
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



20 

Possibilities of Deriving Crop 
Evapotranspiration from Satellite 

 Data with the Integration with Other 
 Sources of Information 

Gheorghe Stancalie and Argentina Nertan 
National Meteorological Administration 97,  

Soseaua Bucuresti-Ploiesti, Bucharest 
 Romania 

1. Introduction 

After precipitation, evapotranspiration is one of the most significant components in 
terrestrial water budgets. 
Evapotranspiration (ET) describes the transport of water into the atmosphere from surfaces 

(including soil - soil evaporation) and from vegetation (transpiration). Those are often the 

most important contributors to evapotranspiration. Other contributors to 

evapotranspiration are the e from wet canopy surface (wet-canopy evaporation) and 

evaporation from vegetation-covered water surface in wetlands the process of 

evapotranspiration is one of the main consumers of solar energy at the Earth's surface. The 

energy used for evapotranspiration is generally referred to as latent heat flux. The term 

latent heat flux includes other related processes unrelated to transpiration including 

condensation (e.g., fog, dew), and snow and ice sublimation.  

There are several factors that affect the evapotranspiration processes: energy availability; the 

humidity gradient away from the surface(the rate and quantity of water vapor entering into 

the atmosphere are higher in drier air); the wind speed at the soil level (wind affects 

evapotranspiration by bringing heat energy into an area); Water availability (it is well 

known that the evapotranspiration cannot occur if water is not available); Vegetation 

biophysical parameters (many physical parameters of the vegetation, like cover plant height, 

leaf area index and leaf shape and the reflectivity of plant surfaces can affect 

evapotranspiration); Stomatal resistance (the transpiration rate is dependent on the diffusion 

resistance provided by the stomatal pores, and also on the humidity gradient between the 

leaf's internal air spaces and the outside air); soil characteristics which includes its heat 

capacity, and soil chemistry and albedo. For a given climatic region the evapotranspiration 

follows the seasonal declination of solar radiation and the resulting air temperatures: 

minimum evapotranspiration rates generally occur during the coldest months of the year 

and maximum rates generally coincide with the summer season (Burba, 2010). Even so 

evapotranspiration depends on solar energy; the availability of soil moisture and plant 

maturity, the seasonal maximum evapotranspiration actually may precede or follow the 
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seasonal maximum solar radiation and air temperature by several weeks (Burba, 2010). If 

the moisture is available, evapotranspiration is dependent mainly on the availability of solar 

energy to vaporize water: evapotranspiration varies with latitude, season, time of day, and 

cloud cover. Most of the evapotranspiration of water at the Earth's surface level occurs in 

the subtropical regions (Fig.1). In these areas, high quantities of solar radiation provide the 

energy necessary to convert liquid water into a gas. Usually, evapotranspiration exceeds 

precipitation on middle and high latitude large areas during the summer season. As a result 

of climate change it is expected to induce a further intensification of the global water cycle, 

including ET (Huntington, 2006). Therefore accurate estimates of evapotranspiration are 

needed for weather forecasting and projecting the long-term effects of land use change and 

global climate change, irrigation scheduling and watershed management. 

 

 

 

Fig. 1. Mean Annual Potential Evapotranspiration (UNEP World Atlas of Desertification)  

In this regard, remote sensing data with the increasing imagery resolution is a useful tool to 

provide ET information over different temporal and spatial scales. During the last decades 

important progresses were made in the determination of ET using remote sensing 

techniques. Some studies have classified the methods of ET estimation in two categories: 

semi- empirical methods - use empirical relationship and a minimum set of meteorological 

data; analytical methods – consist in the establishment of the physical process at the scale of 

interest. A study done by Courault (2007) proposed a few methods which can be classified 

as follows: empirical direct methods, residual methods of the energy budget, deterministic 

methods, and vegetation index methods.  

In agriculture, an accurate quantification of ET is important for effective and efficient 

irrigation management. When evaporative demand exceeds precipitation, plant growth and 

quality may be unfavorably affected by soil water deficit. A large part of the irrigation water 

applied to agricultural lands (Fig. 2) is consumed by evaporation and transpiration. In a 

given crop, evapotranspiration process is influenced by several factors: plant species, 
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canopy characteristics, plant population, degree of surface cover, plant growth stage, 

irrigation regime (over irrigation can increase ET due to larger evaporation), soil water 

availability, planting date, tillage practice, etc. As it can be observed from Fig. 2 the 

movement of the water vapor from the soil and plant surface, a t a field level is influenced 

mainly by wind speed and direction although other climatic factors also can play a role. 

Evapotranspiration increases with increasing air temperature and solar radiation. Wind 

speed can cause ET increasing. For high wind speed values the plant leaf stomata (the small 

pores on the top and bottom leaf surfaces that regulate transpiration) close and 

evapotranspiration is reduced. There are situations when wind can cause mechanical 

damage to plants which can decrease ET due to reduced leaf area. Hail can reduce also leaf 

area and evapotranspiration. Higher relative humidity decreases ET as the demand for 

water vapor by the atmosphere surrounding the leaf surface decreases. If relative humidity 

(dry air) has lower values, the ET increases due to the low humidity which increases the 

vapor pressure deficit between the vegetation surface and air. On rainy days, incoming solar 

radiation decreases, relative humidity increases, and air temperature usually decreases, 

generation ET decreasing. But, depending on climatic conditions, actual crop water use 

usually increases in the days after a rain event due to increased availability of water in the 

soil surface and crop root zone. 

 

 

Fig. 2. Evaporation and transpiration and the factors that impact these processes in an 
irrigated crop. 

2. Evapotranspiration and energy budget 

The estimation of ET parameter, corresponding to the latent heat flux (E) from remote 

sensing is based on the energy balance evaluation through several surface properties such as 

albedo, surface temperature (Ts), vegetation cover, and leaf area index (LAI).  Surface energy 

balance (SEB) models are based on the surface energy budget equation. To estimate regional 

crop ET, three basic types of remote sensing approaches have been successfully applied (Su, 

2002).  

The first approach computes a surface energy balance (SEB) using the radiometric surface 

temperature for estimating the sensible heat flux (H), and obtaining ET as a residual of the 
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energy balance. The single-layer SEB models implicitly treat the energy exchanges between 

soil, vegetation and the atmosphere and compute latent heat flux (E) by evaluating net (all-

wave) radiant energy (Rn), soil heat flux (G) and H. For instantaneous conditions, the energy 

balance equation is the following: 

 ܧ = 	 ܴ௡ − ܪ	 −  (1) 												ܩ

where: Rn = net radiant energy (all-wave); G = soil heat flux; H = sensible heat flux (Wm-2); 

E = latent energy exchanges (E = the rate of evaporation of water (kg m-2 s-1) and  = the 

latent heat of vaporization of water (J kg-1)). E is obtained as the residual of the energy 

balance contain biases from both H and (Rn - G). There are several factors which affect the 

performance of single-source approaches, like the uncertainties about atmospheric and 

emissivity effects. LST impacts on all terms of the energy balance in particular on long wave 

radiation. The radiative surface temperatures provided by an infrared radiometer from a 

space borne platform are measured by satellite sensors such as LANDSAT, AVHRR, MODIS 

and ASTER. Converting radiometric temperatures to kinetic temperature requires 

considerations about surface emissivity (E), preferably from ground measurements. 

Remotely LST is subject to atmospheric effects which are primarily associated with the 

absorption of infrared radiation by atmospheric water vapor and which lead to errors of 3–5 

K. A wide range of techniques have been developed to correct for atmospheric effects, 

including: single-channel methods; split-window techniques; multi-angle methods and 

combinations of split-window and multi-channel methods. Radiant and convective fluxes 

can be described: by considering the observed surface as a single component (single layer 

approaches); by separating soil and vegetation components with different degrees of canopy 

description in concordance with the number of vegetation layers (multilayer approaches).  

Net radiant energy depends on the incident solar radiation (Rg), incident atmospheric 

radiation over the thermal spectral domain (Ra), surface albedo (αs), surface emissivity (εs) 

and surface temperature (Ts), according to the following equation: 

 ܴ௡ = 	 ሺͳ − ௦ሻܴ௚ߙ	 + 	 ௦ܴ௔ߝ − ߪ௦ߝ	 ௦ܶସ				  (2) 

For single layer models, Rn is related to the whole surface and in the case of multiple layer 

models, Rn is linked with both soil and vegetation layers. For single approaches, sensible 

heat flux H is estimated using the aerodynamic resistance between the surface and the 

reference height in the lower atmosphere (usually 2 m) above the surface. Aerodynamic 

resistance (ra) is a function of wind speed, atmospheric stability and roughness lengths for 

momentum and heat. For multiple layer models, H is characterized taking into account the 

soil and canopy resistance, with the corresponding temperature: 

ܪ  = ௣ܿߩ	 ሺ ೞ்ି	்ೌ ሻ௥ೌ 		 (3) 

Eq. (3) shows that the estimation of E parameter can be made using the residual method, 

which induces that E is linearly related to the difference between the surface temperature 
(Ts) and air temperature (Ta) at the time of Ts measurement if the second order dependence 
of ra on this gradient is ignored. 

ܧߣ  = 	 ܴ௡ − ܩ − ݌ܿߩ	 ሺ ೞ்ି	்ೌ ሻ			௥ೌ 	 (4) 
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Equation (4) is usually used to estimate E. At midday, it provides a good indicator 

regarding the plant water status for irrigation scheduling. For E estimation over longer 
periods (daily, monthly, seasonal estimations), the use of ground-based ET from weather 
data is necessary to make temporal interpolation. Some studies have used the trend for the 
evaporative fraction (EF), such as the ratio of latent heat flux to available energy for 
convective fluxes, to be almost constant during the daytime. This allows estimating the 
daytime evaporation from one or two estimates only of EF at midday, for example at the 
satellite acquisition time (Courault et al., 2005). 

ܨܧ  = 	 ఒாோ೙ିீ,   ܧ ଶܶସ = ܨܧ ∗ 	 ܴ௡ଶସ	  (5) 

ET can be estimated from air vapor pressure (pa) and a water vapor exchange coefficient (hs) 
according to the following equation:   

ܧߣ  = ௦∗ሺ݌௣ℎ௦ሺܿߩ	 ௦ܶሻ − 	݁௔ሻ			 (6) 

Usually this method is used in models simulating Soil–Vegetation–Atmosphere Transfers 
(SVAT). ps∗(Ts) represent the saturated vapor pressure at the surface temperature Ts and hs 
is the exchange coefficient which depends on the aerodynamic exchange coefficient (1/ra), 
soil surface and stomatal resistances of the different leaves in the canopy. Katerji & Perrier 
(1985) estimated a global canopy resistance (rg) including both soil and canopy resistances 
(equation 6) 

	௚ݎ = ͳͳݎ௩௘௚ + ௪ݎ + ͳݎ଴ + ௦ݎ  (7)

where: rveg is the resistance due to the vegetation structure, rw the resistance of the soil layer 

depending on the soil water content, r0 the resistance due to the canopy structure and rs the 

bulk stomatal resistance. To calculate this parameters it necessary to have information 

regarding the plant structure like LAI and fraction of vegetation cover (FC), the minimum 

stomatal resistance (rsmin). Many studies proposed various parameterizations of the stomatal 

resistance taking into account climatic conditions and soil moisture (Jacquemin & Noilhan, 

1990). This proves that the (Ts − Ta) is related to ET term, and that Ts can be estimated using 

thermal infrared measurements (at regional or global scale using satellite data, and at local 

scale using ground measurements). 

The second approach uses vegetation indices (VI) derived from canopy reflectance data to 

estimate basal crop coefficient (Kcb) that can be used to convert reference ET to actual crop 

ET, and requires local meteorological and soil data to maintain a water balance in the root 

zone of the crop.  The VIs is related to land cover, crop density, biomass and other 

vegetation characteristics. VIs such as the Normalized Difference Vegetation Index (NDVI), 

the Soil Adjusted Vegetation Index (SAVI), the Enhanced Vegetation Index (EVI) and the 

Simple Ratio (SR), are measures of canopy greenness which may be related to physiological 

processes such as transpiration and photosynthesis. Among the relatively new satellite 

sensors it has to be mentioned the advantages of using MODIS/Aqua that offer improved 

spectral and radiometric resolution for deriving surface temperatures and vegetation 

indices, as well as   increased frequency of evaporative fraction and evaporation estimates 

when compared with other sensors. The observed spatial variability in radiometric surface 
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temperature is used with reflectance and/or vegetation index observations for evaporation 

estimation. For ET estimation from agricultural crops the most direct application is to 

substitute the VIs for crop coefficients (defined as the ratio between actual crop water use 

and reference crop evaporation for the given set of local meteorological conditions). 

Negative observing correlations between the NDVI and radiometric surface temperature 

could be linked to evaporative cooling, although for most landscapes variations in fractional 

vegetation cover, soil moisture availability and meteorological conditions will cause 

considerable scatter in those relationships.  The methods associated with this approach 

generate spatially distributed values of Kcb that capture field-specific crop development and 

are used to adjust a reference ET (ETo) estimated daily from local weather station data. 
The third approach uses remotely sensed LST with Land Surface Models (LSMs) and Soil–
Vegetation–Atmosphere (SVAT) models, developed to estimate heat and mass transfer at 
the land surface. LSMs contain physical descriptions of the transfer in the soil–vegetation– 
atmosphere continuum, and with proper initial and boundary conditions provide 
continuous simulations when driven by weather and radiation data. The energy-based 
LSMs are of particular interest because these approaches allow for a strong link to remote 
sensing applications. The use of the spatially distributed nature of remote sensing data as a 
calibration source has been limited, with the focus placed on data assimilation approaches to 
update model states, rather than inform the actual model structure. Data assimilation is the 
incorporation of observations into a numerical model(s) with the purpose of providing the 
model with the best estimate of the current state of a system. There are two types of data 
assimilation: (i) sequential assimilation which involves correcting state variables (e.g. 
temperature, soil moisture) in the model whenever remote sensing data are available; and 
(ii) variation assimilation when unknown model parameters are changed using data sets 
obtained over different time windows. Remotely sensed LSTs have been assimilated at point 
scales into various schemes for estimating land surface fluxes by comparing simulated and 
observed temperatures and adjusting a state variable (e.g. soil moisture) or model 
parameters in the land surface process model. Such use of remote sensing data has 
highlighted problems of using spatial remote sensing data with spatial resolutions of tens or 
hundreds of kilometers with point-scale SVAT models and has led to the search for 
‘‘effective’’ land surface parameters. There exist no effective means of evaluating ET 
spatially distributed outputs of either remote sensing based approaches or LSMs at scales 
greater than a few kilometers, particularly over non-homogeneous surfaces. The inability to 
evaluate remote sensing based estimates in a distributed manner is a serious limitation in 
broader scale applications of such approaches. It must be noted here that ET evaluation of 
remote sensing based approaches with ground based data tends to favour those few clear 
sky days when fluxes are reproduced most agreeably, and on relatively flat locations. 
In this case the radiation budget is given by the following equation (Kalma et al., 2008): 

 ܴ௡ = ܭ ↓ 	 ܭ− ↑ 	 ܮ+ ↓ 	 ܮ− ↑		 (8) 

where K is the down-welling shortwave radiation and it depends on atmospheric 
transmissivity, time of the day, day of the year and geographic coordination. K represents 

the reflected shortwave radiation which depends on K and surface albedo (a), L is the 
down-welling long wave radiation and L is the up-welling long wave radiation. L 
depends on the atmospheric emissivity (which in turn is influenced by amounts of 

atmospheric water vapor, carbon dioxide and oxygen) and by air temperature. L si 
influenced by land surface temperature and emissivity 
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3. Direct methods using difference between surface and air temperature 

Mapping daily evapotranspiration over large areas considering the surface temperature 
measurements has been made using a simplified relationship which assumes that it is 

possible to directly relate the daily (Ed) to the difference (Trad – Ta)i between (near) mid-day 
observations (i) of surface temperature and near-surface air temperature (Ta) measured at 
midday as follows: 

ௗܧߣ  = 	 ሺܴ௡ሻௗ − ሺܤ ௥ܶ௔ௗ − 	 ௔ܶሻ௜௡			 (9) 

B is a statistical regression coefficient which depends on surface roughness. n depends on 
atmospheric stability. Equation 9 was derived from Heat Capacity Mapping Mission 
(HCMM) observations over fairly homogeneous irrigated and non-irrigated land surfaces, 
with areas between 50 and 200 km2 (Seguin et al. 1982a, b). Some authors as Carlson et al. 
(1995a) proposed a simplified method based on Eq. 9 which uses the difference (Trad – Ta) at 
50 m at the time of the satellite overpass. They showed that B coefficient and n are closely 
related to fractional cover fc that can be obtained from the NDVI–Trad plots. B values vary 
from 0.015 for bare soil to 0.065 for complete vegetation cover and n decreased from 1.0 for 
bare soil to 0.65 for full cover. 

4. Surface energy balance models  

Surface energy balance models (SEBAL) assume that the rate of exchange of a quantity (heat 
or mass) between two points is driven by a difference in potential (temperature or 
concentration) and controlled by a set of resistances which depend on the local atmospheric 
environment and the land surface and vegetation properties. In the review made by 
Overgaard et al. (2006) regarding the evolution of land surface energy balance models are 
described the following approaches: the combination approach by Penman (1948) which 
developed an equation to predict the rate of ET from open water, wet soil and well-watered 
grass based on easily measured meteorological variables  such as radiation, air temperature, 
humidity, and wind speed; the Penman–Monteith ‘‘one-layer’’, ‘‘one-source’’ or ‘‘big leaf’’ 
models (Monteith 1965) which recognize the role of surface controls but do not distinguish 
between soil evaporation and transpiration; this approach estimates ET rate as a function of 
canopy and boundary layer resistances; ‘‘two-layer’’ or ‘‘two-source’’ model such as 
described by Shuttleworth and Wallace (1985) which includes a canopy layer in which heat 
and mass fluxes from the soil and from the vegetation are allowed to interact; multi-layer 
models which are essentially extensions of the two-layer approach.  

4.1 The Penman–Monteith, ‘‘one-source’’ SEB models 
The Penman–Monteith (PM) approach combines energy balance and mass transfer concepts 
(Penman, 1948) with stomatal and surface resistance (Monteith, 1981). Most “one source” 

SEB models compute E by evaluating Rn, G and H and solve for E as the residual term in 
the energy balance equation (see Eq. 10). The sensible heat flux (H) is given by: 

ܪ = ௣ܥߩ ቈሺ ௔ܶௗ − ௔ܶሻݎ௔ ቉  (10)

Where:  = air density (kg*m-3); Cp = specific heat of air at constant pressure (J kg-1 K-1); Tad = 
aerodynamic surface temperature at canopy source height (K); Ta = near surface air 
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temperature (K); ra = aerodynamic resistance to sensible heat transfer between the canopy 
source height and the bulk air at a reference height above the canopy (s m-1). The ra term is 
usually calculated from local data on wind speed, surface roughness length and 
atmospheric stability conditions. According to Norman and Becker (1995), the aerodynamic 
surface temperature (Tad) represent the temperature that along with the air temperature and 
a resistance calculated from the log-profile theory provides an estimate H. The key issue of 
PM approach is to estimate an accurately sensible heat flux. Tad is obtained by extrapolating 
the logarithmic air temperature profile to the roughness length for heat transport (zoh) or, 
more precisely, to (d + zoh) where d = zero-plane displacement height. Usually, due to the 
fact that Tad cannot be measured using remote sensing, it is replaced with Trad. As it is 
demonstrated by Troufleau et al. (1997), for dense canopy Trad and Tad may differ with 1-2 K 
and much more for sparse canopy. Surface temperature (Trad) is related to the kinetic 

temperature by the surface emissivity () (Eq, 11) and it depends on view angle () (Norman 
et. al, 2000). On the other hand Tad and aerodynamic resistance are fairly difficult to obtain 
for non-homogenous land surfaces.  

 ௥ܶ௔ௗ = 	 ଵߝ ସൗ ∗ 	 ௞ܶ (11) 

The aerodynamic resistance ra can be calculated with the following equation: 

௔ݎ = ͳ݇ଶ ݑ ൤݈݊ ݖ − ௢௛ݖ݀ − Ψ௛ ݖ − ܮ݀ ൨ ൤݈݊ ݖ − ௢௠ݖ݀ − Ψ௠ ݖ − ܮ݀ ൨  (12)

where: k = 0.4 (von Karman’s constant); u = wind speed at reference height z (m s-1); d = 

zero-plane displacement height (m); zoh and zom = roughness lengths (m) for sensible heat 

and momentum flux, respectively; h and m = stability correction functions for sensible 

heat and momentum flux, respectively; L = Monin-Obukhov length L (m). The h = 0 and 

m = 0 if near surface atmospheric conditions are neutrally stable. Usually, the aerodynamic 

resistance is estimated from local data, even that area averaging of roughness lengths is 

highly non-linear (Boegh et al. 2002). Several studies, such as Cleugh at al. (2007) used these 

equations for evapotranspiration landscape monitoring. Their approach estimates E at 16-

day intervals using 8-day composites of 1 km MODIS Trad observations and was tested with 

3 years of flux tower measurements and was obtained significant discrepancies between 

observed and simulated land surface fluxes, generated by the following factors: the 

estimation of H with Eqs. 9 and 10 is not constrained by the requirement for energy 

conservation; errors in zoh determination; use of unrepresentative emissivities; using time-

averages of instantaneous Trad, Ta and Rn, the non-linearity of Eq. 9 may cause significant 

errors; standard MODIS data processing eliminates all cloud-contaminated pixels in the 

composite period. Bastiaanssen et al. (1998a) developed a calibration procedure using image 

data to account for the differences between Taero and Trad, which are important, mainly for 

incomplete vegetation covers. Other authors, such as Stewart et al. (1994) and Kustas et al. 

(2003a), made empirical adjustments to aerodynamic resistance, related to zoh (eq. 13). 

ܪ = ௣ܥߩ ቈ ௥ܶ௔ௗሺΘሻ − ௔ܶݎ௔ − ௘௫ݎ ቉  (13)

where: Trad () =radiometric surface temperature (K) at view angle  derived from the 

satellite brightness temperature; rex = excess resistance (s m-1) (reflects differences between 
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momentum and sensible heat transfer. According to Stewart et al. (1994) rex is function of the 

ratio of roughness lengths for momentum zom and for sensible heat zoh and the friction 

velocity u* (m s-1) (eq. 14): 

௘௫ݎ = ∗ݑଵ݇ିܤ݇ = ݈݊ ௢௠ݖ ∗ݑ௢௛ൗ݇ݖ  
(14)

where kB-1 = dimensionless ratio determined by local calibration. Eq. 14 assumes that the 
ratio zom/zoh may be treated as constant for uniform surfaces, although kB-1 has been found 
to be highly variable (Brutsaert 1999). 
In the case of the one source Surface Energy Balance System (SEBS) (Su, 2002) the surface 
heat fluxes are estimated from satellite data and available meteorological data. There are 
three sets of input data in SEBS: the first set includes the following parameters: , , Trad, 
LAI, fractional vegetation coverage and the vegetation height (if the vegetation information 
is not explicitly available, SEBS can use as input data the Normalized Difference Vegetation 
Index (NDVI)); the second set includes Ta, u, actual vapour pressure (ea) at a reference 
height as well as total air pressure; the third set of data consists of measured (or estimated) 

K and L. For Rn, G, and the partitioning of (Rn - G) into H and E, SEBS use different 
modules (Fig. 3): H is estimated using Monin–Obukhov similarity theory; in the case of u 
and vegetation parameters (height and LAI) is used the Massman (1997) model to to 
estimate the displacement height (d) and the roughness height for momentum (zom); the 
equations proposed by Brutsaert (1982, 1999) are used when only the height of the 
vegetation is available. The SEBS was successfully tested for agricultural areas, grassland 
and forests, across various spatial scales. Several studies used flux tower method and data 
from Landsat, ASTER ad Modis sensors (Su et al. 2005, 2007, McCabe and Wood 2006).  
The Fig. 4 shows the time series, determined during the Soil Moisture Atmosphere Coupling 
Experiment 2002 (SMACEX-02) (Kustas et al. 2005). These time series illustrates latent heat 
fluxes and sensible heat fluxes measured with in situ eddy-covariance equipment (closed) 
together with SEBS model (open) over a field site (corn) from Iowa. The gaps in the time 
series are caused either the missing ancillary data or absence of flux measurements. Many 
factors influence the single-source approach: there are uncertainties due to atmospheric and 
emissivity effects; because of the vegetation properties and of the angle view, the 
relationship between Tad and Ta is not unique; this approach requires representative near-
surface Ta and other meteorological data measured (or estimated) at the time of the satellite 
overpass at a location closely with the Trad observation. This can generate errors in defining 
meteorological parameter for each satellite pixel from a sparse network of weather stations 
(at the time of satellite overpass), mainly for areas with high relative relief and slopes. 
Another important factor is that the accuracy of any of the estimates depends on the 
performance of the algorithm used for temperature retrieval. 
The major advantages of SEBS are: uncertainty due to the surface temperature or 
meteorological variables can be limited taking into account the energy balance at the 
limiting cases; through the SEBS was formulated a new equation for the roughness height 
for heat transfer, using fixed values; a priori knowledge of the actual turbulent heat fluxes is 
not required. Another single-source energy balance models, developed based on the 
conception of SEBAL, are S-SEBI (Simplified-SEBI), METRIC (Mapping EvapoTranspiration 
at high Resolution with Internalized Calibration), etc. The main difference between such 
kinds of models is the difference in how they calculate the sensible heat, i.e. the way to 
define the dry (maximum sensible heat and minimum latent heat) and wet (maximum latent 
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heat and minimum sensible heat) limits and how to interpolate between the defined upper 
and lower limits to calculate the sensible heat flux for a given set of boundary layer 
parameters of remotely sensed data (Ts, albedo, NDVI, LAI) and ground-based air 
temperature, wind speed, humidity. The assumptions in all these models are that there are 
few or no changes in atmospheric conditions (especially the surface available energy) in 
space and sufficient surface horizontal variations are required to ensure dry and wet limits 
existed in the study area. 
 

 

Fig. 3. Schematic representation of SEBS (after Su, 2008) 

 

 

Fig. 4. Reproduction of surface flux development with a one-source model (SEBS) (after  
Kalma, 2008) 

4.2 Two-source SEB models 
The equations 10 and 13 make no difference between evaporation soil surface and 
transpiration from the vegetation and from this reason the resistances are not well defined. 
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To solve this problem two-source models have been developed for use with incomplete 
canopies (e.g. Lhomme et al. 1994; Norman et al. 1995; Jupp et al. 1998; Kustas and Norman 
1999). These models consider the evaporation as the sum of evaporation from the soil 
surface and transpiration from vegetation. For example, Norman et. Al. (1995) developed a 
two-source model (TSM) based on single-time observations which eliminate the need for rex 
as used in equations 13 and 14. They reformulated the equation 10 as: 

ܪ = ௣ܥߩ ௥ܶ௔ௗሺߠሻ − ௔ܶݎ௥  (15)

where: Trad = directional radiometric surface temperature obtained at zenith view angle ; rr 

= radiometric-convective resistance (s m-1). The radiometric convective resistance is 
calculated according to the following formula: 

௥ݎ = ௥ܶ௔ௗሺߠሻ − ௔ܶ൤ሺ ௖ܶ − ௔ܶሻݎ௔ + ൬ሺ ௦ܶ − ௔ܶሻݎ௔ + ௦ݎ ൰൨  (16)

where: Tc = canopy temperature; Ts = soil surface temperature; Rs = soil resistance to heat 
transfer (s m-1). To estimate the Tc and Ts variables, Norman et al. used fractional vegetation 
cover (fc) which depends on sensor view angle (Eq. 17): 

 ௥ܶ௔ௗሺߠሻ ≈ 	 ሾ ௖݂ሺߠሻ ௖ܶସ +	 ሼͳ − 	 ௖݂ሺߠሻሽ ௦ܶସሿభర		 (17) 

H variable is divided in vegetated canopy (Hc) and soil (Hs) influencing the temperature in 
the canopy air-space. Other revisions of TSM compared flux estimates from two TSM 
versions proved that thermal imagery was used to constrain Trad and H and microwave 
remote sensing was employed to constrain near surface soil moisture. The estimations 
resulting from those two models were compared with flux tower observations. The results 
showed opposing biases for the two versions that it proves a combination between 
microwave and thermal remote sensing constraints on H and E fluxes from soil and 
canopy. Compared to other types of remote sensing ET formulations, dual-source energy 
balance models have been shown to be robust for a wide range of landscape and hydro-
meteorological conditions.  

5. Spatial variability methods using vegetation indices 

Visible, near-infrared and thermal satellite data has been used to develop a range of 
vegetation indices which have been related to land cover, crop density, biomass or other 
vegetation characteristics (McVicar and Jupp 1998). Several vegetation indices as the 
Normalized Difference Vegetation Index (NDVI), the Soil Adjusted Vegetation Index 
(SAVI), the Enhanced Vegetation Index (EVI) and the Simple Ratio (SR), are indicators of 
canopy greenness which can be related to physiological processes such as transpiration and 
photosynthesis (Glenn et al., 2007). 

5.1 Vegetation indices, reflectance and surface temperature 
The SEBAL approach used remotely sensed surface temperature, surface reflectivity and 
NDVI data. It has been developed for the regional scale and it requires few ground level 

observations from within the scene. K and L are computed using a constant atmospheric 
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transmissivity, an appropriate atmospheric emissivity value and an empirical function of Ta, 

respectively. G is calculated as a fraction of Rn depending on Trad, NDVI and  (Bastiaanssen 
2000). The instantaneous values of sensible heat flux are calculated in three main steps. First 
step makes the difference between Tad and Trad and assumes that the relationship between 

Trad and the near-surface temperature gradient (T = Tad - Ta) is quasi-linear. Therefore wet 
and dry extremes can be identified from the image. These extremes fix the quasi-linear 

relationship relating T to Trad, allowing T to be estimated for any Trad across the image. In 

the second step, a scatter plot is obtained for all pixels in the entire image of broadband  
values versus Trad. Low temperature and low reflectance values correspond to pixels with 
large evaporation rates, while high surface temperatures and high reflectance values 
correspond to the areas with little or no evaporation rates. Scatter plots for large 
heterogeneous regions frequently show an ascending branch controlled by moisture 
availability and evaporation rate, and a radiation-controlled descending branch where 
evaporation rate is negligible. The ascending branch indicates that the temperatures increase 

with increasing  values as water availability is reduced and evaporation rate becomes more 

limited. For the descending branch the increasing of  induce a decreasing of surface 
temperature. If the radiation-controlled descending branch is well defined, ra may be 
obtained from the (negative) slope of the reflectance–surface temperature relationship. The 
last step use the local surface roughness (zom) based on the NDVI; is assumed that the 

zom/zoh ratio has a fix value and H can be calculated for every pixel with E as the residual 
term in Eq. 1. The SEBAL models have been used widely with satellite data in the case of 
relatively flat landscapes with and without irrigation. 
The Mapping EvapoTranspiration with high Resolution and Internalized Calibration 
(METRIC) models, derived from SEBAL are used for irrigated crops (Allen et al. 2007a, b). 
METRIC model derive ET from remotely sensed data (LANDSAT TM) in the visible, near-
infrared and thermal infrared spectral regions along with ground-based wind speed and 
near surface dew point temperature. In this case extreme pixels are identified with the 
cool/wet extreme comparable to a reference crop, the evaporation rates being computed 
wit Penman-Monteith method. The ET from warm/dry pixel is calculated using soil water 
budget having local meteorological data as input parameters. METRIC model can be used 
to produce high quality and accurate maps of ET for areas smaller than a few hundred 
kilometers in scale and at high resolution (Fig. 5). In their study, Boegh et al. (1999) 
presented an energy balance method for estimating transpiration rates from sparse 
canopies based on net radiation absorbed by the vegetation and the sensible heat flux 
between the leaves and the air within the canopy. The net radiation absorbed by the 
vegetation is estimated using remote sensing and regular meteorological data by merging 
conventional method for estimation of the land surface net radiation with a ground-
calibrated function of NDVI.  
SEBAL and METRIC methods assume that the temperature difference between the land 
surface and the air (near-surface temperature difference) varies linearly with land surface 
temperature. Bastiaanssen et al. (1998) and Allen and al. (2007) derive this relationship 
based on two anchor pixels known as the hot and cold pixels, representing dry and bare 
agricultural fields and wet and well-vegetated fields, respectively. Both methods use the 
linear relationship between the near-surface temperature difference and the land surface 
temperature to estimate the sensible heat flux which varies as a function of the near-surface 
temperature difference, by assuming that the hot pixel experiences no latent heat, i.e., ET = 
0.0, whereas the cold pixel achieves maximum ET.           
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Fig. 5. (a) Landsat color infrared image of T3NR1E of the Boise Valley; (b) Land use/land 
cover polygons in T3NR1E of the Boise Valley; (c) ET image of T3NR1E the Boise Valley 
(after R.G. Allen et al., 2007) 

The sensible heat flux is assessed like a linear function of the temperature difference 
between vegetation and mean canopy air stream. The surface temperature recorded by 
satellite comprises information from soil and from vegetation; therefore the vegetation 
temperature is estimated taking into account the linear relationship between NDVI and 
surface temperature. The difference between the surface temperature and the mean canopy 
air stream temperature is linearly related to the difference between surface temperature 
and the air temperature above the canopy with the slope coefficient which depend on the 
canopy structure. This relationship was used to evaluate the mean canopy air stream 
temperature. The method was used in the Sahel region for agricultural crops, natural 
vegetation, forest vegetation, with ground based, airborne and satellite remote sensing 
data and validated with sapflow and latent heat flux measurements. Agreement between 
remote sensing based estimates and ground based measurements of E rates is estimated 
to be better than 30–40 W m-2. 

5.2 Reflectance and surface temperature 
The Simplified Surface Energy Balance Index (S-SEBI) proposed by Roerink et al. (2000) 

estimate the instantaneous latent heat flux (Ei) with (Kalma, 2008): 

 ܧ௜ = Λ௜ሺܴ௡௜ −	   (18)				௜ሻܩ

where: (Rni – Gi) = available energy at the time of the satellite overpass; i = the evaporative 
fraction. The S-SEBI algorithm has two limitations: the atmospheric conditions have to be 

almost constant across the image and the image has to contain borh dry and wet areas. i 
was obtained from a scatter plot of observed surface temperature (Trad) and Landsat TM 

derived broadband a values across the single scene. i is with: 

Λ௜ = ுܶ − ௥ܶ௔ௗுܶ − ௥ܶ௔ௗ  (19)

where:  Trad = observed surface temperature for a given pixel; TH = temperature for the 
upper boundary (dry radiation controlled conditions - all radiation is used for surface 

heating and  decreases with increasing surface temperature (TH - where E = 0 (W m-2)); 

TE = temperature at the lower boundary (evaporation controlled wet conditions - all energy 
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is used for E and  increases with an increase of surface temperature (TE -where H = 0 W 
m-2)). This method does not need any additional meteorological data. 
 

 

Fig. 6. Flowchart of the proposed methodology to obtain ET from NOAA–AVHRR data 
(after Sobrino et al., 2007) 

Sobrino et. al (2007) use S-SEBI algorithm to estimate the daily evapotranspiration from 
NOAA-AVHRR images for the Iberian Penisnula. The Figure 6 present the flowchart used 
by Sobrino et al. (2007) to obtain ET from NOAA-AVHRR. Daily evapotranspiration (ETd) is 
given by:  

ܧ ௗܶ = Λ௜ܥௗ௜ܴ௡௜ܮ  (20)

where: Rnd = daily net radiation; Rni = instantaneous net radiation: L = 2.45 MJ kg-1 = latent 
heat vaporization; Cdi=Rnd /Rni. In this case the daily ground heat flux was considered close 
to 0. There are several studies which proposed methods for Cdi calculation. For example 
Seguin and Itier (1983) proposed a constant value for Cdi = (0.30±0.03). Wassenaar et al. 
(2002) showed that this ratio have a seasonal variation 0.05 in winter to 0.3 in summer, 
following a sine law. In the Sobrino et al. (2007) study, Cdi was calculated using net radiation 
fluxes measured at the meteorological station of located on the East coast of the Iberian 
Peninsula (El Saler area). The ET estimation from high spectral and spatial resolution data 

(5 m) was adapted to the low resolution data NOAA-AVHRR (1 km spatial resolution) 
based on the evaporative fraction concept proposed by Roerink et al. (2007). The main 
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advantage of the Sobrino et al. (2007) methodology is that the method requires only satellite 
data to estimate ET.  
 

 

Fig. 7. Monthly evolution (from June 1997 to November 2002) of the daily 
evapotranspiration (ETd) in the eight selected zones. There is represented also the temporal 
mean for the six years of analyzing (after Sobrino et al., 2007). 

Its major disadvantage is represented by the requiring that satellite images must have 

extreme surface temperatures. The method was tested over agricultural area using high 

resolution values, with errors lower than 1.4 mm d-1. As it can be observed from Fig. 7, 

regarding the monthly and seasonal evolution of ET the highest values (∼6 mm d−1) were 

obtained in the West of the Iberian Peninsula, which is the most vegetated area. Taking into 

account the impact of incoming solar energy the higher values of ET was obtained in spring 

and summer and the lower values in autumn and winter. Seasonal ET was obtained by 

averaging daily ET over the season. Figure 8 shows as an example the monthly ET maps 

obtained from the NOAA-AVHRR images acquired in 1999. Fig. 9 also indicates that the 

highest ET values were obtained in the summer and spring, in the north and west of Iberian 

Peninsula. To map land surface fluxes and surface cover and surface soil moisture, Gillies 

and Carlson (1995) combined two model, SVAT and ABL and run it for vegetative cover 

with the maximum known NDVI and for bare soil conditions with the minimum known 

NDVI in the scene for a range of soil moisture values until AVHRR observed (Trad) and 

simulated (Tad) surface temperatures corrected, at which stage the actual fractional 

vegetation cover (fc) and surface soil moisture were estimated.   
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Fig. 8. Monthly mean for the daily evapotranspiration obtained from NOAA–AVHRR data 
over the Iberian Peninsula in 1999. Pixels in black color correspond to sea and cloud masks 
and red correspond to higher value of ET (after Sobrino et al., 2007). 

5.3 Vegetation indices and surface temperature 
Several studies shown the efficiency of ‘‘triangle method’’ (Carlson et al. (1995a, b); Gillies et 
al. 1997; Carlson 2007) to estimate soil moisture from the NDVI–Trad relationship. The major 
advantages of the remotely sensed VI-Ts triangle method are that: the method allows an 
accurate estimation of regional ET with no auxiliary atmospheric or ground data besides the 
remotely sensed surface temperature and vegetation indices; is relatively insensitive to the 
correction of atmospheric effects. Its limitations are: determination of the dry and wet edges 
requires a certain degree of subjectivity; to make certain that the dry and wet limits exist in 
the VI-Trad triangle space most of pixels over a flat area with a wide range of soil wetness 
and fractional vegetation cover are required. So, the boundaries of this triangle are limiting 
conditions for H and E. Other studies suggest the dependence of Trad variability on the 
remote sending data resolution, thus higher resolution data means that the variations of Trad 
and NDVI is more related to the land cover type. Lower resolution data show the 
dependency of the NDVI and Trad variations to agricultural practices and rainfall. Jiang and 
Islam (2001) proposed a triangle method based on the interpolation of the Priestley–Taylor 
method (Priestley and Taylor, 1972) using the triangular (Trad, NDVI) spatial variation. The 
Priestley–Taylor expression for equilibrium evaporation from a wet surface under 
conditions of minimal advection (EPT) is given by: 

௉்ܧߣ  = 	 ௉்ሺܴ௡ߙ − ሻܩ ୼୼ା	ఊ (21) 
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where:  = slope of the saturated vapour pressure curve at the prevailing Ta ((Pa K-1);  = 

psychrometric constant (Pa K-1); PT = Priestley-Taylor parameter defined as the ratio 

between actual E and equilibrium E. For wet land surface conditions, PT = 1.26. Its value is 
affected by global changes in air temperature, humidity, radiation and wind speed. Jiang 

and Islam (2001) replaced PT with parameter  which varies for a wide range of ra and rc 
values. The warm edge of the (Trad, NDVI) scatter plot represents pixels with the highest Trad 
and minimum evaporation from the bare soil component, while Ea can vary function of the 
vegetation type. Linear interpolation between the sides of the triangular distribution of Trad - 

NDVI allows to derive  for each pixel using the spatial context of remotely sensed Trad and 

NDVI. The  values are related to surface wetness, rs and Trad. Therefore, the minimum 

value of  is 0 for the driest bare soil pixel and the maximum value is 1.26 for a densely 

vegetated, well-watered pixel. Thus the actual  value for each pixel in a specified NDVI 
interval is obtained from the observed (Trad)obs with the following: 

߶ = ߶௠௔௫ ሺ ௥ܶ௔ௗሻ௠௔௫ − ሺ ௥ܶ௔ௗሻ௢௕௦ሺ ௥ܶ௔ௗሻ௠௔௫ − ሺ ௥ܶ௔ௗሻ௠௜௡  (22)

where (Trad)min and (Trad)max are the lowest and highest surface temperatures for each NDVI 
class, corresponding to the highest and lowest evaporation rates, respectively. The 
evaporative fraction can be calculated with: Λ = ߶ ୼୼ା ஌   (23)

Based on the Jiang and Islam (2001) approach, Wang et al. (2006) obtained better results 

using the spatial variation (Trad, NDVI), where Trad represent the day–night difference in 

Trad, obtained from MODIS data. However, to convert  into E, the method described above 
still requires estimation/ measurement of net radiation (Rn) and soil heat flux (G). In a later 
work, Jiang and Islam (2003) consider the fractional vegetative cover (fc) as a more suitable 
generalized vegetation index calculated from the normalized NDVI with (Kalma et al. 2008): 

௖݂ = ൬ ܫܸܦܰ − ௠௔௫ܫܸܦ௠௜௡ܰܫܸܦܰ − ௠௜௡൰ଶܫܸܦܰ
 (24)

They assumed that the evaporative fraction  = E/(Rn - G) is linearly related to T = Trad - 

Ta, inside a certain class fc. The reason for this assumption is that theT is more 
representative for sensible heat flux H. Thus the evaporative fraction can be estimated from 

fc and T, for a given set of Tmax, Te (Te = Tmax for fc = 1) and a stress factor (). In their 
study, they used NOAA-AVHRR data and obtained better results using the aerodynamic 
resistance-energy balance method represented by Eq. 13, this equation including 
atmospheric stability corrections and using an iterative procedure to reach the most 
appropriate kB-1 value. 
Serban et al. (2010) used the Priestly-Taylor equation modified by Jiang and Islam (2001) in 
their study to estimate the evapotranspiration using remote sensing data and Grid 
Computing. The most advantage of Priestly-Taylor equation is that the all terms can be 
calculated using remotely sensed data.  Grid computation procedure has two major 
advantages: strong data processing capacity and the capability to use distributed computing 
resources to process the spatial data offered by a satellite image. According to Jiang and 
Islam (2001) the parameter αPT parameter is obtained by two-step linear interpolation: in the 
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first step is obtained upper and lower bounds of αPT for each specific NDVI class 
(determined from the land use/land cover map); in the second step the parameter αPT is 
ranged within each NDVI class between the lowest temperature pixel and the highest 
temperature pixel. According to land use/land cover map, for this paper, was considered 
four main land uses: vegetation, water, barren land and urban. Each NDVI value 
corresponds to a certain NDVI class. In this case the relationship between LST and NDVI is 
used. Thus, the parameter αPT is calculated with:  

௉்ߙ = 	 ൬∆ + ∆ߛ	 ൰ ቆ ܵܮ ௜ܶ௠௔௫ − ܵܮܶܵܮ ௜ܶ௠௔௫ − ܵܮ ௜ܶ௠௜௡ቇ ቆܰܫܸܦ௜௠௔௫ − ௜௠௔௫ܫܸܦ௜௠௜௡ܰܫܸܦܰ ቇ + ൬∆ + ∆ߛ ൰ ቆܰܫܸܦ௜௠௜௡	ܰܫܸܦ௜௠௔௫ቇ (25)

where: LST = surface temperature for current pixel; LSTimax and LSTimin = maximum and 
minimum surface temperature within NDVI class which has the current pixel; NDVIimax and 
NDVIimin are the maximum and minimum NDVI within NDVI class which has the current 
pixel. They calculated the daily value of ET with the following (Fig. 9): 

ௗ௔௜௟௬ܧߣ = ௉்ߙ ሺܴ௜ܮܦʹ − ௜ܩ ሻ݊݅ݏߨ ቀߨ ቁܮܦݐ  (26)

where: DL = total day length (hours); t = time beginning at sunrise. To obtain the 24 hours 
totals, the daily ET values are multiplied by 1.1 for all days. LST was computed using 
Jimenez- Munoz and Sobrino’s algorithm which requires a single ground data (the total 
atmospheric water vapor content – w) (Fig. 10): 

ܶܵܮ  = ௦௘௡௦௢௥ܮଵሺ߰ଵିܧܵܮሾߛ	 +	 ߰ଶሻ + ߰ଷሿ +  (27) 			ߜ	

ߛ = ቈܿଶܮ௦௘௡௦௢௥௦ܶ௘௡௦௢௥ଶ ቆߣସܿଵ ௦௘௡௦௢௥ܮ + ଵቇ቉ (28)ିߣ

ߜ  = ௦௘௡௦௢௥ܮߛ	 + 	 ௦ܶ௘௡௦௢௥ 			 (29) 

௦௘௡௦௢௥ܮ  = ݃ܽ݅݊ ∗ ܰܦ + ݏܾܽ݅ −  (30) 				݁ܿ݊ܽ݅݀ܽݎ	݈ܽݎݐܿ݁݌ݏ

௦ܶ௘௡௦௢௥ = ଶ݈݊ܭ ቀ ௦௘௡௦௢௥ܮଵܭ + ͳቁ  (31)

where: LSE = land surface emissivity = 1.0094+0.047*ln(NDVI);  = effective wavelength; 
DN = digital number of a pixel; Tsesnor = brightness temperature; c1 = 1.19104*108 WǍm4 m-

2sr-1; c2 = 14387.7ǍmK; i (i = 1, 2, 3) = atmospheric parameters, which depend on total 
atmospheric water vapor content (w). Besides satellite data, this study uses two ground 
meteorological data: the total atmospheric water vapor content - w, used in LST estimation 
algorithm, and the air temperature - Tair. To estimate evapotranspiration, Serban et al. (2010) 
used one subset of Landsat ETM+ (7th June 2000) for Dobrogea area corresponding to 
Constanta weather station, which was atmospherically corrected. 
From the bands ETM+ 3 and 4 were analyzed the NDVI values, the band ETM+ 6 was 
processed to determine LST, and the other bands (ETM+ 1, 2, 5 and 7) were used to estimate 
the albedo values. The difference between the actual mean soil surface temperature at the 
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time when satellite passed and the remote sensed mean land surface temperature (0.73OC) is 
considered acceptable. The evapotranspiration (Fig. 10) ranges between 0.33 and 
5.24mm/day. According to Constanta weather station, the multi-annual average of the 
evapotranspiration in June is between 4.5 and 5.6 mm/day, so the estimation error is 
eligible.  
 

 

Fig. 9. LST Image - Dobrogea region, 2000 (After Serban et al., 2010) 

 

 

Fig. 10. ETP Image - Dobrogea region, 2000 (After Serban et al., 2010) 

6. ET estimation using meteorological data 

6.1 Crop evapotranspiration 
At a crop level, ET may not occur uniformly because variations in crop germination, soil water 
availability, and other factors such as non-uniform water and nutrient applications and an 
uneven distribution of solar radiation within the canopy. Usually, the top leaves are more 
active in transpiration than the lower leaves because they receive more light. Also, the bottom 
leaves mature and age earlier and they may have lower transpiration rates than the greener 
and younger top leaves. Thus, weather parameters, crop characteristics, environmental and 
management aspects are the factors which influence the evaporation and transpiration 
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processes. The main weather parameters influencing evapotranspiration are radiation, air 
temperature, humidity and wind speed. Several algorithms have been developed to estimate 
the evaporation rate from these parameters. The evaporation power of the atmosphere is 
expressed by the reference crop evapotranspiration (ETo) which represents the 
evapotranspiration from a standardized vegetated surface (Allen et al., 1998). The reference 
surface is a hypothetical grass reference crop with specific characteristics. Because ETo is 
affected by only climatic parameters, it is a climatic parameter and may be computed from 
weather data. Thus ETo is the evaporating power of the atmosphere at a specific location and 
time of the year and does not take into account the crop characteristics and soil factors. 
Crop water requirement is defined as the amount of water required to compensate the 
evapotranspiration loss from the cropped field. Even the values for crop evapotranspiration 
are identical with crop water requirement (CWR), crop evapotranspiration refers to the 
amount of water that is lost by evapotranspiration, while CWR refers to the amount of water 
that needs to be supplied. Thus, the irrigation water requirement represents the difference 
between the crop water requirement and effective precipitation and also includes additional 
water for leaching of salts and to compensate for non-uniformity of water application (Allen et 
al., 1998). Several empirical methods have been developed over the last five decades in order 
to estimate the evapotranspiration from different climatic variables. Testing the accuracy of the 
methods under a new set of conditions is laborious, time-consuming and costly, and yet 
evapotranspiration data are frequently needed at short notice for project planning or irrigation 
scheduling design. To meet this need, guidelines were developed and published in the FAO 
Irrigation and Drainage Paper No. 24 'Crop water requirements'. From different data 
availability, four methods are usually used to estimate the reference crop evapotranspiration 
(ETo): the Blaney-Criddle, radiation, modified Penman and pan evaporation methods. From 
these four methods, the modified Penman-Monteith method offer the best results with 
minimum possible error in relation to a living grass reference crop. The radiation method can 
be used for areas where available climatic data include measured air temperature and 
sunshine, cloudiness or radiation, but not measured wind speed and air humidity. The Blaney-
Criddle method is better to be applying for areas where available climatic data cover air 
temperature data only. The pan method gives acceptable estimates, depending on the location 
of the pan. Based on the original Penman- FAO proposed a standard parameterization of the 
Penman–Monteith method for estimating the evaporation from a -irrigated, homogenous, 0.12 
m grass cover considered as a ‘‘reference crop’’ (Allen et al., 1998) (Fig. 11).  
 

 

Fig. 11. Characteristics of the hypothetical reference crop (after Allen et al., 1998) 
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Monteith equation and the equations of the aerodynamic and surface resistance, the FAO 
Penman-Monteith method to estimate ETo is the following: 

ܧ ଴ܶ = Ͳ.ͶͲͺ∆ሺܴ௡ − ሻܩ + ߛ ቀ ͻͲͲܶ + ʹ͹͵ቁ ଶሺ݁௦ݑ − ݁௔ሻ∆ + ሺͳߛ + Ͳ.͵Ͷݑଶሻ  
(32)

where: ET0 = reference evapotranspiration [mm day-1]; Rn = net radiation at the crop surface 
[MJ m-2 day-1]; G = soil heat flux density [MJ m-2 day-1]; T = mean daily air temperature at 2 
m height [°C]; u2 = wind speed at 2 m height [m s-1]; es = saturation vapour pressure [kPa]; 

ea = actual vapour pressure [kPa]l; es - ea = saturation vapour pressure deficit [kPa];  = 
slope vapour pressure curve [kPa °C-1]; γ = psychrometric constant [kPa °C-1]. The equation 
uses standard climatological records of solar radiation (sunshine), air temperature, humidity 
and wind speed. To obtain correct estimations of ET0, the weather measurements should be 
made at 2 m (or converted to that height) above an extensive surface of green grass, shading 
the ground and not short of water. The psychrometric constant, γ, is calculated with: 

ߛ  = 	 ஼೛௉ఌఒ = Ͳ.͸͸ͷ ∗ ͳͲିଷ  (33) 

Where: P = atmospheric pressure [kPa]; ǌ = latent heat of vaporization, 2.45 [MJ kg-1]; cp = 
specific heat at constant pressure, 1.013 10-3 [MJ kg-1 °C-1]; ε = ratio molecular weight of 
water vapour/dry air = 0.622. For standardization, Tmean for 24 hour is defined as the mean 
of the daily maximum (Tmax) and minimum temperatures (Tmin) rather than as the average of 
hourly temperature measurements. 

 ௠ܶ௘௔௡ = 	 ೘்ೌೣି	்೘೔೙ଶ 		  (34) 

The temperature is given in degrees Celsius (°C), Fahrenheit (°F) or in Kelvin  (K =C + 273,16). 

 ܲ = ͳͲͳ.͵ ቀଶଽଷି଴.଴଴଺ହ௭ଶଽଷ ቁହଶ଺	 (35) 

where: z = elevation above sea level [m]. 

6.2 CROPWAT model 
CROPWAT is a decision support system developed by the Land and Water Development 
Division of FAO for planning and management of irrigation. The main functions of 
CROPWAT model are: to calculate the reference evapotranspiration, crop water 
requirements and crop irrigation requirements; to develop irrigation schedules under 
different management conditions and water supply schemes; to estimate the rainfed 
production and drought effects; to evaluate the efficiency of irrigation practices. 
The input data of the model are the following climatic, crop and soil data: reference crop 
evapotranspiration: (ETo) values measured or calculated using the FAO Penman–Montieth 
equation based on monthly climatic average data of the minimum and maximum air 

temperature (C), relative humidity (%), sunshine duration (h) and wind speed (m/s); 
rainfall data: (daily/monthly data); monthly rainfall is divided for each month into a 
number of rainstorms; a cropping pattern: crop type, planting date, crop coefficient data 
files (including Kc values, stage days, root depth, depletion fraction, Ky values) and the area 
planted (0– 100% of the total area); a set of typical crop coefficient data files are provided in 
the program; soil type: total available soil moisture, maximum rain infiltration rate, 
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maximum rooting depth, and initial soil moisture depletion (% of the total available 
moisture);scheduling criteria: several options can be selected regarding the calculation of the 
application timing and application depth. 
The output parameters for each crop are crop reference crop evapotranspiration Et0 
(mm/period), crop Kc (average values of crop coefficient for each time step, effective rain 
(mm/period) (the amount of water that enters in the soil); water requirements (CWR) or 
ETm (mm/period); irrigation requirements (IWR - mm/period); actual crop 
evapotranspiration (ETc - mm); effective rain (mm/period) which represents the amount of 
water that enters into the soil; daily soil moisture deficit (mm); estimated yields reduction 
due to crop stress (when ETc/ETm falls below 100%). 
The CROPWAT model can compute the actual evapotranspiration using the FAO Penman–
Monteith equation or using directly the evapotranspiration measurements values. The crop 
water requirements (CWR) or maximum evapotranspiration (ETm) (mm/period) are 
calculated as:  

ܴܹܥ  = ܧ ଴ܶ ∗   (36)	௖ܭ݌݋ݎܥ

This means that the peak CWR in mm/day can be less than the peak Eto value when less 
than 100% of the area is planted in the cropping pattern. 
The average values of the crop coefficient (Kc) for each time step are estimated by linear 
interpolation between the Kc values for each crop development stage. The ‘‘Crop Kc” values 
are calculated as:  

௖ܭ݌݋ݎܥ  = 	 ௖ܭ ∗  (37) 			ܽ݁ݎܣ݌݋ݎܥ

where CropArea is the area covered by the crop. So, if the crop covers only 50% of the area, 
the “Crop Kc” values will be half of the Kc values in the crop coefficient data file.  
The CROPWAT model operates in two modes: computing the actual evapotranspiration 
using climatic parameters and using directly the evapotranspiration measurements values. 
Possibilities to use the satellite-based data as input into the CROPWAT model are limited, 
because this model was not developed to use satellite-derived information directly. But this 
information can be useful for the comparison/validation procedures of some model 
input/output data, as precipitation, sunshine duration and evapotranspiration. Satellite 
based data can be used by CROPWAT model in different ways: measured 
evapotranspiration may be replaced with estimations derived from satellite data; for 
comparison and validation procedures; satellite-derived evapotranspiration values may 
bring better accuracy for the specialization of the punctual computing values; satellite 
information may be used for the assessment of the some reference parameters of the actual 
evapotranspiration (e.g. Land surface temperature, vegetation indexes, etc.). 

6.3 Using earth observation data and CROPWAT model to estimate the actual crop 
evapotranspiration 
There is a strong dependence between evapotranspiration and surface temperature on the, 
thus thermal images meteorological satellites (METEOSAT, NOAA, MODIS, LANDSAT) 
adequate for mapping of regional evapotranspiration. Several works have been done to 
determine regional evapotranspiration from satellite data (Batra et al., 2006; Courault et al., 
2005; Wood et al., 2003). The application of NOAA AVHRR data seems to be more 
successful because of the higher spatial and spectral resolution (Stancalie et al., 2010). 
Multichannel algorithms are routinely used for atmospheric correction of the AVHRR data. 
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Efforts are directed towards the estimation of surface temperatures by considering the 
effects of emissivity (Lagouarde and Brunet, 1991; Li and Becker, 1993). The method used for 
the estimation of the daily crop actual evapotranspiration, ETcj, is based on the energy 
balance of the surface. The method uses the connection between evapotranspiration, net 
radiation and the difference between surface and air temperatures measured around 14:00 h 
(the time of the satellite passage), local time. The first version of the method used a 
simplified linear relationship as: 

ܧ  ௖ܶ௝ − 	ܴ௡௝ = ܣ − ܤ ∗ ሺ ௦ܶ − 	 ௔ܶ௠௔௫ሻ		  (38) 

where Rnj is the daily net radiation; Ts and Tamax is the surface and air maximum 
temperature; A, B are coefficients which depend on the surface type and the daily mean 
wind speed. Coefficients A and B may be determined either analytically, on the basis of the 
relationships given by Lagouarde and Brunet (1991), or statistically. The coefficients A and B 
are stable in the case of mature crop vegetation cover and in clear sky conditions. The 
coefficient B vary considerably, function of the land vegetation cover percent.  In case of soil 
with great thermal inertia, the heat flux changed by conduction at the soil-atmosphere 
interface can be neglected and the computing relationship for daily actual crop 
evapotranspiration can be expressed in a version 2 of the proposed method: 

ܧ  ௖ܶ௝ = 	 ܴ௡௝ 	 − ᇱܤ ∗ ሺ ௦ܶ −	 ௔ܶ௠௔௫ሻ	 (39) 

ᇱܤ  = Ͳ.Ͳʹͷ͵ +	 ቂ ଵ.଴଴ଵ଺௟௢௚ଶሺଶ/௭௛ሻቃ  (40) 	ݒ

ℎݖ  = 	 ሾͳ − ሻሿܫܣܮ−ሺ݌ݔ݁ ቂ݁݌ݔ ቀ− ௅஺ூଶ ቁቃ (41) 

where: v = daily average wind speed; zh = vegetation roughness and LAI the foliar index.  
One possible use of satellite information is to replace the measured evapotranspiration by 
estimations made from satellite information. Because the estimations made from satellite 
information are available only for clear sky conditions, it was not possible to estimate the 
monthly average evapotranspiration, as input data in the CROPWAT model. For this 
reason, the satellite-derived data have been used for comparison/validation procedures of 
the CROPWAT model output data, like evapotranspiration. Fig. 12 presents the comparison 
between daily crop evapotranspiration values computed by the CROPWAT model and 
those computed through the energy balance method (Version 1), using remotely sensed data 
at the Alexandria and Craiova test-areas (situated in the south-western part of Romania), in 
the conditions of the year 2000 (Stancalie et al., 2010, 2010).  
Analysis of model results concerning comparison of daily actual crop evapotranspiration 
calculated by using climatic data vs. satellite estimations based on the surface energetic 
balance (Version 1) showed that ETc values from satellite information are in general higher 
than those simulated by the model, the differences being from +0.45 - 1.9 mm/day. 
Preliminary results highlighted a good correlation between the simulated values 
(CROPWAT) and those derived from the satellite data; with relative errors from +20% - 18% 
at Craiova site and from +13% -17% at Alexandria site (Stancalie et al., 2010). 
Fig. 13 shows a comparison between ETc simulated daily by the CROPWAT model over the 
whole maize-growing season and by the energy balance method (Version 2) respectively, 
using satellite data, at Alexandria and Craiova test-areas. The ETc calculated by the model is 
very similar to the estimated one. The results obtained can constitute the premise of an ETc 
data validation process, determined by the CROPWAT model (Stancalie et al., 2010). 
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Fig. 12. Comparison between daily crop evapotranspiration values computed by the 
CROPWAT model and by the energy balance method (Version 1) using satellite data at the 
Alexandria and Craiova test-areas (after Stancalie et al., 2010) 

 

Fig. 13. Comparison between daily crop et values computed by the CROPWAT model and 
by the energy balance method (Version 2) using satellite data, at Alexandria (A) and Craiova 
(B) test-areas, for the maize vegetative development period in 2000 (Stancalie et al., 2010). 
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7. Conclusions 

The use of the multispectral satellite data can improve the classical methods applied in 
determining the agrometeorological parameters, including evapotranspiration.  
Estimating evapotranspiration using remote sensing methodologies have a significant role 
in irrigation management and crop water demand assessment, for plant growth, carbon and 
nutrient cycling and for production modeling in dry land agriculture and forestry. Also it 
can have an important role in catchment hydrology, and larger scale meteorology and 
climatology applications. In the last years, due to the exceptional developments of satellite 
technology, a wide range of remote sensing-based evapotranspiration (ET) methods/models 
have been developed and evaluated. The use of remote sensing data for ET estimation is 
mainly based on land surface temperature (LST) and reflectivity (using different spectral 
regions) due to satellite ability to spatially integrate over heterogeneous surfaces at a range 
of resolutions and to routinely generating areal products once long time-series data 
availability issues are overcome. The chapter reviews some main methods for estimating 
crop evapotranspiration based on remotely sensed data, and highlights uncertainties and 
limitations associated with those estimation methods. This paper is focused on Surface 
Energy Balance models (SEB), spatial variability methods using vegetation indices and ET 
estimation using meteorological data through CROPWAT model. The analysis and critical 
issues are supported by the dedicated literature and specific case-studies. This review 
provides information of temporal and spatial scaling issues associated with the use of 
optical and thermal remote sensing for estimating evapotranspiration. Improved temporal 
scaling procedures are required to extrapolate estimates to daily and longer time periods 
and gap-filling procedures are needed when temporal scaling is affected by intermittent 
satellite coverage. It is also noted that analysis of multi-resolution data from different 
satellite/sensor systems is able to assist the development of spatial scaling and aggregation 
approaches. Approaches differ in: (i) type and spatial extent of application (e.g. irrigation, 
dry-land agriculture); (ii) type of remote sensing data; and (iii) use of ancillary (micro-) 
meteorological and land cover data. The integration of remotely sensed data into 
methods/models of ET facilitates the estimation of water consumption across agricultural 
regions. There are important limitations for using remote sensing data in estimating 
evapotranspiration.   
Usually evapotranspiration is computed using land surface temperature and air 
temperatures. All this methods are affected by errors induced by estimation or 
measurements of those temperatures. The accuracy of Trad observations is influenced by 
atmospheric factors, surface emissivity or view angle. Emissivity information is useful in 
estimating of the radiative temperature of the land surface. Several direct methods (which 
atmospheric variables are coupled with radiative transfer models) or indirect algorithms 
(use only remote sensing data) to make atmospheric corrections in order to obtain the 
brightness temperature that represents the temperature of a black body that would have the 
same radiance as that observed by the radiometer. The uncertainties of surface temperature 
have a strong influence in determination of sensible heat flux H. The difference between 
surface and air temperatures depends on many factors, including vegetation type, fractional 
cover fc and view angle. Another important limitation of various spatial variability methods 
is considered the fact according to the highest and lowest surface temperatures observed in 
the one scene are assumed to represent very dry and very wet pixels. Usually the available 
energy (Rn - G) is obtained from ground based point observations of Rn: Rn is estimated 
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based on observations of K, , LAI, emissivity of land surface and atmosphere, and Trad. 
Such kind of estimation generates errors in the calculation of long and short wave 
components. G can be estimated for example as function of NDVI. An alternative method 
would be to assume that soil heat flux is a constant fraction of net radiation flux, but this 
estimation doesn’t take into account the diurnal variation. Many models for ET estimation 
need ground based meteorological data, mainly air temperature and wind speed. For that 
models which based on computing the difference between Tad and Ta, the time and location 
of air temperature (Ta) observations and their spatial representativeness are very 
important). 
Incomplete vegetation cover generates also errors in evapotranspiration estimation. The two 
source models require parameterizations for the segmentation of the computed surface 
temperature between vegetation and soil, for the turbulent exchange of heat and mass 
between soil and atmosphere and between vegetation and atmosphere. Also, these models 
require some assumptions regarding solar transmittance, extinction coefficients and canopy 
emissivity in order to compute the variation of net radiation flux inside the canopy. 
Another important limitation, regarding the spatial variability methods is that a large 
number of pixels are required over the area of interest with a wide range of soil wetness and 
fractional vegetation cover. The identification of vegetation limits for bare soil or full 
vegetation cover can be easily done using high resolution images which display a wide 
range in surface wetness conditions and land cover conditions 
Remote sensing data is a useful tool that provides input data in land surface model (NDVI, 
LAI, fc – fraction cover) and can be used to correct the state variables of the models. 
The frequency of spatial resolution imagery is also very significant: satellites which 
provide high resolution data usually have lower temporal frequency while low spatial 
resolution images have higher temporal frequency. Some applications require different 
spatial and temporal coverage rates and need different ‘‘turn-around’’ times. If acquiring 
the satellite data and ET estimation method are more time consuming, the method are not  
very convenient for operational applications like determining water requirements for 
irrigated agriculture. 
Another significant limitation for using remote sensing is the presence of clouds that 
generates intermittent coverage. Cloudy days are characterized by a diffuse light, whereas 
while direct light is dominant on clear days when most TIR data are acquired for use in 
modeling applications. Most SEB models have been developed for use in cloud-free 
conditions and do not makes difference between direct and diffuse radiation; they use only 
daytime data obtained for clear-sky conditions. For a continuously monitoring of water 
balance, the effects of an increased diffuse fraction should be taking into account, because 
the diffuse radiation is used by vegetation more efficiently than direct radiation. For water 
use efficiency, to ignore difference between direct and diffuse radiation can induce 
significant differences in ET estimations. 

8. References 

Allen RG, Pereira LS, Raes D, Smith M (1998), Crop evapotranspiration - guidelines for 
computing crop water requirements. FAO irrigation and drainage paper 56, Rome, 
Italy http://www.fao.org/docrep/X0490E/X0490E00.htm 

www.intechopen.com



Possibilities of Deriving Crop Evapotranspiration from 
Satellite Data with the Integration with Other Sources of Information 463 

Allen RG, Tasumi M, Trezza R (2007a) Satellite-based energy balance for mapping 
evapotranspiration with internalized calibration (METRIC): model. J Irrig Drain 
Eng 133(4):380–394. doi:10.1061/(ASCE) 0733-9437(2007)133(4):(380) 

Allen RG, Tasumi M, Trezza R (2007b) Satellite-based energy balance for mapping 
evapotranspiration with internalized calibration (METRIC): applications. ASCE J 
Irrig Drain Eng 133(4):395–406 

Bastiaanssen WGM, Menenti M, Feddes RA, Holtslag AAM (1998a) A remote sensing 
surface energy balance algorithm for land. I. Formulation. J Hydrol (Amst) 
212/213:198–212. doi:10.1016/S0022-1694(98)00253-4 

Bastiaanssen WGM (2000) SEBAL-based sensible and latent heat fluxes in the irrigated 
Gediz Basin, Turkey. J Hydrol (Amst) 229:87–100. doi:10.1016/S0022-
1694(99)00202-4 

Batra N, Islam S, Venturini V, Bisht G, Jiang L (2006) Estimation and comparison of 
evapotranspiration from MODIS and AVHRR sensors for clear sky days over the 
Southern Great Plains. Remote Sens Environ 103:1–15. doi:10.1016/j.rse.2006.02.019 

Boegh E, Soegaard H, Hanan N, Kabat P, Lesch L (1999) A remote sensing study of the 
NDVI–Ts relationship and the transpiration from sparse vegetation in the Sahel 
based on high-resolution satellite data. Remote Sens Environ 69:224–240. Doi: 
10.1016/S0034-4257(99)00025-5 

Boegh E, Soegaard H, Thomsen A (2002) Evaluating evapotranspiration rates and surface 
conditions using Landsat TM to estimate atmospheric resistance and surface 
resistance. Remote Sens Environ 79:329–343. doi:10.1016/S0034-4257(01)00283-8 

Brutsaert W (1999) Aspects of bulk atmospheric boundary layer similarity under free-
convective conditions. Rev Geophys 37:439–451. Doi: 10.1029/1999RG900013. 

Burba G., Hubart J.A., Pidwirny M. (2010), Evapotranspiration, Encyclopedia of Earth, Eds. 
Cutler J. Cleveland (Washington, D.C.: Environmental Information Coalition, 
National Council for Science and the Environment, August 3, 2010, 
http://www.eoearth.org/article/Evapotranspiration 

Carlson TN, Capehart WJ, Gillies RR (1995a) A new look at the simplified method for 
remote sensing of daily evapotranspiration. Remote Sens Environ 54:161–167. Doi: 
10.1016/0034-4257(95)00139-R 

Carlson TN (2007) An overview of the ‘‘triangle method’’ for estimating surface 
evapotranspiration and soil moisture from satellite imagery. Sensors 7:1612–1629 

Cleugh HA, Leuning R, Mu Q, Running SW (2007) Regional evaporation estimates from flux 
tower and MODIS satellite data. Remote Sens Environ 106:285–304. 
doi:10.1016/j.rse.2006.07.007 

Courault D, Seguin B, Olioso A (2005) Review on estimation of evapotranspiration from 
remote sensing data: from empirical to numerical modelling approaches. Irrig 
Drain Syst 19:223–249. Doi: 10.1007/s10795-005-5186-0 

Gillies RR, Carlson TN (1995) Thermal remote sensing of surface soil water content with 
partial vegetation cover for incorporation into climate models. J Appl Meteorol 
34:745–756. doi :10.1175/1520-0450(1995)034\0745:TRSOSS[2.0.CO;2 

Gillies RT, Carlson TN, Cui J, Kustas WP, Humes KS (1997) A verification of the ‘‘triangle’’ 
method for obtaining surface soil water content and energy fluxes from remote 
measurements of the Normalized Difference Vegetation Index (NDVI) and surface 

www.intechopen.com



 
Evapotranspiration – Remote Sensing and Modeling 464 

radiant temperatures. Int J Remote Sens 18(15):3145–3166. doi:10.1080/ 
014311697217026 

Glenn EP, Huete AR, Nagler PL, Hirschboeck KK, Brown P (2007) Integrating remote 
sensing and ground methods to estimate evapotranspiration. Crit Rev Plant Sci 
26(3):139–168. doi:10.1080/07352680701402503 

Hope AS, Petzold DE, Goward SN, Ragan RM (1986) Simulated relationships between 
spectral reflectance, thermal emissions, and evapotranspiration of a soybean 
canopy. Water Resour Bull 22:1011–1019 

Huntington, T. 2006. Evidence for intensification of the global water cycle: review and 
synthesis. J Hydr. 319: 83–95. 

Hutley, L., O’Grady, A., and Easmus, D. 2001. Monsoonal influences on evapotranspiration 
of savanna vegetation of northern Austalia. Oecologia 126: 434–443. 

Huxman, T., Smith, M., Fay, P., Knapp, A., Shaw, M., Loik, M., Smith, S., Tissue, D., Zak, J., 
Weltzin, J., Pockman, W., Sala, O., Haddad, B., Harte, J., Koch, G., Schwinning, S., 
Small, E.,Williams, D. 2004. Convergence across biomes to a common rain-use 
efficiency. Nature 429: 651–654. 

Huxman, T.,Wilcox, B., Breshears, D., Scott, R., Snyder, K., Small, E., Hultine, K., Pockman, 
W., and Jackson, R. 2005. Ecohydrological implications of woody plant 
encroachment. Ecology 86: 308–319. 

Jacquemin, B.&Noilhan, J. 1990. Sensitivity study and validation of land surface 
parametrization using the Hapex-Mobilhy data set. Bound-Layer Meteorology 52: 
93–134. 

Jiang L, Islam S (2001) Estimation of surface evaporation map over southern Great Plains 
using remote sensing data. Water Resour Res 37:329–340. doi:10.1029/ 
2000WR900255 

Jupp DLB, Tian G, McVicar TR, Qin Y, Fuqin L (1998) Soil moisture and drought monitoring 
using remote sensing I: theoretical background and methods. CSIRO Earth 
Observation Centre, Canberra http://www.eoc.csiro.au/pubrep/scirpt/jstc1.pdf 

Kalma, J. D., McVicar, T. R. and McCabe, M. F. (2008). "Estimating land surface evaporation: 
A review of methods using remotely sensed surface temperature data." Surveys in 
Geophysics 29(4-5): 421-469. 

Katerji N., Perrier A.1985 - Détermination de la résistance globale d'un couvert végétal à la 
diffusion de vapeur d'eau et de ses différentes composantes. Approche théorique et 
vérification expérimentale sur une culture de luzerne. Agric. For Meteorol., 34, 2-3, 
105-120. 

Kustas WP, Norman JM (1996) Use of remote sensing for evapotranspiration monitoring 
over land surfaces. Hydrol Sci J 41(4):495–516 

Kustas WP, Norman JM (1999) Evaluation of soil and vegetation heat flux predictions using 
a simple two source model with radiometric temperatures for partial canopy cover. 
Agric For Meteorol 94:13–29. doi:10.1016/S0168-1923(99)00005-2 

Kustas WP, French AN, Hatfield JL, Jackson TJ, Moran MS, Rango A (2003a) Remote sensing 
research in hydrometeorology. Photogramm Eng Remote Sensing 69(6):613–646 

Kustas WP, Hatfield JL, Prueger JH (2005) The Soil Moisture–Atmosphere Coupling 
Experiment (SMACEX): background, hydrometeorological conditions, and 
preliminary findings. J Hydrometeorol 6:825–839. doi:10.1175/JHM460.1 

www.intechopen.com



Possibilities of Deriving Crop Evapotranspiration from 
Satellite Data with the Integration with Other Sources of Information 465 

Lagouarde, J.P., Brunet, Y., 1991. A simple model for estimating the daily upward longwave 
surface radiations from NOAA–AVHRR data. International Journal of Remote 
Sensing 12, 1853–1864. 

Lhomme JP, Monteny B, Amadou M (1994) Estimating sensible heat flux from radiometric 
temperature over sparse millet. Agric For Meteorol 44:197–216 

Li, Z.L., Becker, F., 1993. Feasibility of land surface temperature and emissivity 
determination from AVHRR data. Remote Sensing of Environment 43, 67–85. 

Li F, Kustas WP, Prueger JH, Neale CMU, Jackson TJ (2005) Utility of remote sensing based 
two-source energy balance model under low and high vegetation cover conditions. 
J Hydrometeorol 6(6):878–891. doi:10.1175/JHM464.1 

Li Z.L., Tang R., Wan Z., Bi Y., Zhou C., Tang B., Yan G. and Zang X. (2009), A Review of 
Current Methodologies for Regional Evapotranspiration Estimation from Remotely 
Sensed Data, Sensors 2009, 9, 3801-3853; doi:10.3390/s90503801 

McCabe MF, Wood EF (2006) Scale influences on the remote estimation of 
evapotranspiration using multiple satellite sensors. Remote Sens Environ 
105(4):271–285. doi:10.1016/j.rse.2006.07.006 

McVicar TR, Jupp DLB (1998) The current and potential operational uses of remote sensing 
to aid decisions on drought exceptional circumstances in Australia: a review. Agric 
Syst 57:399–468. doi:10.1016/S0308-521X(98)00026-2 

Monteith JL (1965) Evaporation and the environment. In: Fogg GE (ed) The state and 
movement of water in living organisms, 19th symposium of the society for 
experimental biology. University Press, Cambridge, pp 205–234 

Monteith, J.L., 1981. Evaporation and surface temperature. Quart. J. Roy. Meteorolog. Soc., 
107, 1–27. 

Norman JM, Kustas WP, Humes KS (1995) A two-source approach for estimating soil and 
vegetation energy fluxes from observations of directional radiometric surface 
temperature. Agric For Meteorol 77:263–293. doi:10.1016/0168-1923(95)02265-Y 

Norman JM, Kustas WP, Prueger JH, Diak GR (2000) Surface flux estimation using 
radiometric temperature: a dual-temperature-difference method to minimize 
measurement errors. Water Resour Res 36:2263–2274. doi:10.1029/2000WR900033 

Overgaard J, Rosbjerg D, Butts MB (2006) Land-surface modelling in hydrological 
perspective—a review. Biogeosciences 3:229–241 

Penman HL (1948) Natural evaporation from open water, bare soil and grass. Proc R Soc 
Lond A Math Phys Sci 193:120–146. doi:10.1098/rspa.1948.0037 

Roerink GJ, Su Z, Menenti M (2000) S-SEBI: a simple remote sensing algorithm to estimate 
the surface energy balance. Phys Chem Earth, Part B Hydrol Oceans Atmos 
25(2):147–157. doi:10.1016/S1464-1909(99)00128-8 

Seguin B, Baelz S, Monget JM, Petit V (1982a) Utilisation de la thermographie IR pour 
l’estimation de l’e´vaporation re´gionale I Mise au point me´thodologique sur le 
site de la Crau. Agronomie 2(1):7–16. doi:10.1051/agro:19820102 

Serban C., Maftei C., Barbulescu A. (2010), Assessment of Evapotranspiration Using Remote 
Sensing Data and Grid Computing and Apglication, WSEAS Transactions on 
computers, ISSN: 1109-2750, Issue 11, Volume 9, November 2010, pg.1245-1254 

Shuttleworth WJ, Wallace JS (1985) Evaporation from sparse crops-an energy combination 
theory. Q J R Meteorol Soc 111:839–855. doi:10.1256/smsqj.46909 

www.intechopen.com



 
Evapotranspiration – Remote Sensing and Modeling 466 

Smith, R. C. G. & Choudhury, B. J. (1991) Analysis of normalized difference and surface 
temperature observations over southeastern Australia. Int. J. Remote Sens. 12, 2021-
2044. 

Sobrino JA, Gomez M, Jimenez-Munoz JC, Olioso A (2007) Application of a simple 
algorithm to estimate daily evapotranspiration from NOAA-AVHRR images for 
the Iberian Peninsula. Remote Sens Environ 110:139–148. doi:10.1016/ 
j.rse.2007.02.017 

Stancalie GH, Marica A, Toulios L, (2010) Using earth observation data and CROPWAT 
model to estimate the actual crop evapotranspiration. Physics and Chemistry of the 
Earth, 35:25-30, doi:10.1016/j.pce.2010.03.013. 

Stewart JB, Kustas WP, Humes KS, Nichols WD, Moran MS, De Bruin HAR (1994) Sensible 
heat flux–radiometric surface temperature relationships for eight semi-arid areas. J 
Appl Meteorol 33:1110–1117. doi :10.1175/1520-0450(1994)033\1110:SHFRST 
[2.0.CO;2 

Su Z (2002) The Surface Energy Balance System (SEBS) for estimation of turbulent heat 
fluxes. Hydrol Earth Syst Sci 6(1):85–99 (HESS) 

Su H, McCabe MF, Wood EF, Su Z, Prueger JH (2005) Modeling evapotranspiration during 
SMACEX: comparing two approaches for local- and regional-scale prediction. J 
Hydrometeorol 6(6):910–922. doi:10.1175/JHM466.1 

Su Z (2008) The Surface Energy Balance System (SEBS) for estimation of turbulent heat 
fluxes and evapotranspiration, Dragon 2, Advanced Trainig Course in Land 
Remote Sensing,  

 http://dragon2.esa.int/landtraining2008/pdf/D3L2b_SU_SEBS.pdf 
Wang K, Li Z, Cribb M (2006) Estimation of evaporative fraction from a combination of day 

and night land surface temperature and NDVI: a new method to determine the 
Priestley–Taylor parameter. Remote Sens Environ 102:293–305. doi:10.1016/ 
j.rse.2006.02.007 

Wood, E.F., Hongbo, Su, McCabe, M., Su, B., 2003. Estimating evaporation from satellite 
remote sensing. In: Geoscience and Remote Sensing Symposium 2003. IGARSS 
Proceedings of the IEEE International, vol. 2, pp. 163–1165. 

www.intechopen.com



Evapotranspiration - Remote Sensing and Modeling

Edited by Dr. Ayse Irmak

ISBN 978-953-307-808-3

Hard cover, 514 pages

Publisher InTech

Published online 18, January, 2012

Published in print edition January, 2012

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

This edition of Evapotranspiration - Remote Sensing and Modeling contains 23 chapters related to the

modeling and simulation of evapotranspiration (ET) and remote sensing-based energy balance determination

of ET. These areas are at the forefront of technologies that quantify the highly spatial ET from the Earth's

surface. The topics describe mechanics of ET simulation from partially vegetated surfaces and stomatal

conductance behavior of natural and agricultural ecosystems. Estimation methods that use weather based

methods, soil water balance, the Complementary Relationship, the Hargreaves and other temperature-

radiation based methods, and Fuzzy-Probabilistic calculations are described. A critical review describes

methods used in hydrological models. Applications describe ET patterns in alpine catchments, under water

shortage, for irrigated systems, under climate change, and for grasslands and pastures. Remote sensing

based approaches include Landsat and MODIS satellite-based energy balance, and the common process

models SEBAL, METRIC and S-SEBS. Recommended guidelines for applying operational satellite-based

energy balance models and for overcoming common challenges are made.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Gheorghe Stancalie and Argentina Nertan (2012). Possibilities of Deriving Crop Evapotranspiration from

Satellite Data with the Integration with Other Sources of Information, Evapotranspiration - Remote Sensing and

Modeling, Dr. Ayse Irmak (Ed.), ISBN: 978-953-307-808-3, InTech, Available from:

http://www.intechopen.com/books/evapotranspiration-remote-sensing-and-modeling/possibilities-of-deriving-

crop-evapotranspiration-from-satellite-data-with-the-integration-with-othe



© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


