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1. Introduction  

The present chapter is concerned with presenting an approach for the synthesis of a gain-
scheduled flight control law that assures compliance to trajectory tracking requirements. 
More precisely, a strategy is proposed for improving the tracking performances of a baseline 
controller, obtained by conventional synthesis techniques, by tuning its gains. The approach 
is specifically designed for atmospheric re-entry applications, in which gain scheduled flight 
control laws are typically used.  

Gain-scheduling design approaches conventionally construct a nonlinear controller by 
combining the members of an appropriate family of linear time-invariant (LTI) controllers 
(Leith & Leithead, 2000). The time-invariant feedback laws usually share the same structure, 
and differ only for the values of some tunable parameters, most notably the controller’s 
gains. These gains are generally determined taking advantage of well-assessed LTI-based 
design techniques, such as pole placement and gain/phase margin methods. However, once 
a set of LTI feedback laws is specified, the nonlinear controller must be synthesized, which 
requires an additional design step. This step is of considerable importance since the choice 
of nonlinear controller realization can greatly influence the closed loop performance (Leith 
& Leithead, 2000). Furthermore, actual mission requirements constraint quantitatively the 
time response of the augmented system (Crespo et al., 2010), e.g. by imposing tracking 
requirements of a reference trajectory or requiring relevant output variables to be enclosed 
within a limited flight envelope. As such, the final gain-scheduled controller’s performances 
are ascertained by means of numerical simulation based methods, most notably Monte 
Carlo, which can highlight limitations that were not apparent in the LTI design phase. As a 
result, in these cases one is forced to iterate the LTI design, but using analysis results that 
refer to the nonlinear controller rather than to the LTI ones, further complicating the design 
improvement task. 

Several methods have been proposed in the open literature both for taking into account 
explicitly the complex dependency of the final controller response from its gains and for 
dealing with quantitative performance requirements, such as tracking errors. Most, if not all, 
proposed approaches formulate the design task as an optimization problem, in which the 
merit function evaluation requires numerical simulation of the augmented system’s time-
response. For instance, (Crespo et al., 2008) develops optimization-based strategies for 
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control analysis and tuning at the control verification stage, which build upon numerical 
evaluation of controller’s performance metrics that require simulation of the augmented 
model. Other authors (dos Santos Coelho, 2009) suggest using chaotic optimization 
algorithms for enhancing the computational efficiency of the numerical optimization 
problem. In (Wang & Stengel, 2002), a robust control law is synthesized using probabilistic 
robustness techniques, by minimizing a cost that is a function of the probabilities that design 
criteria will not be satisfied. Monte Carlo simulation is used to estimate the likelihood of 
system instability and violation of performance requirements subject to variations of the 
probabilistic system parameters. Stochastic parameter tuning is also proposed in (Miyazawa 
& Motoda, 2001), which is a form of optimization by which the probability of the total 
mission achievement is maximized w.r.t the flight control system’s tunable parameters. 
Mission achievement probability is estimated by applying the Monte Carlo method also in 
this case.  

In this chapter, we propose a methodology for determining all combinations, within a given 
domain, of the flight control law tunable gains that comply with quantitative requirements 
expressed in the time domain, and is applicable to nonlinear control laws such as gain-
scheduled flight control ones. This approach aims at providing quantitative indications on 
the Flight Control Law (FCL) time-domain performance, taking explicitly into account the 
complex dependency given by the scheduling of the LTI control laws. As such, it is intended 
to complement the conventional LTI-based controller synthesis approaches, such as 
pole/placement and frequency domain methods, which are thus still in charge of 
addressing the system’s stability and robustness.  

The approach is based on a technique developed by the authors for tackling a different 
problem, namely the robustness analysis of a given flight control law (Tancredi et al., 2009). 
It builds upon a Practical Stability criterion, in which the allowable trajectories dispersion 
can be specified in the time-domain, in an extremely appealing manner to enforce practical 
engineering requirements. Under the assumption that the gains domain is a convex 
polytope, the method results allow distinguishing in the whole domain the gain 
combinations matching the criterion from those yielding unsatisfactory performance. This is 
done inferring the nonlinear augmented system behaviour for all gains ranging in a convex 
polytope from numerical simulations of the augmented dynamics at a limited number of 
specific points of the gains domain. A set inversion algorithm selects these points using an 
adaptive gridding strategy. The proposed technique is applied to a gain-scheduled flight 
control law of the Unmanned Space Vehicle, a re-entry technology demonstrator pursued by 
the Italian Aerospace Research Centre. Results demonstrate the method’s effectiveness in 
determining the gains combinations allowing to satisfy pre-specified trajectory tracking 
requirements. Results also show that it is computationally viable and that it allows gaining 
insight into the factors that limit the controller’s performance, thus aiding eventual 
additional LTI-based design iterations. 

2. Problem setting 

We refer in this work to atmospheric re-entry applications, and to a FCL whose gains are 
scheduled depending on the values of some specifically selected independent variables, 
either being a univocal function of the system dynamical state vector, such as air-relative 
velocity, altitude, Mach number and so on, or explicitly dependent on time. Selection of the 
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scheduling law and of the independent variables is out of the scope of the present chapter, 
because it typically involves exploiting the peculiar flight mechanics features of the 
application at hand. We assume henceforth that the FCL structure is known, and that the 
FCL is completely specified once a limited number of parameters, i.e. the FCL gains, are set 
to a constant value. As introduced in the previous section, the problem dealt with in this 
chapter is to determine the values of these gains that allow complying to trajectory tracking 
requirements.  Let us assume to have a starting design point that specifies a set of gain 
values, which typically does not allow satisfying the tracking requirements. We denote this 
initial guess as the nominal gain value, which is taken equal to zero to simplify notation. Let 
us also assume to have a finite number p of constant gains and that the gains are enclosed in 

a bounded set Π  p,  which represents the region in the gains space one wishes to analyze. 

The dynamical system we refer to shall be suitable to represent the closed-loop augmented 

dynamics of an atmospheric re-entry vehicle. The typical FCL for this application foresee a 

gain-scheduled inner-loop PID control scheme coupled with a time-varying guidance law, 

possibly dependent on the system state as well. Gain scheduling is taken into account by 

dependency on the state variables (and time if needed), and the PID action by dependencies 

on the state, on its time integral (which adds up to the open-loop system’s state) and 

derivative, respectively. Thus, let us consider the following dynamical system, in which 

x n, y w, and the feedback action is included in the f(·) and g(·) functions. 

    , , , ,x f t x y g t x    (1) 

In the case of an un-powered re-entry vehicle in steep gliding flight, due to the lack of 
stationary equilibrium solutions for Eq. (1), we refer to time-varying nominal trajectories 
rather than stationary operating conditions. In addition, these trajectories are usually 

defined on a finite-time domain, i.e. t[0,T], where the initial epoch is taken equal to zero for 
simplicity and T is a finite positive real number. The nominal trajectory is thus time varying 
on a compact time domain, and satisfies the following equations. 

      
t

0
0

x t := x + f τ,x,0 × dτ t 0,T     (2a) 

      y t := g t,x,0 t 0,T    (2b) 

For gain-scheduled FCL, the current design practice relies on the well-known theory of 
Linear Time Invariant (LTI) systems. In this approach, the original nonlinear system 
representing the augmented vehicle dynamics is linearized around a limited number of 
representative time-varying trajectories, including the nominal one. Then, the well-known 
frozen-time approach is applied (Lee & Choi, 2004), yielding multiple LTI models. In this 
way classical design techniques, such as pole placement and gain/phase margin methods, 
can be exploited. Even if the flight experience has demonstrated that this approach is indeed 
operative, it is also widely recognized as inefficient (Leith & Leithead, 2000). In fact, LTI-
based analysis may call for gain design values for counteracting poor closed-loop dynamic 
performances (for instance, low damping or even instabilities) in some of the chosen points 
on the trajectories. However, the effect of undesirable frozen-time performances on the 
overall mission objectives can be of scarce importance since the vehicle remains in a 
particular frozen time condition only for a limited amount of time. Thus, modification of the 
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FCL for improving the LTI-based dynamic performances could be un-necessary, since these 
missions typically specify time-domain criteria, such as nominal trajectory tracking 
performances, which can be satisfied also in presence of poor frozen-time dynamic 
performances. LTI-based analysis results are thus usually complemented by dedicated 
numerical-simulation based analyses, such as Monte Carlo techniques, through which the 
quantitative dispersion about the reference trajectory can be estimated. Finally, in the LTI-
based approach, the gain tuning problem shall be solved in each frozen operating condition, 
thus considerably limiting the dimension of manageable problems. 

The criterion proposed in the present work is instead based on the Practical Stability and/or 

Finite-Time Stability concepts, whose detailed description can be found in (Gruyitch et al., 

2000; Dorato, 2006). This type of stability requires only the inclusion of the system 

trajectories in a pre-specified subset of the state space, possibly time-varying, in face of 

bounded initial state displacements and disturbances. As opposed to the classical Lyapunov 

stability concept it does not require the existence of any equilibrium point, and is 

independent from Lyapunov stability, in the sense that one neither implies nor excludes the 

other. The practical stability criterion is inherently well suited to the applications of interest: 

it allows to take explicitly into account system (1) time domain finiteness, and to use criteria 

directly linked to the original mission or system requirements, which are typically expressed 

in terms of trajectory tracking performances. Indeed, the latter can be easily enforced by 

requiring the inclusion of the system trajectories in a pre-specified time-varying subset of 

the state space determined by the tracking requirements, to which we refer as the admissible 

solutions tube, SA(t). 

Let us assume the initial state to be perfectly known and equal to the nominal one. In other 

words, the perturbed output trajectory y(t;π) is defined as a trajectory of system (1) that 

starts at t = 0 in y(0) = y0, under the constant input π.  This assumption does not limit the 

scope of the problem, since initial state dispersions can be included, if necessary, as 

additional elements of the π vector with no conceptual modifications. The tracking 

requirements are used to define a Boolean property P depending on the gains, so that the 

system complies with the practical stability criterion if and only if the property is true. In 

order to gain generality in the capability to enforce admissible dispersion requirements, P is 

defined in terms of the output trajectories of system (1) (that cover the case in which the 

system state is analyzed by letting y = x). 

  
     

     
A

A

true y t;π S t t 0,T
P π =

false t 0,T : y t;π S t

   


  
 (3) 

The capability of identifying all the combinations of the gain values in Π for which the 
property is true can greatly aid the refinement of the candidate FCL design. Indeed, it allows 
analyzing the FCL performance over the whole gain domain, as opposed to classical 
analysis that identifies only a limited number of points in Π. This aids the FCL upgrade by 
simplifying the physical understanding of the causes for poor performance. This feature is 
highly desirable in a design context, in which rather than the knowledge of a certain 
requirement violation is the determination of the causes that mainly contributes to identify 
possible design refinement strategies. With this in mind, the gain tuning task is stated as 
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determining the set ΠA, subset of Π, which is made of all the admissible gains, that is, all 
gains satisfying the tracking requirements. 

   A
Π := π Π P π = true  (4) 

In this setting, the gain tuning task can be re-formulated as a practical stability analysis 
problem, as follows. 

Problem 1. Given system (1), a bounded set Π  p such that π  Π, a time-varying compact 
set SA(t) (admissible solutions tube), and the property P, determine the set ΠA. 

3. Solution approach 

In order to simplify the solution to problem 1, we introduce the following restricting 
assumptions. 

Assumption 1. The functions f(·) and g(·) are differentiable in t, x and π over relevant 
domains. 

Assumption 2. The gains range in a p–dimensional hyper-rectangle Π. 

   p1 1 p
Π := π ,π ×..× π ,π    (5) 

Assumption 3. The required solutions tube is a w–dimensional hyper-rectangle for all 

 t 0,T  

          1A w AA 1A w A
S t := S t ,S t ×..× S t ,S t        (6) 

Various techniques exist being able to deal with the practical stability analysis of a nonlinear 

dynamical system (see Dorato, 2006,  for a survey). The prominent approaches are based on 

a Lyapunov-type analysis involving an auxiliary function referred to as a Lyapunov-like 

function in (Gruyitch et al., 2000; Dorato, 2006). However, to the authors’ knowledge, there 

are no systematic and operative means to find a suitable Lyapunov function when nonlinear 

time-varying systems are considered; Lyapunov-based methods are also inherently 

conservative in estimating the trajectories dispersion, depending on the selected Lyapunov-

like function. A different approach is presented in (Ryali & Moudgalya, 2005), which stems 

from the notion of positively invariant tubes. However, it does not bound nor estimates the 

results conservativeness, with a resulting limited applicability to problems of practical 

interest. Finally, for Linear Time-Varying (LTV) systems, practical stability analysis 

approaches have been developed based on operator theory (Amato et al., 2003), which yield 

only sufficient conditions in the form of a nonlinear, time-varying, differential matrix 

inequality. Generally speaking,  in spite of a wide literature on practical stability theoretical 

results, all the reported approaches suffer of significant drawbacks when considered from 

an applicability perspective, including cases where the system dynamics are linear. Indeed, 

the abundance of theoretical results on practical stability analysis methods it is not balanced 

by examples of their application to cases of practical engineering interest within the 

robustness analysis context. 
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The approach followed in this chapter extends the one proposed in (Tancredi et al., 2009). 

for analyzing the robustness of a given flight control law. By setting up the gain tuning task 

as in Problem 1, this approach can be adapted for being used with the problem at hand with 

only minor modifications. An overview of the method is repeated in this chapter closely 

following the one in (Tancredi et al., 2009), but providing additional details and adapting it 

for dealing with a gain tuning problem. The technique approximates the solution of the 

practical stability analysis problem for a complex system with the solutions obtained for 

simpler systems, for which an efficient solution approach can be found. Specifically, the 

proposed solution approach foresees two successive phases. First, the nonlinear vehicle 

dynamics are approximated within a pre-specified error tolerance by their time-varying 

linearizations under several off-nominal gains (approximation phase). Then, problem 1 is 

solved on the LTV systems obtained in the previous phase taking explicitly into account the 

approximation error. This is done performing numerical simulations only at suitably 

selected gains combinations and exploiting the convexity preservation property of the LTV 

dynamics (property clearance phase). For the sake of clarity, we will describe separately 

these two phases. 

3.1 Approximation 

Let us consider a partition {Πk} of the gain domain, made of hyper-rectangular blocks Πk, 

that is, a collection of subsets (blocks) that are both collectively exhaustive and mutually 

exclusive with respect to the set being partitioned. We then define a collection of LTV 

systems, each one approximating the nonlinear system in a single block. In particular, each 

LTV system is obtained linearizing the system around its trajectory obtained by setting the 

uncertainties to 
0

k
π , the geometrical centre of Πk. The dynamic equations for each one of 

such LTV systems as π ranges in the relevant Πk can be written as: 

    0 0 0

Lk k k Lk k k k
x = x + A × x - x + G × π - π   (7a) 

    0 0 0

Lk k k Lk k k k
y = y + C × x - x + D × π - π  (7b) 

where the Ak, Gk, Ck, and Dk matrixes are obtained applying first order expansion of the 

nonlinear functions in Eq. (1) around 0

k
x , 0

k
π . Note that, being the nonlinear system’s 

trajectories time-varying, the centre trajectory and the matrices in Eq. (7) are in general time-
varying as well. 

In order to quantify the error made in approximating the nonlinear system with the LTV one 
we use the weighted L∞ norm distance between the nonlinear and linear trajectories, that is, 
for each LTV system, and thus for each block Πk of the partition, we define an 

approximation error function ek : Πk → + as  

       b

k Lk
e π := y t;π - y t;π


 (8) 

We search for an approximation of the nonlinear system that introduces a pre-specified 
bounded error. Equivalently, this can be seen as searching for a partition {Πk}L in which ek(·) 
is below a pre-specified tolerance ǆ for all π in Π: 
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      k k k kL L π Πk
Π : Π Π max e π ǆ


    (9) 

As we will discuss later on, finding such a partition allows using the solution to problem 1 

obtained for the LTV systems to approximate the one of the nonlinear system. Assumption 1 

assures that a partition complying to Eq. (9) may always be found. Indeed, for any 0

k
π Πk 

we have: 

  lim
k

π π0
k

e π = 0


 (10) 

Thus, by using a partition of Π with sufficiently small blocks, it is possible to approximate as 
closely as desired the nonlinear trajectories using the LTV ones. Following this fact, an 
algorithm for finding {Πk}L may be obtained by repeatedly shrinking the blocks of the 
partition for which the approximation error is higher than ε. The partition refinement is here 
obtained iteratively, by means of an isotropic bisection technique. The isotropic bisection 
procedure splits a single p-dimensional hyper-rectangle set in 2p hyper-rectangular subsets, 
collectively exhaustive and mutually exclusive with respect to the “father” set. These “sons” 
are generated bisecting in each of the p dimensions the father hyper-rectangle’s edges. At 
each iteration, the approximation error in each block Πk is analyzed. Three cases are 
possible: 

1.  kπ Πk
max e π ǆ


 . The error is below the tolerance. Πk is assigned to {Πk}L : {Πk}L = {Πk}L  Πk . 

2.  kπ Πk
max e π ǆ


 . The approximation error is higher than the tolerance. We shall split this 

condition into two further cases, depending on the volume of Πk: 
a. The volume of Πk is smaller than a predefined maximum resolution ǈ, i.e.  

vol(Πk) ≤ ǈ. In these blocks the system nonlinearities are so large as to prevent its 
LTV approximation within a small volume ǈ and thus are not further considered 
for the subsequent step of the proposed algorithm. Such blocks are left 
undetermined from the gain tuning standpoint.  

b. The volume of Πk is higher than ǈ. Πk is then partitioned into 2p sons and the 
process of evaluating the maximum approximation error is repeated for each of 
them. 

The major challenge in applying the above algorithm resides in the evaluation of the ek(·) 
function’s upper bound over a given Πk, that is, in determining if the distance between the 

nonlinear and linear trajectories under the same π is within the tolerance for all π  Πk, as 
discussed in the next section. 

3.1.1 Evaluation of nonlinear trajectories approximation error 

A few approaches exist that allow relating the time responses of a nonlinear system to those 
of its linearization by quantitative means. These approaches conservatively bound from 
above a certain measure of the trajectories distance by maximizing some nonlinear time-
varying test function over a vector space. They thus either solve an optimization problem, 
with related computational burden, or require prior knowledge of the test function 
maximum bound, for instance using the Lipschitz constant (Asarin et al., 2007) or the 
maximum bound of the dynamical function’s second order derivatives (Desoer & 
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Vidyasagar, 1975). The latter methods, however, provide bounds on the trajectory distance 
that are typically exponentially increasing with time. This implies that in practice they can 
be used for time horizons of limited duration w.r.t. the system time-scales, which is not the 
case of re-entry applications. Alternative approaches have been proposed, which estimate 
the approximation error introducing some heuristic methods. In (Rewienski & White, 2001) 
the linear system is considered a valid approximation within a norm-ball, whose radius is 
determined depending on the linear trajectory characteristics. In (Tancredi et al., 2008) the 
approximation error over a polytope in the parameters space is estimated by its maximum 
value over the polytope’s vertices, assuming that the polytope is sufficiently smaller than 
the scale at which the system exhibits significant nonlinear behaviour so that the maximum 
error always occurs in a vertex. 

The approximation error is here evaluated in probabilistic terms, as proposed in (Tancredi et 
al., 2009). In particular, by fictitiously introducing a statistical description of the gains in the 
generic Πk, we accept the risk of the approximation error being higher than the tolerance in a 
subset of Πk having small probability measure. More precisely, we consider the nonlinear 
system to be well approximated in Πk if the risk of ek(·) being higher than the error tolerance 
is smaller than a threshold. The value of this threshold shall be selected sufficiently small as 
to avoid that ek(·) can be higher than the tolerance with significant probability. However, it 
shall also be sufficiently high as to avoid that the Πk sets have a volume smaller than the 
maximum resolution ǈ. Preliminary numerical analyses suggest that in our problem setting 
a threshold value equal to 6% is a good compromise: 

    k k kπ Πk
Π : Pr e > ǆ 0.06 max e π ǆ


    (11) 

Without introducing any assumption on the probability distribution of ek(·), we can then use 
the one-sided Chebyshev inequality to translate Eq.(11) in: 

      k k k kπ Πk
Π : E e + 4 Var e ǆ max e π ǆ


    (12) 

In order to determine the mean and variance of ek(·), we use the Scaled Unscented 

Transformation (SUT), first introduced in (Julier, 2002). More specifically, let us consider a 

generic hyper-rectangle Πk := [ 1k1kπ ,π ]…[ pkpkπ ,π ]. We fictitiously assume π to be 

uniformly distributed in Πk, which results in the following mean and covariance matrix, Ek 

and Covk, respectively. 

 0

k k
E = π  ;    22

k k1 k1 kp kp

1
Cov = × diag π - π ,..., π - π

12
 
  

 (13) 

Using the SUT, we may estimate ek(·) mean and variance. Specifically, according to (Julier, 

2002), we choose a series of 2p+1 points Θki  Πk, symmetrically distributed around the 

mean 0
k

 , as follows: 

  

 

0

ki k

0

ki k k
i

0

ki k k
i-p

Θ = π i = 0

Θ = π + p + χ Cov i = 1,...,p

Θ = π - p + χ Cov i = p + 1,...,2p

 
 
 
 

 (14) 
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where χ = Ǎ2(p+ǋ) – p is a tunable parameter. Each point has an associated weight for 
computing the mean and variance of the ek(·) function. The first point Θk0 has instead two 
weights, one for computing the mean and one for the variance. Denoting with Wi(m) the 
weights for computation of E(ek), and with Wi(c) the weights for computation of Var(ek), the 
following hold (Julier, 2002): 

    m

0
W = χ p + χ  ;      c m 2

0 0
W = W + 1 - Ǎ + ǃ  (15a, b) 

      m c

i i
W = W = 1 2 p + χ i = 1,...,2p    (15c) 

The mean and variance of the ek(·) function can be then estimated as the weighted average 
and weighted outer product of the transformed points, allowing to evaluate if Eq.(12) holds 
by numerically evaluating 2p + 1 times the ek(·) function : 

      
2p

m

k i k ki
i=0

E e = W e Θ  (16a) 

         
2p

2c

k i k k ki
i=0

Var e = W E e - e Θ  (16b) 

The SUT has three tunable parameters, Ǎ, ǃ, and ǋ. Guidelines for tuning these parameters 
are given by (Van der Merwe et al., 2000), which suggests letting ǋ=0. ǃ is a non-negative 
weighting term which can be used to incorporate knowledge of the higher order moments 
of the distribution. Preliminary numerical analyses have shown that in our problem setting 
ǃ=0 delivers the best estimates. At last, Ǎ controls the “size" of the Θ points distribution and 
should be 0≤ Ǎ ≤1. We choose Ǎ = (3/p)0.5 in order to have the Θki points in the center of Πk 
facets. This choice allows for sharing some computations between adjacent Πk sets, and thus 
to reduce the overall computational load. 

3.2 Property clearance 

Once the {Πk}L partition has been determined, one can obtain a solution to problem 1 by 
formulating a similar problem on the LTV approximating systems corresponding to {Πk}L. 
For such LTV systems, the difference between any nonlinear and linear trajectories under 
the same π is included in the closed ball in  n with respect to the norm in Eq. (8), with 
radius equal to ǆ, Bǆ. It follows that the nonlinear solutions tube is included in the 
Minkowski sum between the solutions tube of its linearization and the former ball. To 
exploit this result in achieving the problem’s solution, let us define a reduced admissible 
solution tube, obtained by shrinking SA(·) of an amount equal to Bǆ. Denoting as  the 
Minkowski sum operator, the reduced admissible solution tube reads: 

        A A ǆ A
S t : S t B = S t t 0,T      (17) 

The S′A(·) complying to Eq. (17) can be easily determined since SA(·) is hyper-rectangular at 
each time epoch. Being the norm sphere hyper-rectangular as well by definition, S′A(·) can 
be obtained simply by component-wise difference of SA(·) and Bǆ. Consider now a 
modification of the P property, expressed in terms of S′A(·) and of the linear trajectories 
corresponding to {Πk}L: 
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  
     
     

Lk A

Lk A

true y t;π S t t 0,T
P π :=

false t 0,T : y t;π S t

       
 (18) 

It can be easily proved that P′ implies P. Therefore, introducing a region of admissible 

uncertainties analogous to ΠA, but based on P′, as   A
Π := π Π P π = true  , it follows 

that 
A A

Π Π  . It will be shown later on that a technique exists to obtain a good estimate of 

Π′A. This is equivalent to obtain a conservative solution to problem 1, in the sense that the 

computed region Π′A will be included in the actual ΠA. Nonetheless, the amount of 

conservativeness in estimating ΠA is bounded, and can be reduced as required by reducing 

the approximation error tolerance, at the price of a higher computational load. 

3.2.1 Computation of  Π′A 

The computation of Π′A is obtained by exploiting the preservation of convexity in LTV 

trajectories under constant inputs and by applying a set inversion algorithm, SIVIA (Set 

Inverter Via Interval Analysis), originally developed in the framework of Interval Analysis. 

We briefly recall here the algorithm main features relevant to the present context, referring 

the interested reader to (Jaulin et al., 2001) and the references therein. 

Given the definition of Π′A and P′, the determination of Π′A may be seen as a set inversion 

problem, which is defined as follows. Let f be a possibly nonlinear function from n to m, 

and let Y be a subset of m. Set inversion is the determination of the reciprocal image: 

X={xn | f(x)Y } = f –1(Y), which in our case is Π′A itself. The SIVIA algorithm allows to 

compute two sub-partitions of Π, that is, partitions of a subset of Π, that are an inner and 

outer enclosure of Π′A, denoted as AΠ  and AΠ  respectively. 

 A A A
Π Π Π     (19) 

The algorithm is iterative, and is initially applied to the partition {Πk}L. In order to determine 

if a block Πk belongs to the enclosures, it performs an inclusion test [P′], having the following 

properties: 

     k k
P Π = true π Π ,P π = true     (20a) 

     k k
P Π = false π Π ,P π = false     (20b) 

More precisely, the inner enclosure AΠ  is composed of hyper-rectangular blocks Πk for 

which the inclusion test is true. Given Eq. (19), such blocks are also members of AΠ . 

Reversely, if it can be proved that [P′](Πk) = false, then the block has an empty intersection 

with Π′A, and it is thus rejected. Otherwise, no conclusion can be drawn based on the 

inclusion test, and the block Πk is called undetermined. The latter is then bisected in 2p 

subsets that are tested until their volume reaches the user-specified resolution ǈ. Thus, such 

undetermined minimum-volume blocks are deemed small enough to be stored in the outer 

approximation AΠ  of Π′A. 
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3.2.2 Inclusion test for SIVIA 

The application of SIVIA requires defining an inclusion test, which is typically obtained by 
applying interval analysis, e.g. in (Juliana et al., 2008). However, interval computation is 
usually pessimistic, in the sense that a block Πk may be deemed undetermined by an 
inclusion test even if the property under analysis holds uniformly (i.e. attains the same 
Boolean value) over the block itself. This implies a substantial increase in the computational 
load, which is particularly critical since the algorithm computational complexity increases 
exponentially with p. In the present context, we use the inclusion test  proposed in (Tancredi 
et al., 2009), which captures exactly the blocks in which P′ is uniformly true, and also 
provide a condition which is sufficient for P′ to be uniformly false. 

The inclusion test exploits the preservation of convexity in LTV trajectories under constant 

inputs. Consider a generic hyper-rectangular Πk  {Πk}L. Πk is a convex polytope having 2p 

vertices  ǎ
k
π , i.e. it admits the following vertex representation: 

  
2 2

ǎp

k kǎ k kǎ kǎ
ǎ=1 ǎ=1

p p

Π = π π = ǌ π , ǌ 0 , ǌ = 1
    
  

   (21) 

Because the trajectory of an LTV system under a constant input π may be viewed as an 
affine transformation with respect to π, any solution of the LTV system under a generic π in 
Πk is a convex combination of the solutions under all the πk(ǎ). The output trajectories yLk(t;π) 
thus span the following set (tube) SLk(t) as π varies in Πk. 

         
2 2

ǎw

Lk Lk Lk kǎ Lk k kǎ kǎ
ǎ=1 ǎ=1

p p

S t = y t;π y t;π = ǌ y t;π ,ǌ 0 , ǌ = 1
    
  

   (22) 

As a consequence, the knowledge of the 2p vertex trajectories yLk(t;πk(ǎ)) allows to determine 

exactly the solutions tube corresponding to Πk. We exploit this property to define the 

inclusion test, which is a comparison of the two time varying polytopes SLk and S′A. More 

precisely, the condition SLk(t)  S′A(t) for all t[0,T] is equivalent to P′ being uniformly true 

in Πk, and, given SLk convexity, it is equivalent also to the 2p vertex trajectories yLk(t;πk(ǎ)) 

belonging to S′A(t). The condition SLk(t) ∩ S′A(t) =  for at least one t[0,T] is instead 

equivalent to P′ being uniformly false in Πk. Unfortunately, this condition may not be 

checked using only the knowledge of the vertex trajectories, but would require further 

computations to be ascertained exactly. We instead provide a condition involving only the 

vertex trajectories, which is only sufficient for SLk(t) ∩ S′A(t) = . In particular, we exploit the 

fact that S′A(·) is hyper-rectangular by assumption, and thus admits an easily-obtainable 

half-space representation S′A(t) = {y  w | 
L

A
S y ≤ 

R

A
S  (t)}, where 

L

A
S  = ( w

I , – w
I )T, 

R

A
S :[0,T] → 

2w1 ( w
I  stand for the w by w identity matrix). In case at least one of the 2w inequalities 

defining S′A(·) is not satisfied by all the vertex trajectories, the solutions tube SLk(·) lies 

completely outside S′A(·), implying SLk(t) ∩ S′A(t) = . We thus define the following 

inclusion test, which formally resumes the previous discussion. Its evaluation requires a 

limited (and known a priori) number of linear trajectories, which are obtained by numeric 

simulation. Note that nonlinear simulations are not needed for the evaluation of the 

inclusion test, which involves only simulation of the linear approximations. 
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    

    

p

k

ǎL R

A Lk k A

P Π := true t 0,T , ǎ = 1,..,2

S y t;π S t

    


 (23a) 

 
    

    

p

k

ǎL R

A Lk k Ai i

P Π := false t 0,T , i = 1,..,2m: ǎ = 1,..,2

S y t;π > S t

     

     
 (23b) 

Applying the above procedure, Π′A is determined exactly within a prefixed resolution, and, 
due to the properties of the LTV systems defined on {Πk}L, problem 1 is solved 
conservatively for the nonlinear system (1). 

4. Application case 

This section introduces the nonlinear system describing the closed-loop longitudinal flight 
dynamics of the experimental reusable launch vehicle demonstrator USV-FTB1  currently 
operated by the CIRA. The FTB1 vehicle is the first of three planned vehicle configurations 
that CIRA is developing as part of its USV Program, whose main goal is contributing to the 
international community effort toward the development of next generation reusable space 
vehicles. This vehicle is planned to execute flight tests in subsonic, transonic and low 
supersonic flight regimes, in view of the development of upgraded vehicle configurations to 
perform sub-orbital and orbital re-entry flights. The FTB1 vehicle, described in detail in 
(Russo, 2009) and shown in Fig. 1, is unmanned and un-powered. It has a slender wing 
configuration, with two sets of aerodynamic effectors: the elevons, which provide pitch 
control when deflected symmetrically and roll control when deflected asymmetrically, and 
the rudders for yaw control.  

 

 

Fig. 1. USV-FTB1 vehicle. 

The second Dropped Transonic Flight Test (DTFT-2) of the FTB1 vehicle is specifically 
considered to show the effectiveness of the proposed technique. The mission, successfully 
executed in April 2010, foresees a drop of the vehicle from a stratospheric balloon (at nearly 
null velocity and angle of attack) to reach Mach numbers in the range of [1.2÷1.3] for 
investigating aerodynamics and advanced guidance navigation and control in the transonic 
phase of an un-powered re-entry flight. The basic operations of the mission consist of an 

www.intechopen.com



 
Gain Tuning of Flight Control Laws for Satisfying Trajectory Tracking Requirements 

 

83 

ascent phase during which the stratospheric balloon brings the FTB1 at the release altitude 
of about at about 24-26 km followed by a flight phase where the FTB1 is dropped and the 
aerodynamic controlled flight starts. The vehicle accelerates until the desired Mach number 
is reached, and then starts a Mach-hold phase in which it performs a sweep in angle of 
attack for maintaining a constant Mach number. A deceleration phase is then initiated (up to 
0.2 Mach) at the end of which a recovery parachute is deployed. The mission ends with the 
demonstrator splash down in the Mediterranean Sea.   

Because the scope of the present section is to demonstrate the effectiveness of the gain 
tuning technique on an application of practical engineering relevance, we will restrict the 
analysis to a simplified version of the longitudinal FCL of the FTB1 vehicle, which was used 
in the initial design phases for executing flight mechanics analyses. Note that the FCL 
analyzed in this section is significantly different from the ones implemented for the DTFT2 
mission (see, for instance, Morani et al., 2011, for a detailed description of the guidance law). 
Given the nonlinear augmented longitudinal dynamics of the FTB1 vehicle in the DTFT2 
mission, the aim of the present analysis is to find (a set of) the controller’s gains compliant to 
a requirement expressed as inclusion in a solution’s tube. 

The FTB1 vehicle longitudinal dynamics are modelled by means of standard nonlinear 
equations (Etkin & Reid, 1996), yielding a sixth order model. Actuator dynamics are 
included by means of a second order system and first order filters are used for modelling 
the navigation sensors for ǂ and q. The longitudinal dynamics are augmented by a 
proportional-derivative flight control law, arranged in a cascade structure with feedback on 
the pitch rate q and angle of attack ǂ. The augmented vehicle is driven by a time-varying 
angle of attack reference signal ǂref, which ramps up from zero at the vehicle release from the 
stratospheric balloon up to 8 deg. in the initial drop phase. The angle of attack is held 
constant until the desired Mach number of about 1.2 is reached. The Mach hold phase 
follows, where an α - sweep manoeuvre is performed. At the end of the Mach hold phase, 
the angle of attack increases up to 10 deg., value maintained in low subsonic conditions until 
parachute deployment. The overall feedback action is shown in Fig. 2 and has the following 
analytical expression, where Ǉ stands for the FCL internal state. 

    3 1 1 2
- - ; -

e ref ref
k k q k k          

  (24) 

 

Fig. 2. FCL structure. 

Two of the three gains of the controller, k1, k2, and k3 are scheduled depending on the 
dynamic pressure q∞, according to k1 = k10 , k2 = k20 + k2s q∞ , and k3 = k30 + k3s/q∞ .  
The FCL foresees thus five gains. The nominal gains setting is k′1 = 1.25 s-1 ; k′20 = –1.28 s–1 ; 
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k′2s = 4.48·10 –4 m· s·kg –1 ; k′30 = 1.73·10 –1 s ; k′3s = –7.76·10 3 kg·s –1·m –1. These gains have 
been determined applying standard LTI control synthesis techniques, and the resulting 
control law yields satisfactory LTI stability characteristics. Because of the complexity of the 
LTI based analysis when applied to these vehicles flying markedly time-varying trajectories, 
and because the focus of the present chapter is on determining the effectiveness of the 
proposed technique in dealing with time-based control performance requirements, the 
results of the stability analysis are not shown here for brevity. The reader is referred to 
(Tancredi et al., 2011) for an overview of the LTI stability analysis in a similar application. 

The nominal response is obtained applying the above gain tuning, and considering the 
system to start at t0 = 21.55 s. This is the first time epoch at which the Mach number is at 
least equal to 0.7, i.e. M ≥ 0.7, which is the threshold condition above which the actuation 
system gains sufficient command authority for controlling the angle of attack. 

The nominal response’s angle of attack and commanded elevon deflections ǅe are shown in 
Fig. 3. The initial oscillation in ǂ is caused by a sharp decrease of the elevons efficiency in the 
transonic phase. However, because of the considerable uncertainty on the entity of this 
phenomenon, no dedicated feed-forward actions were implemented. 

 

Fig. 3. Nominal response time histories. 

The tuning analysis has been performed on a subset of the FCL gains. More precisely, we 
analyzed effects on the variations of the three most influential gains: the proportional α 
constant gain k1, the scheduling gain of the integral α action k2s and the scheduling gain of 
the proportional q action k3s . In other words, we analyze the effects of the three dimensional 
vector π : = ( k1  k2s  k3s )T, in the following hyper-rectangular domain K, centred about the 
nominal tuning π′. 
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     1 2s 3s
Π := 0, 2k × 0, 2k × 2k ,0    

The maximum allowed distances of the above variables for a meaningful linearization are 

set to 0.2 deg in angle of attack, 1.8 deg·s-1 in pitch rate and 1.5 deg in elevons deflection. 

The admissible solutions tube constrains only the angle of attack and the elevons 

deflections. Elevons deflection are required to be within [-20, 20] deg., which represent the 

limits of the actuation system. The solutions tube in α is tailored around the reference signal 

ǂref, enforcing the required maximum tracking error of ±0.6 deg. Because of the previously 

mentioned oscillation, the tracking requirement is relaxed to ±0.8 deg. in the transonic 

phase. The final α hold phase is treated separately from the remainder of the trajectory. 

Indeed, both tracking requirements are less stringent in this phase, increasing up to ± 2 deg., 

and the vehicle flight performances are dramatically different in these low subsonic flight 

conditions than in the remainder of the trajectory. Separating the tracking requirements in 

these two parts of the trajectory allows for a clearer understanding of the method potentials. 

Because of this setting, two admissible solution tubes are introduced: the final tube, which 

enforces requirements only on the final α-hold phase, and the tracking tube, which enforces 

tracking requirements in the remainder of the trajectory. Note that since the linearization 

error is taken into account in the admissible solutions tube definition (see section 3.2), the ǂref 

tracking requirements to which the linearized solutions shall comply are tighter than the 

enforced ones of ± 0.2 deg. Fig. 4 shows the two required solutions tubes in α, as well as the 

above mentioned “reduced” bounds. Note that the nominal tuning does not comply with 

any of the two tubes. 

 

Fig. 4. Admissible solution tubes. Tracking (top) and Final (bottom). 
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4.1 Results 

The approximation phase results are collected in Fig. 5, showing {Πk}L, the partition into 
which the gain domain Π has been divided to obtain a meaningful linearization. Results 
show that the original nonlinear system is successfully approximated only in a subset of the 
gain domain. In the remainder of Π, the system state vector dependency on the gains is 
highly nonlinear, and prevents the system to be approximated by its time-varying 
linearization even in Πk subsets with the minimum allowed volume ǈ  (see section 3.1). The 
approximation phase results were obtained with a CPU time of ~ 10 hours on a standard 
personal computer. Note however, that its results do not depend on the admissible solutions 
tube, and are thus used for both the tracking and the final ones without the need of 
computing the approximation twice. The property clearance phase calls for a computational 
load that is only a fraction of the approximation one. In fact, evaluation of the inclusion test 
in Eq.(23) needs the numerical simulation only of the linear approximating systems, and 
nonlinear simulations are not involved at all. Fig. 6 collects the clearance phase results for 
the tracking tube. It can be seen how the inclusion test of Eq.(23) divides the blocks of the 
partition {Πk}L. The property clearance phase builds upon simulation of the linear 
approximations, and thus requires only about 1 hour of computation time. The region in 
which the gains comply with the tracking requirements, Π′A, is shown in Fig. 7 for both the 
tracking and final tubes. As anticipated, the compliance region of both tubes does not 
comprise the nominal tuning. Compliance to each of the two tubes calls for lower than 
nominal values of the scheduling gain of the proportional q action, k3s , coupled to higher 
proportional and integral scheduling gains of α, k1 and k2s , respectively. Requirements 
yielding to the final tube, however, are much more restrictive than those in the remainder of 
the trajectory, as can be seen by the small dimensions of the corresponding Π′A region. 

 

Fig. 5. Approximation results: {Πk}L  
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Fig. 6. Property Clearance results – Tracking tube. 

These results demonstrate one of the main advantages of the proposed approach, that is, 
the capability to support the physical understanding of all the causes for unsatisfactory 
performances of the FCL within the whole Π region, being confident of having covered all 
possible gain combinations of interest. Fig. 8 compares the compliance regions of the two 
tubes, which are disjoint by a very small offset. However, because the offset dimensions 
are comparable to the resolution at which the results have been obtained, the true 
compliance region of the tracking tube may extend as to intersect the final tube’s one. 
Even if this may in principle also not be the case, common sense suggests that a tuning 
lying near this offset would have tracking performances that do not violate significantly 
both tubes.  

At last, we present the nonlinear system’s simulation for a candidate tuning. In order to 
select this “optimal” tuning, πopt, we choose the root mean square (RMS) of the ǂref tracking 
error as a cost function. The so obtained optimal tuning is shown in Fig. 8 as well, and is 
compared to the nominal one in Table 1 and in Fig. 9. Results show that the optimal gain 
yields a significantly smaller RMS error in tracking αref than the nominal one, and improves 
the system behaviour in the final phase. 

 
 

Gains k1 , s-1 ; k2s ,  m· s·kg –1 ; k3s , kg·s –1·m –1. RMS error, deg 

π′ 1.25 4.48·10 –4 –7.76·10 3 0.34 

πopt 1.81 3.21·10 –4 –8.54·10 3 0.15 

Table 1. Comparison of nominal and optimal gains. 
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Fig. 7. Nominal tuning vs. compliance region Π′A. Tracking tube (top) and Final Tube 
(bottom)  
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Fig. 8. Comparison between tracking and final tubes compliance regions. 

 

 

Fig. 9. Selected gains nonlinear simulations: α time history. 
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5. Conclusion 

A novel approach to gain tuning has been developed, based on previous results that were 
obtained by the authors for a different problem. The approach specifically applies to 
gliding vehicles in the terminal phases of re-entry flight, and is capable of handling gain 
scheduled control laws under trajectory tracking requirements. Its capability of 
highlighting the causes for requirement violation, being confident of having covered all 
possible combinations of the controller gains, makes the developed technique an effective 
tool for driving the control law refinement, as shown in an application of practical 
engineering significance. The adoption of practical stability as a criterion for enforcing 
trajectory tracking requirements is promising thanks to its inherent capability of handling 
the original mission or system requirements. In fact, it allows taking explicitly into 
account trajectory time-varying effects in the tuning task, which can be significant for the 
applications of interest. The practical stability approach improves the accuracy in 
evaluating the control law performances with respect to frozen-time approaches, thus 
reducing the risk of highlighting effects that were not previously disclosed when applying 
numerical verification methods, such as Monte Carlo techniques. This would avoid the 
need of upgrading a control design tuning with scarce information on the causes for 
unsatisfactory performance, as it typically occurs when applying numerical verification 
methods early in the design cycle, thus streamlining the overall design cycle. In this sense, 
the proposed approach is though to be complementary both to classical LTI-based design 
tools and to numerical verification methods. 

One important issue of the method is in the number of gains that can be simultaneously 
treated, due to the exponential increase in the computational load. Nonetheless, its 
application so far suggests that, when the method is executed on a standard desktop 
computer, the maximum dimension of manageable problems is in the order of five, 
depending on the features of the specific application case, most notably its nonlinearity in 
the whole uncertainty domain. For the application shown in the chapter, the map relating 
the system state vector to gain values was determined to be heavily nonlinear. This 
feature is thought to be distinctive of most gain tuning problems, as suggested by 
common sense and relevant literature, even though further investigations would be 
needed for ascertaining this claim. This pronounced nonlinearity further limits the 
method applicability because accurate linear approximations are valid only in small 
subsets of the gain domain, thus calling for a refined partition, which causes an increase 
in the computational load. Nonetheless, distributed computing and the use of more 
powerful computing machines substantially increase the number of gains that can be 
taken into account. 

At last, the presented approach is based on the practical stability criterion, which allows 

translating tracking requirements in terms of the maximum tracking error. However, in 

most trajectory tracking applications, the RMS tracking error is also included in the 

requirements. Note that the RMS error is a convex function of the tracked variable. As such, 

defining an opportune Boolean property being true when the RMS error is below a certain 

threshold, one should be capable of devising an inclusion test similar to the one presented in 

this chapter. This would allow extending the approach for being capable of handling 

requirements on both maximum and RMS tracking errors. Further work will concern this 

possibility. 
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