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1. Introduction  

Rheumatoid arthritis (RA) is a chronic, systemic, autoimmune disease that primarily affects 

the joints. Approximately 0.5% of the adult population worldwide suffer from RA. The 

functional disability that results from progressive joint destruction is associated with 

substantial cost, significant morbidity and premature mortality [Carmona et al, 2010]. Pain 

and inflammation are initial symptoms followed by various degree of bone and cartilage 

destruction. During the last few decades’ tremendous improvements have been made in 

search of therapies against RA. Disease modifying anti-rheumatic drugs (DMARDs) and 

biological therapies such as antagonists against TNF-ǂ or IL-1 have provided efficient 

treatments and changed the shape of this disorder. However, the side effects, availability, 

and their focused approach to reduce inflammation have limited their scope. Thus there is a 

need of therapies targeting inflammation as well as reducing inflammatory pain and joint 

destruction in RA.  

Cytokines are key players in pathogenesis of RA [Brennan & McInnes, 2008]. Synovial fluid 

from RA joints contains large quantities of cytokines secreted by macrophages, dendritic 

cells, neutrophils and synovial fibroblasts [Raza et al, 2005]. Cytokines such as tumor 

necrosis factor-ǂ (TNF-ǂ), interleukin-1 (IL-1) and interleukin-17 (IL-17) stimulate the 

production of destructive proteases. Synthesis of these pro-inflammatory mediators is 

regulated by the transcription factor NF-κB, controlled by the ubiquitin proteasome system 

(UPS) [Baldwin, 1996]. UPS is a multicatalytic system of protein degradation and present in 

all cell types including neurons and glia cells and regulates numerous cellular functions by 

selectively degrading cellular proteins.  

2. Ubiquitin proteasome system 

The degradation and processing of cellular proteins is critical for cell survival, growth, and 

cell division. Proteolysis via the proteasome pathway plays an important role in a variety of 

basic cellular processes. These processes are regulation of cell cycle and division, 

modulation of the immune and inflammatory responses, intracellular signaling, and 

development and differentiation [Goldberg, 2003].  

Cellular proteins are mainly degraded in two ways: lysosomal degradation and ubiquitin-

mediated degradation. Proteolysis in lysosomes is a non-specific process. In higher 
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eukaryotes, membrane-associated and extracellular proteins captured during endocytosis 

(e.g. viral, bacterial) are destroyed in lysosomes. Degradation of the vast majority (80-90%) 

of intracellular proteins is proteasome mediated [Ciechanover, 2005]. The ubiquitin 

proteasome system (UPS) controls the degradion of proteins in the cytosol, nucleus as well 

as in the luminal endoplasmic reticulum in eukaryotic cells (Goldberg, 2003).  

Ubiquitin-mediated degradation of a protein involves two discrete and successive steps: 

first, the conjugation of multiple moieties of ubiquitin (Ub) to the protein substrate; multiple 

copies of ubiquitin covalently bind to available lysine residues on target proteins in a three-

step process. Second, recognition of polyubiquitinated proteins by the 19S proteasome 

complex; Ub chain is cleaved by deubiquitinated enzymes (DUB), the substrate protein is 

unfolded and enters the 20S core for degradation. Then the substrate protein is cleaved into 

smaller peptide chains (5-20 amino acids), which are further degraded into constituent 

amino acids and are recycled by the cell [Goldberg, 2003]. The polyubiquitin chain is also 

broken down by the hydrolase enzymes and free Ub molecules are recycled by the cell 

[Kisselev et al., 1999] (Fig. 1).  

 

 

Fig. 1. The ubiquitin-dependent degradation of protein 

This process has been named the “ubiquitin-dependent degradation of protein” and was 

first discovered by A. Ciechanover, A. Hershko, and I. Rose who were later awarded the 

Nobel Prize in 2004 [Sorokin et al., 2009].  
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2.1 Enzymatic cascade 
Ubiquitin is a 76 amino acid protein conserved across eukaryotic cells. The covalent 
attachment of ubiquitin to a substrate protein is a highly regulated process and can be 
controlled at multiple points. Ubiquitin is first activated by an activating enzyme, E1. This 
step requires ATP to generate a high-energy thioester intermediate, E1-S~ubiquitin. The 
thioester attachment induces a conformational change in the E1 that promotes association 
with an ubiquitin carrier protein, E2. Next, activated ubiquitin is transferred to the E2 via 
formation of an additional high-energy thiol intermediate, E2-S~ubiquitin, leading to 
dissociation from the E1 [Huang et al, 2007]. In the third step, a substrate-specific ubiquitin 
E3 ligase interacts with the target protein-E2 ubiquitin complex to transfer ubiquitin to the 
target protein (Fig 2). Additional ubiquitin proteins are attached to the initial ubiquitin via a 
lysine linkage forming polyubiquitin chains that may be linear or branched [Kim et al, 2007; 
Pickart et al, 2004]. The protein must be polyubiquitinated for Ub-dependent protein 
degradation by the proteasome. 
 

 

Fig. 2. Polyubiquitination of substrate protein. Ubiquitin (Ub) is activated by enzyme E1 and 
translocated to enzyme E2. In the last stage, E3 ligase conjugates Ub to the substrate protein.  

In mammals, there are only two E1 ligases [Jin et al, 2007], but dozens of E2 ligases, and 
hundreds of E3 ligases. Ubiquitination specificity is determined principally by this large 
variety of E3 ligases, which generate the vast number of E2/E3 combinations that each 
target specific groups of protein substrates. 

2.2 Proteasome structure 
The proteasome is a cylindrical shaped structure with a molecular weight of 1,500 to 2,000 
kD, located both in the cytoplasm and in nucleus in eukaryotes. It consists of two 19S 
regulatory complex and a core 20S catalytic complex (Fig. 3). It is also denoted the 26S 
proteasome [Orlowski, 1990; Ciechanover, 1998]. 

2.2.1 The 19S regulatory complex 
Ubiquitin-tagged proteins are recognized by the 19S regulatory complex, where the 
ubiquitin tags are removed. ATPases with chaperone-like activity at the base of the 19S 
regulatory complex then unfold the protein substrates and feed them into the inner catalytic 
compartments of the 20S proteasome cylinder [Ciechanover, 2005]. The opening into the 20S 
catalytic chamber is small (approximately 1.3 nm), and significant unfolding of the substrate 
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Fig. 3. The 26S proteasome, composed of two regulatory 19S and one catalytic 20S subunits.  

is required for successful entering into the 20S subunit [Pickart, 2000]. A molecular gate (N-
terminal tail of the ǂ3-subunit) also guards the opening, but it is constitutively open when 
the 19S regulatory units are bound to the 20S proteasome [Groll, et al., 2000]. There are also 
multiple different 11S regulatory complexes that can replace the 19S regulator [Hill et al, 
2002]. These alternate regulators do not have ATPase function and do not bind 
polyubiquitin chains. Proteasomes with 11S substitutions for 19S regulators have higher 
levels of proteolytic activity [Cascio et al, 2002; Fruh et al, 1994]. 

2.2.2 The 20S proteasome subunit  
The 20S proteasome subunit consists of two outer and two inner rings that are stacked to 
form a cylindrical structure with three compartments [Lowe et al., 1995]. Each outer ring has 
seven alpha-subunits (ǂ1 to ǂ7), whereas each inner ring contains seven beta-subunits (ǃ1 to 
ǃ7) (Fig 4).  
 

 

Fig. 4. The 20S proteasome. 
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The 20S proteasome complex has chymotryptic, tryptic, and peptidylglutamyl-like activities 
[Ciechanover, 2005; Orlowski, 1990]. It is conformationally flexible with active catalytic sites 

located on the inner surface of the cylinder where protein substrates bind. Proteins unfolded 
and without Ub tag, enter the inner chamber, where they are hydrolyzed by six active 
proteolytic sites on the - ǃ subunits (two sites each on the ǃ1-, ǃ2-, and ǃ5-subunits) into 
small polypeptides ranging from three to 22 amino acids in length. Proteins cannot enter the 
inner cylinder through the outer walls of the 20S proteasome because the gaps between the 
rings are tight [Lowe et al., 1995; Stein et al., 1996]. In eukaryotic cells, 26S proteasome are 
localized both in the cytoplasm and in the nucleus. This distribution is tissue-specific [Lowe 
et al., 1995]. 

3. UPS in immune and inflammatory response 

A role for UPS in the pathogenesis of human diseases was first suggested some two decades 
ago. With the broad spectrum of protein substrates and the complex enzymatic machinery 
involved in targeting them and practically all intracellular processes being controlled by the 
UPS, it is not surprising that the proteasome pathway is involved in the pathogenesis of 
malignant, autoimmune, and neurodegenerative diseases.  
The UPS plays significant role in immune and inflammatory processes. It has been shown 
that UPS takes part in the antigen processing in antigen presenting cells, regulates the 
transmission of signals from T-cell antigen receptors and the co-stimulatory CD28 molecule 
and is involved in activation of transcription factor-ĸB (NF-κB). NF-κB is the key regulator 
of the activity of genes of many inflammatory cytokines, chemokines and cell adhesion 
molecules [Sorokin, 2009]. The function of UPS in the activation of NF-kB is the most 
important and will be discussed here in details.  
NF-kB is a family of dimeric transcription factors. The NF-kB family consists of five 
members: p50, p52, p65/RelA, c-rel, and RelB [Neumann & M. Neumann, 2007]. p50 and 
p52 are formed as a result of processing from precursors p105 and p100, respectively. The 
processing of p105 can be performed both by the Ub-dependent pathway by the 26S 
proteasome [Coux & Goldberg, 1998] and by the ATP-/Ub-independent pathway by the 20S 
proteasome [Moorthy, 2006]. NF-ĸB activation promotes the expression of variety of target 
genes involved in the immune response, reparation reactions, and apoptosis. These include 
the pro-inflammatory cytokines IL-1ǃ and TNF-ǂ, extracellular matrix metalloproteinase 
(MMPs), prostaglandins and nitric oxide. IL-1ǃ and TNF-ǂ, in particular,  have been shown 
to play pivotal roles in the pathogenesis of RA both in preclinical [Han et al., 1998] and 
clinical studies using biological agents such as etanercept  and infliximab [Carteron, 2000; 
Cunnane, 2001].  
The UPS activate NF-κB in two stages. At first, the proteasome performs ubiquitin 
dependent processing of phosphorylated precursors p105 and p100 with the formation of 
active subunits of transcription factors p50 (NF-κB1) and p52 (NF-κB2). NF-κB is composed 
of p50 and p65 subunits, and in non-stimulated cells it is retained in the cytoplasm in a 
latent form associated with inhibitory protein IĸB. Following exposure of the cell to a variety 
of extracellular stimuli such as cytokines, viral and bacterial products and stress, IκB is 
phosphorylated, poly-ubiquitinated (which is recognized by the 19S regulatory subunit of 
Proteasome) and is finally rapidly degraded by the 26S proteasome. The released active 
heterodimer is translocated into the nucleus where it activates the transcription of 
corresponding genes [Van Waes et al., 2007] (Fig 5).  
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Fig. 5. Activation of Nuclear factor-ĸB by the proteasome system 

NF-κB promotes transcription of genes which encode cytokines (TNF-ǂ, IL-6, IL-1), stress 

response factors (Cyclooxygenase-2, NO), cell cycle regulators, and anti-apoptotic proteins 

(IAP-1, Bcl-2 family) [Delhalle et al., 2004]. The pathological activation of NF-κB is a cause of 

many inflammatory diseases including RA and has been an important target for therapeutic 

drug research in recent years [Elliott et al., 2003]. 

3.1 Activation of NF-κB in RA 
NF-κB is one of the best-characterized transcription factors and regulates the expression 

of many genes, most of which encode proteins that play crucial roles in the processes of 

immunity and inflammation. The activation of NF-ĸB has been associated with the up-

regulation of pro-inflammatory genes involved in several inflammatory conditions 

[Baldwin, 1996], and has been implicated in pathogenesis of RA [Firestein, 2004]. NF-κB 

activation has been studied in animal models of arthritis [Han et al., 1998; Palombella et 

al., 1998] and in the synovium of RA patients [Handel et al., 1995; Firestein, 2004]. NF-κB 

is essential for TNF-induced synovial cell activation and proliferation as several studies 

indicated that treatment of synovial cells with an antioxidant agent inhibited TNF-ǂ 

induced NF-κB activation and transcription [Fujisawa et al., 1996]. Moreover, nuclear 

extracts from IL-1ǃ stimulated human synovial fibroblasts contained p65 DNA-binding 
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NF-κB complexes and both the NF-κB classical oligonucleotide decoy and antisense 

oligonucleotide specific to p65, and they produced a concentration dependent decrease in 

IL-1-stimulated PGE2 production [Handel, 1995]. Additionally, NF-κB activator, IL-18 can 

indirectly stimulate osteoclast formation through up-regulation of RANKL production 

from T cells in RA synovitis [Dai et al., 2004]. Blocking of IKKǃ in vitro with a dominant 

negative adenoviral construct was shown to inhibit the induction of IL-6, IL-8, and 

intercellular adhesion molecule-1 (ICAM-1) after stimulation with IL-1 or TNF-ǂ 

[Aupperle et al., 2001].  

The significance of NF-κB in inflammatory joint disease has been validated by numbers of 

arthritis models such as carrageenan-induced paw edema, collagen-induced arthritis and 

adjuvant-induced arthritis [Min et al, 2009, Campo et al, 2011, Ahmed et al., 2010]. In animal 

models of arthritis the activation of NF-κB appears to precede the onset of disease, and the 

blockade of NF-κB decreases arthritis severity [Tsao et al., 1997; Ahmed et al., 2010]. Intra-

articular gene transfer of IKKǃ-wild type into the joints of normal rats resulted in significant 

paw swelling and accompanied synovial inflammation. Increased IKK activity was 

detectable in the IKKǃ-wt-injected ankle joints which was coincident with enhanced NF-κB-

DNA-binding activity. Intra-articular gene transfer of IKKǃ-dominant negative significantly 

ameliorated the severity of adjuvant arthritis, accompanied by a significant decrease in NF-

κB DNA expression in the joints of adenoviral IKKb-dominant negative-treated animals 

[Tak et al., 2001]. 

3.1.1 NF-κB in RA joint destruction 
Progressive destruction of bone and articular cartilage plays a pivotal role in the 

pathogenesis of RA. During joint inflammation, the inflamed synovium forms a pannus 

tissue, which grows into the bone and causes destruction, initially as marginal erosions at 

the site of synovial proliferation where bone is unprotected by hyaline cartilage. Subsequent 

bone destruction leads to sublaxation and deformity. Cytokines such as TNF-ǂ, IL-1ǃ and 

IL-17 stimulate the activation of bone destroying osteoaclasts, and the production of 

destructive proteases - matrix metalloproteinases (MMPs). MMPs have been suggested to be 

involved in the pathogenesis of RA and OA through their ability to degrade proteoglycans 

[Flannery et al., 1992; Humbry et al., 1995]. 

NF-κB is essential for osteoclast formation and survival through the receptor activator of the 

nuclear factor kappa-B ligand (RANKL) pathway [Soysa et al., 2009]. Abnormal activation of 

NF-κB signalling in osteoclasts has been observed in osteolytic conditions, including 

arthritis, Paget's disease of bone, and periodontitis [Xu et al., 2009]. Inhibition or deletion of 

RANKL prevents bone destruction [Zwerina et al., 2004]. Further, it is demonstrated that 

inhibition of IκB-kinase complex can suppress RANKL stimulated NF-κB activation and 

osteoclastogenesis both in vitro and in vivo. Additionally, this peptide significantly reduced 

the severity of collagen-induced arthritis in mice by reducing levels of TNF-ǂ and IL-1ǃ, and 

thereby abrogating joint swelling and reducing destruction of bone and cartilage [Jim et al., 

2004]. Elevated levels of MMP-1 (collagenase-1) in the synovial fluid and serum of RA 

patients [Green et al., 2003; Yamanaka et al., 2000] and MMP-3 (stromelysin) in the synovial 

fluid from RA patients has been determined [Hembry et al., 1995]. Interestingly, it has been 

reported that NF-κB regulates synthesis of MMPs including MMP-I and MMP-3 [Thurberg 

et al., 1998].  
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4. UPS in neuronal signalling 

In the nervous system, UPS is present in neurons, glia and synapses and regulates 
numerous functions including neuronal signalling, synapse assembly, maintenance, and 
function [Mengual et al., 1996]. Recent work utilizing the powerful genetic tools in C. 
elegans and Drosophila as well as synaptic assays in mammalian neuronal culture systems 
has unravelled the critical role of UPS in neuronal signaling. Active E3 ligases are identified 
at the synapse which participates in synaptic plasticity [Myat et al., 2002]. Moreover, 
localization of many E3 ligases in nucleus and synapse suggests the interplay between UPS 
regulation of transcriptional programs that function in synaptic modulation and local 
synaptic regulation of protein degradation.  
UPS regulates synaptic functions by controlling levels of pre-synaptic proteins [Speese et al., 
2003]. At the post-synaptic levels, the UPS regulates the surface expression and 
internalization of NMDA- and AMPA-glutamate receptors [Moriyoshi et al., 2004]. It has 
been implicated that mechanical allodynia and hyperalgesia can be prevented with NMDA-
receptor antagonists [Laughlin et al., 1997]. During pathological pain UPS regulates 
neuronal signalling by controlling levels of synaptic proteins [Ossipov et al, 2007]. Much 
future work is needed to identify exact role of UPS in acute and chronic pain conditions. 

5. Proteasome inhibition 

Proteasome inhibitors are considered as a potential remedy for cancer, inflammation-related 
disorders and neurodegenerative diseases. Proteasome inhibitors can cause cellular 
apoptosis in proliferating cancer cells by affecting various short-lived proteins, resulting in 
inhibition of NF-ĸB activity, increased activity of p53 and Bax proteins, and accumulation of 
cyclin- dependent kinase inhibitors p27 and p21 [Moriyoshi et al., 2004; Van Waes et al., 
2007]. Preclinical studies show that malignant, transformed, and proliferating cells are more 
susceptible to proteasome inhibition than cells in a resting state [Adams, 2002; Sherr, 1996]. 
Bortezomib is the first inhibitor of the ubiquitin-proteasome pathway to enter clinical studies 
[Adams et al., 1999; Richardson et al., 2003]. On the basis of a large, multicenter phase II 
clinical trial in which approximately one third of patients with advanced multiple myeloma 
(MM) had a significant response to therapy with bortezomib, on May 13th 2003, the US Food 
and Drug Administration granted approval for use of this drug in the treatment of patients 

with MM [Richardson et al., 2003]. The promising preclinical and clinical activity exhibited 
by bortezomib in MM and non-Hodgkin lymphomas (NHL) has confirmed the proteasome 

as a relevant and important target in the treatment of cancer. Several proteasome inhibitors 
are being tested and are in the pre-clinical and clinical phase of testing. 
In the case of RA, up-regulation of the most important pro-inflammatory mediators such as 
TNF-ǂ, IL-1ǃ, IL-6, iNOS and endothelial cell adhesion molecules (e.g. vascular cell 
adhesion molecule 1 (VCAM-1)) are regulated by NF-κB [Van Waes et al., 2007; Han et al 
1998]. Therefore RA qualifies as a potential target for proteasome inhibitors. In vitro and in 
vivo studies have presented encouraging results by the use of different proteasome 
inhibitors to reduce the NF-κB activation.  

5.1 Proteasome inhibitors 
Proteasome inhibitors include a variety of natural and chemically synthesized molecules 
which exclusively inhibit proteasome activity. The structure and function of some important 
classes of proteasome inhibitors are described here. 
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5.1.1 Peptide aldehydes 
Peptide aldehydes were the first proteasome inhibitors to be developed [Palombella et al., 
1994; Rock et al., 1994]. These include MG132 (Z-Leu-Leu- Leucinal-) (Fig 5), MG115 (Z-Leu-
Leu-norvalinal-) and calpain inhibitor I (N-acetyl-Leu-Leu-norleucinal). These compounds 
are potent, reversible and cell permeable. MG132 is a reversible inhibitor of the 
chymotrypsin like activity of the proteasome.  

5.1.2 Boronic acid peptides 
Boronate inhibitors are much more potent than their structurally analogous peptide 
aldehydes [Adams et al., 1998]. These includes MG262 (Z-Leu-Leu-Leu-boronate; analogous 
to MG132) and PS-341 (pyrazylcarbonyl-Phe-Leu-boronate; analogous to the aldehyde PS-
402). MG262 is a cell permeable and reversible inhibitors of the chymotrypsin like activity of 
the proteasome. PS-341 is clinically the most advanced proteasome inhibitor and inhibits the 
chymotrypsin like active site of the proteasome ǃ-subunit. Its boronic acid group binds the 
active site threonine in the proteasome with high affinity and specificity (Fig 5). 

5.1.3 Lactacystin 
Lactacystin is a naturally occurring compound produced by Streptomyces lactacystinaeus. It 
selectively targets the ǃ5 subunit of the proteasome [Fenteany et al., 1995] by covalent 
acylation of the amino-terminal threonine residues and is considered as an irreversible 
inhibitor of the proteasome. The active component of lactacystin is the highly reactive clasto-
lactacystin ǃ-lactone and PS-519 (Fig 5). 
 

 

Fig. 6. Structures of selected proteasome inhibitors [Elliott et al., 2003]. 
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5.1.4 Epoxyketones 
These are naturally product proteasome inhibitors isolated from actinomycete fermentation 

broths by screening for antitumor activity in mice. Examples of this class include 

Epoxomicin and eponemycin. These compounds inhibit the chymotrypsin like site only or 

the chymotrypsinlike and caspaselike, respectively. In contrast to previously mentioned 

inhibitors, epoxomicin initially forms a covalent bond between the proteasome’s amino-

terminal threonine hydroxyl at its C-terminal ketone carbonyl. This primary adduct 

formation is followed by formation of a stable six-membered ring adduct by a second attack 

by the terminal free amino group [Groll et al., 2000]. 

5.2 Proteasome inhibition in animal model of arthritis 
Proteasome inhibitors exhibit anti-inflammatory and anti-proliferative effects. Their use in 

diseases characterized by these processes is thought to be promising but the effects of 

proteasome inhibitors on the pathogenesis of inflammatory join disorder such as RA remain 

quite limited. To date the effects of proteasome inhibition have been studied only in animal 

models of arthritis; streptococcal cell wall induced polyarthritis in rats, collagen induced 

arthritis and adjuvant induced arthritis (Table 1). These animal models have several clinical 

and pathological similarities with human rheumatoid arthritis regarding inflammation, 

pain, swelling, synovial hyperplasia and destruction of cartilage and bone [Kannan et al., 

2005]. 

 

Animal models Proteasome inhibitor References  

streptococcal cell wall induced 

polyarthritis in rat 
PS-341 Palombella et al., 1998 

collagen induced arthritis in mice PS-341 Lee et al., 2009 

Adjuvant induced arthritis in rat MG132 Ahmed et al, 2010 

Adjuvant induced arthritis in rat PS-341 Yannaki et al., 2010 

Table 1. List of proteasome inhibitors used in animal models of RA.  

5.2.1 Proteasome inhibition and joint inflammation 
Proteasome inhibitors PS-341 and MG132 have been tested in different animal models of 

arthritis (Table 1) with pronounced anti-inflammatory effects. Here effects of proteasome 

inhibitor MG132 in adjuvant induced arthritis (AIA) rat model will be discussed in details. 

MG132 was administered subcutaneously daily at the onset of arthritis. Two weeks of 

administration significantly reduced signs of inflammation including swelling, redness and 

warmth in ankle joints compared to vehicle treated arthritis animals. Similar effects were 

observed in studies where proteasome inhibitor PS-341 was administered in different 

arthritis models. PS-341 significantly attenuated the arthritis severity and the clinical 

progression of the T cell dependent chronic phase of the disease. The chronic phase of 

arthritis was also associated with increased serum levels of NF-κB dependent pro-

inflammatory factors such as IL-1, IL-6, and nitric oxide metabolites [Palombella et al., 1998]. 

The expression of TNF-ǂ, IL-1ǃ, IL-6, MMP-3, COX-2 and iNOS were decreased in PS-341-

treated animals compared to untreated [Lee et al., 2009]. 
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Fig. 7. Effects of proteasome inhibitor MG132 on (A) arthritis index; severity of arthritis was 
scored using a macroscopic scoring system according to changes in erythema and oedema in 
each paw (B) NF-κB and p50 activation in arthritic ankle joint of AIA rat. (a) autoradiograph 
of electrophoretic mobility shift assay. The upper two bands represent NF-κB and p50 
homodimer complexes (indicated by arrows), (b) and (c) semi-quantification of the NF-κB 
and (p50)2 levels. 

MG132 treatment significantly down-regulated the expression of NF-κB1 (p50) in inflamed 
ankle joints as well as the DNA binding activity of both NF-κB and p50 homodimer in 
arthritic ankle joints (Fig 7 A and B). These results indicate that MG132 hinders the nuclear 
localization of NF-ĸB by retaining them in the cytosol in an inactive form bound to the 
inhibitory protein IκB, and also blocks UPS-mediated processing of the p105 precursor to 
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mature p50 [Magnani et al., 2000], which is a subunit of mature NF-κB. Significantly lower 
levels of NF-κB dependent proinflammatory factors such as IL-1, IL-6, and nitric oxide 
metabolites were found in PS-341-treated animals than in control rats. Thus supporting the 
concept that the profound anti-inflammatory effects of PS-341 result, in part, from inhibition 
of NF-κB activity [Palombella et al., 1998]. Proteasome inhibitor MG132 and PS-341 treated 
animals gained significantly more body weight than the vehicle treated controls indicating 
that proteasome inhibitors given at therapeutically relevant doses were well tolerated.  

5.2.2 Proteasome inhibition and joint destruction 
Progressive destruction of bone and cartilage plays a pivotal role in the pathogenesis of RA. 
Effect of proteasome inhibitor MG132 on joint destruction was studied in AIA model 
[Ahmed et al., 2010]. The radiographic and histological analysis revealed that augmented 
cartilage and bone resorption, which is a characteristic feature of arthritis, was mitigated by 
the MG132 (Fig 8).  
Bone resorption is a collective result of osteoclast stimulation and suppression of osteoblast 
precursors within the bone marrow. Previous studies have shown that NF-κB controls 
osteoclast activation through RANKL signalling [Soysa & Alles, 2009], while inhibition or 
deletion of RANKL prevents bone destruction [Zwerina et al., 2004; Pettit et al., 2001]. The 
protective effect of MG132 may be a consequence of with interfering osteoclast activation 
through the RANKL signalling pathway that is under control of NF-κB, or by enhancing the 
osteoblast activity. This assumption is supported by in vitro and in vivo studies indicating 
that the proteasome inhibitor bortezomib directly suppressed human osteoclast formation 
and promoted maturation of osteoblasts [Zangari et al., 2006; Mukharjee et al., 2008] and 
reduced joint destruction and preserved bone density in CIA mice [Lee et al., 2009].  

5.2.3 Proteasome inhibition and inflammatory pain 
Chronic pain is a major feature of RA and is maintained in part by long-lasting 
neuroplastic changes in the central and peripheral nervous system. Recent, pre-clinical 
studies demonstrated that the UPS is one of the systems involved in the maintenance of 
chronic pain by regulating proteins at pre- and post-synaptic levels [Speese, 2003; 
Mengual et al., 1996]. Effects of proteasome inhibitor MG132 on inflammatory pain was 
studied in the AIA animal model. Inflammation in joints significantly reduced the pain 
bearing capacity in arthritic animals as measured by the paw withdrawal threshold 
(PWT). Administration of MG132 significant increased PWT in arthritic animals compared 
to vehicle treated group (Fig 9).   
Central and peripheral neuronal mechanisms are thought to play a critical role in 
inflammatory joint disorders, particularly with regard to inflammation and pain [Benrath, et 
al., 1995; Levine et al., 1985]. Sensory neuropeptides, substance P (SP) and calcitonin gene-
related peptide (CGRP), are shown to participate not only in pain modulation but also in 
inflammatory processes. An up-regulation in the SP and CGRP expression in ankle joints 
and their corresponding dorsal root ganglia was demonstrated in adjuvant arthritis [Ahmed 
et al., 1995]. The development and progress of joint inflammation in adjuvant arthritis was 
significantly attenuated by using the neurotoxin capsaicin, which specifically down 
regulates sensory innervation [Ahmed et al., 1995]. The beneficial effects of capsaicin on 
joint inflammation were correlated with reduced levels of SP and CGRP in the ankle joints 
and corresponding DRG. Methotrexate treatment has been shown to reduce the severity of 
joint inflammation and destruction, partly due to its inhibitory effect on sensory  
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Fig. 8. Radiologic and histologic analysis of bone and cartilage destruction. A, 

Representative lateral view radiographs of ankle joint of (a) normal, and (b) vehicle- or (c) 

MG132-treated arthritic animals. B, Changes in the radiographic parameters of osteoporosis, 

bone erosion and joint space in ankle joints of arthritic animals treated with vehicle or 

MG132. C, Photomicrographs of haematoxylin and eosin stained ankle joints from (d) 

control rat; (e) vehicle-treated arthritic rat; and (f) MG132-treated arthritic rat. D, Changes in 

histologic parameters of cartilage and bone resorption and synovial infiltration in arthritic 

rats treated with vehicle or MG132. (c; articular cartilage, s; synovial membrane, Ti; tibia and 

Ta; talus). Modified results from Ahmed et al, 2010. 
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Fig. 9. Hind paw withdrawal threshold (PWT) in control and arthritic groups treated with 
MG132 and vehicle.  

neuropeptides [Ahmed et al., 1995]. In the AIA model, strong up-regulation of SP and CGRP 
in the periosteum and synovium structures, which are pain sensitive and prone to 
inflammation, was observed. This increased SP and CGRP expression coincided with 
decreased pain thresholds. Administration of MG132 resulted in the normalization of pain 
responses as well as significantly down-regulating the expression of SP and CGRP in 
arthritic ankle joints (Fig 10). Results also indicate that UPS regulates inflammation induced 
pain behaviour and that UPS-mediated protein degradation is involved in the peripheral 
sensitization. 
Previously it has been shown that proteasome inhibitors MG132 and epoxomicin can 
prevent the development of behavioural signs of neuropathic pain and abolish abnormal 
pain induced by sustained morphine exposure [Ossipov et al., 2009; Moss et al., 2008]. These 
compounds inhibited the release of DYNA and CGRP and normalized molecular changes in 
the spinal cord contributing to central sensitization [Ossipov et al., 2009; Moss et al., 2008]. 
Although the cause and neurobiological mechanisms underlying neuropathic and 
inflammatory pain are different, the common mechanism for the effects of proteasome 
inhibitors in these pathological conditions is the similar central neuronal mechanism and the 
activation of neurotransmission mediated by the sensory neuropeptides including SP, CGRP 
and dynorphins. 
The dorsal root ganglia (DRG) and the spinal cord actively participate in the peripheral and 
central sensitization. DRG neurons have very long t-shaped axons with one end forming a 
sensory terminal at the skin or joints and other end synapsing in the dorsal horn of the 
spinal cord. In the spinal cord these neurons project to the outermost region of the spinal 
dorsal horn (lamina I and outer lamina II) and terminate largely on spinal neurons that 
project to higher-order pain centers such as the cortex and the hypothalamus in the brain. 
In AIA rats, a significant increase in the SP and CGRP expression has been reported in the 
DRG [Ahmed et al, 1995a]. In the spinal cord an enhanced release of SP and CGRP has been 
recorded in the lumber dorsal horn during inflammation [Garry & Hargreaves, 1992]. Up-
regulated SP expression in the DRG correlated with arthritis severity and nociceptive 
behavior of arthritic rats [Ahmed et al, 1995a]. This agrees with other observations that the 
altered expression of SP and CGRP is critical for the modulation of pain and inflammation 
(Ambalavanar et al., 2006; Hutchins et al., 2000). Moreover, it has been reported that  
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Fig. 10. Immunofluorescence micrographs and semi-quantitative analysis of SP and CGRP in 
rat ankles. A, Nerve fibres positive to SP in the vehicle-treated control rats (a), and in the 
vehicle- (b) or MG132- (c) treated arthritis rats. B, Semi-quantitative analysis of SP 
immunoreactive nerve fibres (immunofluorescent area) in ankle joints of the control and 
arthritic rats treated with vehicle or MG132. C, Nerve fibres positive to CGRP in the vehicle-
treated control rats (d), and in the vehicle- (e) or MG132- (f) treated arthritis rats. D, Semi-
quantitative analysis of CGRP immunoreactive nerve fibres (immunofluorescent area) in 
ankle joints of the control and arthritic rats treated with vehicle or MG132. (s; synovial 
membrane, p; periosteum and v; blood vessel). Modified results from Ahmed et al, 2010. 

B 

www.intechopen.com



 
Rheumatoid Arthritis – Treatment 148 

peripheral inflammation induces a dramatic up-regulation of PDYN biosynthesis in 

nociceptive neurons of the spinal dorsal horn (Przewlocki, 1987; Marvizon et al., 2009). As a 

future perspective it will be interesting to observe the effects of proteasome inhibition in the 

DRG and SC in inflammation. In the monosodium-induced model of osteoarthritis, which is 

a well-recognized model of osteoarthritis, MG132 treatment has normalized the up-

regulated expression of SP and CGRP in the inflamed knee joints and their corresponding 

DRG, with reduced pain behavior [Ahmed et al, unpublished data].  

6. Toxicity  

The clinical application of proteasome inhibitors might be limited due to potential side 

effects of available compounds following chronic administration. Toxic affects might result 

from the accumulation of ubiquitinated proteins after inhibition of the 26S proteasome. The 

proteasome inhibitor bortezomib (PS-341) induced mild-to-moderate neurotoxic effects in 

rats [Cavaletti et al., 2007] and peripheral sensory neuropathy in cancer patients when given 

this compound chronically [Cata et al., 2006]. The features of bortezomib neuropathy are 

characteristic for a small fiber neuropathy and are characterized by a more sensory than 

motor neuropathy. Several observations, however, argue against these possibilities. First, in 

rats, the neurotoxic effects were observed when bortezomib was administered at maximum 

tolerated, sub-lethal doses in rats [Cavaletti et al., 2007]. Bortezomib might have induced 

neurotoxic effects because of the presence of a component in its activity that is blocked by 

the polyhydroxyl compound Tiron, this component is not involved in MG132 activity 

[Fernandez et al., 2006]. No effects of MG132 toxicity were apparent on motor performance 

during rotarod, posture, gait, exploratory and locomotor activity, or on cell death in the 

spinal cord, when MG132 was administered at higher doses [Ossipov et al., 2006]. Moreover, 

MG132 treated animals gained significantly more body weight than the vehicle treated 

arthritic controls [Ahmed et al., 2010]. These results indicate that proteasome inhibitor 

MG132 given at therapeutically relevant doses was well tolerated. This is a significant 

finding as the proteasome plays a central role in many intracellular functions and its 

inhibition might theoretically be expected to induce numerous side effects.  

7. Future perspectives 

Taking into account that the UPS controls important functions in eukaryotic cell, 

proteasome inhibitors could have been considered as toxins without any therapeutic 

value. Unexpectedly, proteasome inhibitors are well-tolerated drugs and do not produce 

adverse effects in normal cells even at high doses. Though, clinical trials indicate that use 

of bortezomib induces peripheral sensory neuropathy in patients, which might limit its 

therapeutic use. However, the reversible proteasome inhibitor such as MG132 apparently 

did not produce any toxic effect and was well tolerated. The use of reversible proteasome 

inhibitors can therefore be considered as a better alternative. It will be a future challenge 

to develop drugs specifically targeting the UPS, or more specifically UPS E3 ligases that 

select proteins for the UPS-mediated degradation, in order to treat inflammatory joint 

disorders. Non-toxic proteasome inhibitors alone and/or in combination with 

conventional RA therapies might be more effective to treat patients with this painful and 

debilitating arthritic disease. 
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