oxygen scarcity, hypoxia or anoxia events may increase especially in 
deep lakes. These conditions cause stress for aquatic organisms increasing their mortality, 
which also means even more detritus. Those changes in internal dynamics of aquatic 
ecosystems are likely to decrease their capacity to assimilate external organic matter loads. 

4. Effects of climate change on water resources systems 

Climate change may impact the components on man-made water resources systems as well.  

Deteoriation of reservoir water quality may cause operational problems related to equipment. 
Those problems are: 
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• Anaerobic corrosion: Anaerobic bacteria will reduce certain substances, such as 

sulphate, and consequently corrosion may come about. The oxidation of iron atoms into 

ions and ferrous sulphate ions reduced sulphide ions act as a catalyst. 

• Increased suspended sediment load and sedimentation may decrease reservoir capacity. 

• Increased primary production and phytoplankton biomass may cause clogging in filter 

systems.  

Increase of organic matter in raw water may increase energy and chemical consumption in 

water treatment systems. Possible problems are: 

• Increased odour 

• Increased colour and turbidity 

• Increased algal toxins because of cyanobacteria growth 

As stated previously, climate change is likely to increase the water demand that will 

increase water abstraction through the water distribution network. This situation increases 

the operational load on water distribution and may cause problems such as pressure drop in 

water distribution networks followed by urban water shortage risk and related problems 

listed below:  

• shortage of water storage volumes  

• pumping stations 

• increased costs  

• public health problems 

5. Management 

It is stated by Rosenzweig et al., (2007) that some climate change impacts on hydrological 

processes have already been observed and further changes are projected. Thus, mitigation 

measures are needed to be taken as well as adaptation to climate change is necessary. Below 

common adaptation measures are referred. 

5.1 Efficient and effective use of water  

When water demand increases and water availability decreases one of the most widely used 

solution towards decreasing water more consumption is using the available water 

effectively and more efficiently. Water demand management considers measures to improve 

efficiency of water use. 

Among sectors, agriculture is the leading sector in terms of water consumption. Climate 

change is expected to directly and indirectly increase demand for agricultural irrigation. 

Adaptation measures to climate change in the agricultural sector include changes of 

agrotechnical practices (e.g., use of crop rotation, advancing sowing dates) and 

introduction of new cultivars (heat-wave- and drought-tolerant crops). Soil moisture 

should also be conserved (e.g. through mulching). Besides, timing and frequency of 

irrigation need to be optimized considering the crop requirements. This is important for 

reducing irrigation return flows which in turn deteriorates the quality of the receiving 

water.  
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Industrial water consumption may also be reduced by developing less water using 
technologies as well as in-plant control measures. Clean technologies should be preferred 
due to their optimized water consumption.   

Domestic uses may be decreased by encouraging public to use water-saving home 
appliances, through water pricing, legal sanctions and raising public awareness. In the big 
cities in developing countries, water loss through leakages in the water distribution lines 
constitutes a significant amount. Thus, it must be aimed to decrease water losses below 10% 
by renewing the old pipelines. 

5.2 Alternative water resources 

In cases of severe water scarcity, reducing water consumption may not be a remedy and 
thus searching for alternative water resources may become crucial. 

Desalination of seawater or brackish water is considered as an important option of 
producing freshwater. Recent technologies and advances in the sector allow producing 
freshwater at affordable costs when higher amounts are intended. However, water 
withdrawals for desalination purposes may alter the well-being the related ecosystem. Thus, 
it is necessary to take into account the environmental impacts that might occur due to the 
planned water withdrawals. Also brine that is produced in desalination process should be 
properly disposed.   

Another alternative source is reuse of treated wastewater. It is known that treated 
wastewater may be used for irrigating green land, parks and gardens in big cities. It can also 
be used for irrigating agricultural land if the national standards are satisfied in terms of 
irrigation water quality. Industries can also utilize treated wastewater in their processes 
providing that the quality of the goods manufactured remain unchanged (Asano et al., 
2007). 

Aquifers can be thought as storages where water loss through evaporation is relatively low. 
Thus, recharge of groundwater aquifers with treated wastewater is applied in different 
countries such as Israel and Spain (Esteban & Miguel, 2008; Salgot, 2008). However, it 
should be underlined that advanced treatment is necessary to protect the aquifers from 
pollution.   

Another option is ecological sanitation (ECOSAN) practices.  By such applications generated 
wastewater is separated into three streams at the source (yellow water, grey water and black 
water) that may be recycled after applying simpler treatment techniques. For example 
treated grey water may be used for irrigation and for recharge of aquifers. However, in most 
of the cases existing and usually old fashioned infrastructure is not compatible with 
ECOSAN. Reuse and/or disposal of each wastewater stream should be carefully planned. 
For example, yellow water could be used instead of fertilizer but if not desalinated salinity 
in human urine can harm the crops and the soil (Beler-Baykal et al., 2011). 

5.3 Inter-basin water transfer  

Szwed et al., (2010) states that water transfer from an area of relative abundance to an area 
of scarcity may smooth the spatial water variability. It is applied in many arid and semi-arid 
regions. Three points are important in water transfer: Feasibility regarding engineering works, 
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hydrological conditions and ecological conditions of the basins. Pre-screening in terms of 
engineering works focus on costs of the work and on the length of water transmission lines. 
Besides, head loss/energy consumption of the pumps, natural and artificial barriers along 
the pipeline and its vicinity are also important factors to be considered.  

Inter-basin water transfer depends on the availability of excess water from where the water 
is withdrawn. Especially the climatic conditions of both basins gain importance. If both 
basins face drought conditions in the same years, water transfer among them should not be 
considered as a feasible option. Both basins must be surveyed prior to realization of water 
transfer regarding their hydrological characteristics. During these surveys, long-term 
hydrological data must be analyzed. Watershed ecology is equally important. Socio-cultural 
conditions and economical characteristics should also be taken into consideration and 
sustainability should be kept in mind during water withdrawals. There are still 
contradicting opinions on inter-basin water transfer. They argue that inter-basin water 
transfer may no longer be viable in a future with climate change, as climate change stresses 
almost every source of freshwater. Also taking more water from the natural system has 
biological, ethical, and increasingly legal limitations (Karakaya and Gonenc, 2005; Hall et al., 
2008). Consequently, it is advised to consider inter-basin water transfer to be considered as 
the last solution to water scarcity. 

5.4 Maintaining the sustainability of watershed ecosystems 

Natural aquatic ecosystems are among the important water resources supporting life. It is 
very important to maintain the ecological flows of these systems. Ecological flows are usually 
determined by some practical statistical approaches, assumptions and methods supported 
by scientific research conducted at site. During these studies it must be considered that 
aquatic ecosystems are in interaction with terrestrial ecosystems. Thus, any change in 
aquatic or terrestrial ecosystem will have an effect on the other one. For example, the 
decrease in surface water levels will affect the groundwater levels and dependent 
ecosystems. Evapotranspitation increase due to climate change has also effect on the 
decrease of groundwater levels. As this condition may lead to change in the vegetation 
cover which in turn lead to habitat change regulation of groundwater use becomes more 
important. As renewal of groundwater lasts long, planning must be done prior to facing 
water scarcity. 

5.5 Revision of infrastructure 

Changes in water quality in water resources will necessitate revision of existing water-
related infrastructure. New components of the infrastructure should be designed according 
to possible extremes that would occur. Resilience of the infrastructure should also be 
enhanced.  

Water treatment systems must be designed and operated according to drinking water 
standards under raw water inflow with varying water quality. On the other hand, different 
wastewater treatment options that seem not feasible today may be available in a world with 
higher annual average temperature. One example is the upflow anaerobic sludge blanket 
(UASB) process that is used to treat municipal wastewater in warmer countries such as 
India currently. Such technologies that are more cost-efficient could be applied in higher 
latitudes once further meteorological conditions change due to climate change. 

www.intechopen.com



 
Studies on Water Management Issues 

 

272 

6. References  

Arnold, J.G., Srinivasan, R., Muttiah, R.S. and Williams, J.R., 1998. Large area hydrologic 

modeling and assessment part I : Model development. J. American Water Resour. 

Assoc., 34(1), 73. 

Asano, T., Burton, F.L., Leverenz, H.L., Tsuchihasti, R. and Tchobanoglous, G. 2007. Water 

reuse: Issues, technologies, and application. Metcalf &Eddy/AECOM, McGraw 

Hill, USA. 

Barnett, T.P., Adam, J.C., Lettenmaier, D.P. 2005. Potential impacts of a warming climate on 

water availability in snow-dominated regions, Nature, 438, 303–309. 

Beler-Baykal, B., Allar, A.D., Bayram, S. 2011. Nitrogen recovery from source separated 

human urine using clinoptilolite and preliminary results of its use as fertilizer, 

Water Science and Technology, 63(4), 811-817. 

Bicknell, B.R., J.C. Imhoff, J.L. Kittle, Jr., Jobes, T.H. and A.S. Donigian, Jr., 2001. Hydrologic 

Simulation Program – FORTRAN (HSPF), user’s manual for version 12.0, USEPA, 

Athens, GA, 30605. 

Chapra, S., 2008. Surface Water Quality Modeling, Waveland Press. 

Collins, M.; Tett, S.F.B., and Cooper, C. 2001. The internal climate variability of HadCM3, a 

version of the Hadley Centre coupled model without flux adjustments. Climate 

Dynamics 17: 61–81 

Döll, P., Flörke, M. 2005. Global-Scale Estimation of Diffuse Groundwater Recharge. 

Frankfurt Hydrology Paper 03, Institute of Physical Geography, Frankfurt 

University, Frankfurt am Main, Germany. 

Esteban, I.R. and Miguel, E.O. 2008. Present and future wastewater reuse in Spain. 

Desalination, 218, 105-119. 

Forbes, K.A., Kienzle, S.W., Coburn, C.A., Byrne, J.M., Rasmussen, J. 2011. Simulating the 

hydrological response to predicted climate change on a watershed in southern 

Alberta, Canada, Climatic Change, 105, 555–576. 

Gassman, P.W., Reyes M.R., Gren C.H. and Arnold, J.G. 2007. The Soil and Water 

Assessment Tool: Historical Development, Applications and Future Research 

Directions. Transactions of ASABE, 50(4), 121. 

Gordon, C.; Cooper, C., Senior, C.A., Banks, H., Gregory, J.M., Johns, T.C., Mitchell, J.F.B., 

and Wood, R.A. 2000. The simulation of SST, sea ice extents and ocean heat 

transports in a version of the Hadley Centre coupled model without flux 

adjustments. Climate Dynamics 16 (2–3): 147–168. 

Hall, N.D., Stuntz, B.B., and Abrams, R.H. 2008. Climate Change and Freshwater Resources, 

Natural Resources & Environment, 22(3), 32-35. 

Im, S., Brannan, K., Mostaghimi, S. and Cho. A. J. (2003). Comparison of SWAT and HSPF 

Models for Simulating Hydrologic and Water Quality Responses from an 

Urbanizing Watershed, Proceedings of the 2003 ASAE Annual International Meeting, 

Nevada, USA, Paper No: 032175 

IPCC, 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working 

Group I to the Fourth Assessment Report of the Intergovernmental Panel on 

Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. 

Averyt, M.Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, 

United Kingdom and New York, NY, USA. 

www.intechopen.com



 
Managing the Effects of the Climate Change on Water Resources and Watershed Ecology 

 

273 

Karakaya, N. and Gonenc, I.E. 2005. Interbasin water transfer, Proceedings of 2nd National 

Water Resources Engineering Symposium, Izmir, Turkey (in Turkish).  

Kavvas, M.L., Chen, Z.Q., Anderson, M.L., Ohara, N., Yoon, J.Y. 2009. A Hydroclimate 

Model of the Tigris-Euphrates Watershed for the Study of Water Balances, in 

Proceedings of Conference on Transboundary Waters and Turkey, Editors: Mehmet 

Karpuzcu, Mirat D. Gürol, Senem Bayar, Istanbul. 

Kundzewicz, Z.W., Mata, L.J., Arnell, N.W., Döll, P., Jimenez, B., Miller, K., Oki, T., Şen, Z. 

and Shiklomanov, I. 2008. The implications of projected climate change for 

freshwater resources and their management, Hydrological Sciences Journal, 53, 1, 3-

10. 

Mirza, M.M.Q., Warrick, R.A. and Ericksen, N.J. 2003. The implications of climate change on 

floods of the Ganges, Brahmaputra and Meghna rivers in Bangladesh. Climatic 

Change, 57, 287–318. 

Nasr, A., M. Bruen, P. Jordan, R.Moles, G. Kiely, P. Byrne and B. O'Regan, 2004. Physically-

based, distributed, catchment modelling for estimating sediment and phosphorus 

loads to rivers and lakes: issues of model complexity, spatial and temporal scales 

and data requirements. National Hydrology Seminar-2004, Ireland 

Pope, V.D.; Gallani, M.L., Rowntree, P.R., and Stratton, R.A., 2000. The impact of new 

physical parameterizations in the Hadley Centre climate model — HadAM3. 

Climate Dynamics 16 (2–3): 123–146. 

Rosenzweig, C., G. Casassa, D.J. Karoly, A. Imeson, C. Liu, A. Menzel, S. Rawlins, T.L. Root, 

B. Seguin, P. Tryjanowski, 2007. Assessment of observed changes and responses in 

natural and managed systems. Climate Change 2007: Impacts, Adaptation and 

Vulnerability. Contribution of Working Group II to the Fourth Assessment Report 

of the Intergovernmental Panel on Climate Change, M.L. Parry, O.F. Canziani, J.P. 

Palutikof, P.J. van der Linden and C.E. Hanson, Eds., Cambridge University Press, 

Cambridge, UK, 79-131. 

Saleh, A., Du., B. 2004. Evaluation of SWAT and HSPF within basins program for the upper 

north bosque river watershed in central Texas. Transactions of ASAE, 47, 1039 

Salgot, M. 2008. Water reclamation, recycling and reuse: Implementation issues. Desalination, 

218, 190-197. 

Schnoor, 1996. Environmental Modeling, Wiley & Sons 

Singh, J., Knapp, V.H, and Demissie, M. (2004). Hydrologic Modeling of the Iroquois River 

Watershed Using HSPF and SWAT. Illinois State Water Survey Contract Report 2004-

08. 

Simonovich, S. 2009 Managing Water Resources Unesco Publishing 

Szwed, M., Karg, G., Pińskwar, I., Radziejewski, M., Graczyk, D., Kędziora, A., Kundzewicz, 

Z.W., 2010. Climate change and its effect on agriculture, water resources and 

human health sectors in Poland, Nat. Hazards Earth Syst. Sci., 10, 1725–1737. 

Therrien, R., McLaren, R.G., Sudicky, E.A., Panday, S.M. (2010). HydroGeoSphere A Three-
dimensional Numerical Model Describing Fully-integrated Subsurface and Surface Flow 

and Solute Transport. Groundwater Simulations Group 

Van Dam, J.C., P. Groenendijk, R.F.A. Hendriks and J.G. Kroes, 2008. Advances of modeling 

water flow in variably saturated soils with SWAP. Vadose Zone J., 7(2), p. 640. 

www.intechopen.com



 
Studies on Water Management Issues 

 

274 

Van Dam, J.C., 2000. Field-scale water flow and solute transport. SWAP model concepts, 

parameter estimation, and case studies. PhD-thesis, Wageningen University, 

Wageningen, The Netherlands 

Yeh, G., Huang, G., Zhang, F., Cheng, P., Lin, J. 2005. WASH123D: A Numerical Model of 

Flow, Thermal Transport, and Salinity, Sediment, and Water Quality Transport in 

Watershed Systems of 1-D Stream-River Network, 2-D Overland Regime, and 3-D 

Subsurface Media, USEPA 

www.intechopen.com



Studies on Water Management Issues

Edited by Dr. Muthukrishnavellaisamy Kumarasamy

ISBN 978-953-307-961-5

Hard cover, 274 pages

Publisher InTech

Published online 18, January, 2012

Published in print edition January, 2012

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

This book shares knowledge gained through water management related research. It describes a broad range

of approaches and technologies, of which have been developed and used by researchers for managing water

resource problems. This multidisciplinary book covers water management issues under surface water

management, groundwater management, water quality management, and water resource planning

management subtopics. The main objective of this book is to enable a better understanding of these

perspectives relating to water management practices. This book is expected to be useful to researchers,

policy-makers, and non-governmental organizations working on water related projects in countries worldwide.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Ali Erturk (2012). Managing the Effects of the Climate Change on Water Resources and Watershed Ecology,

Studies on Water Management Issues, Dr. Muthukrishnavellaisamy Kumarasamy (Ed.), ISBN: 978-953-307-

961-5, InTech, Available from: http://www.intechopen.com/books/studies-on-water-management-

issues/managing-the-effects-of-the-climate-change-on-water-resources-and-watershed-ecology



© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


