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1. Introduction 

Crohn’s disease is a chronic inflammation of the gut that affects an estimated 800,000 people in 

North-America alone. Crohn’s disease most commonly affects the ileum, and to a lesser extent, 

the colon, however can be found throughout the entire gastro-intestinal tract (Shanahan, 2002). 

The cause of this disease is as yet largely unknown, despite tremendous progress in research 

efforts over the last decade. It is increasingly clear that inflammation and disease progression 

involves a complex interplay between the environment, host genes and microbes (Baumgart 

and Carding, 2007). Increasingly, and predominantly based on genomic analyses, involvement 

of components of the innate immune system have been recognized in inflammatory bowel 

disease (Baumgart and Sandborn, 2007). The first major susceptibilty locus that was identified 

for Crohn’s disease was the IBD1 locus, encoding nucleotide oligomerization domain 2 or 

NOD2 (Hugot et al., 2001; Ogura et al., 2001). Various variations in genotypes and single 

nucleotide polymorphisms have been identifed in NOD2 that are strongly associated with 

Crohn’s disease development (Economou et al., 2004; Lesage et al., 2002). In a recent genome-

wide study, a total of 71 loci were identified to be associated with Crohn’s disease, with the 

potential involvement of more genes (Franke et al., 2010). Among the genes identified were the 

autophagy-related 16-1 or ATG16L1 gene and the interleukin-23 (IL-23) receptor gene. 

Autophagy is a mechanism that regulates protein degradation and is essential for immune 

balance. Disturbance of this mechanism may lead to inflammation or disease and therapeutic 

applications of manipulating this mechanism are under investigation (Fleming et al., 2011). 

The IL-23 receptor is a key feature of the Th17 subset of T helper cells which are a critical 

component of the antibacterial defense (Abraham and Cho, 2009). Both IL-17 and the IL-23 

receptor ligand are currently targeted for therapy (De Nitto et al., 2010). 

The epithelium of the gut is an important component of innate immunity. Epithelial cells 
perform an essential, yet selective barrier function, physically separating the gut lumen from 
underlying cells and tissues (Peyrin-Biroulet et al., 2008). This physical barrier limits the 
exposure of microbes and infectious agents to the underlying mucosal immune system, 
while at the same time allowing exchange and uptake of fluids and nutrients. More than a 
physical barrier, the gut epithelium actively participates in host defense. Epithelial cells 

www.intechopen.com



 
Crohn's Disease 

 

18

form a critical link between mucosal immunity and the microbial intestinal flora via germ-
line encoded receptors and specific signaling pathways (Abreu, 2010; Koch and Nusrat, 
2009; Wells et al., 2010). For example, epithelial cells from distinct lineages express NOD2 or 
ATG16L1, critical for recognition and clearance of intracellular microbes and linked to 
Crohn’s disease as mentioned (Bevins, 2004, 2005; Kaser and Blumberg, 2011). Barrier 
functions of the gastro-intestinal tract is regulated by chemokines and cytokines released in 
underlying compartments as well (Zimmerman et al., 2008). The exact sites and mechanisms 
of how cytokines affect epithelial permeability is not known, however it involves mainly the 
Th1 cytokines tumor necrosis factor-ǂ (TNF-ǂ) and interferon-Ǆ (IFN-Ǆ). Therapy directed 
against these cytokines is currently widely applied in the clinic (Ford et al., 2011). 
Additionally, specialized epithelial cells have evolved in the gut that are critical in three 
areas: 1) Goblet cells secrete mucins and are a source of trefoil peptides, important for 
mucosal repair (McGuckin et al., 2011); 2) Paneth cells secrete antimicrobial peptides 
(Bevins, 2006; Ouellette, 2011); and 3) M cells transport antigen and micro-organisms, thus 
sampling the gut lumen (Miller et al., 2007). In this chapter, we will discuss in detail the 
active barrier function of the indivdual cellular components of the intestinal epithelium in 
context of immune homeostasis and Crohn’s disease. 
 

 

Fig. 1. Epithelial cells of the ileum. 

The ileum is predominantly populated by columnar enterocytes or columnar cells which 
provide essential barrier function to the gut, separating the lumen from underlying tissue. 
Specialized goblet cells produce mucus, the first line of defence against microorganisms, but 
also microhabitat for bacteria. Paneth cells produce a host of antimicrobial factors resulting 
in a relatively sterile environment in the crypt base. Poliplurent stem cells continually self-
replicate and differentiate to ensure high turnover rate of epithelial cells. M cells are 
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optimized for antigen sampling and transport and are in close proximity with underlying 
components of adaptive immunity.  

2. Goblet cells 

Goblet cells are glandular simple columnar epithelial cells that are found scattered among 
the epithelia of the intestinal and respiratory tracts, as well as the urogenital, visual, and 
auditory systems. The primary function of goblet cells is to secrete mucin into the lumen of 
the gut and airways. The majority of the cytoplasm of goblet cells is occupied by secretory 
granules containing a variety of proteins that form the mucus layer upon granule exocytosis. 
Rough endoplasmic reticulum, mitochondria, nucleus, and other organelles are located in 
the basal portion of the cell. The apical plasma membrane of goblet cells contains microvilli 
to increase the surface area for secretion.  

2.1 Mucus 

Mucus comprises a visoelastic layer of fluid that plays an important defensive role against 
foreign environmental substances. Mucus covers all exposed epithelia of mammals, as well 
as the epidermis of amphibians and the gills of fish. In addition to trapping and removing 
foreign substances, mucus serves to lubricate the some epithelial surfaces, principally those 
of the gastro-intestinal tract. A layer of mucus along the inner walls of the stomach is vital to 
protect gastric epithelial cells from the highly acidic environment. The average human body 
produces about one liter of mucus per day (Thorton, 2008). Mucus consists of water, salts 
and various macromolecules, including mucins, proteinases, proteinase inhibitors, 
proteoglycans, and defensive proteins. In the latter category are proteins such as lysozyme, 
lactoferrin, and immunoglobulins. Proper concentrations of these components are required 
for the optimum function of mucus, and an alteration in the quality or quantity of the 
individual constituents of mucus may lead to pathological conditions.  

2.2 Mucins 

Mucins are the primary protein constituents of mucus (Lillehoj and Kim, 2002). These high 

molecular weight glycoproteins contain variable numbers of tandem repeats (VNTRs) in 

which serine, threonine, and/or proline residues are highly enriched. Serines and threonines 

are responsible for extensive mucin glycosylation that contributes to size and charge 

heterogeneity of the molecules. Glycosylation within the VNTR takes place between the 

serine/threonine moieties of the peptide backbone and N-acetylgalactosamine of the 

oligosaccharides, characteristic of O-linked glycoproteins. In addition, a limited amount of 

N-linked glycosylation between asparagines residues of the protein backbone and N-

acetylglucosamine of the oligosaccharides also are present. Mucins can be broadly classified 

as either gel-forming/secreted mucins or membrane mucins. Gel-forming mucins are 

produced by goblet cells and account for the visoelastic property of the mucus layer as a 

result of protein cross-linking between mucin monomers. Cross-linking occurs following 

disulfide bonding between cysteine-rich D domains in the NH2- and COOH-termini of the 

proteins. Membrane mucins are expressed in a polarized fashion on the apical surface of all 

epithelial cells. Eighteen mucin (MUC) genes have been cloned and the particular 

distribution of mucin gene expression varies by epithelial type. In the gastro-intestinal tract, 

15 mucin glycoproteins are present (McGuckin et al., 2011). These include both gel-forming 
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(MUC2, MUC5AC, MUC5B, MUC7, and MUC19) and membrane (MUC1, MUC3, MUC4, 

MUC12, MUC13, MUC15, MUC16, and MUC17) mucins. 

2.2.1 MUC2, the major gel-forming mucin of the intestinal tract 

MUC2 is the major component of the secreted mucus barrier in the small and large 
intestines (Figure 2). MUC2 knockout mice spontaneously develop colitis, indicating that 
MUC2 is critical for colonic protection (Van der Sluis et al., 2006). The MUC2 gene product 
is a very large, greater than 5,100 amino acids in length, and contains two VNTRs with 
different amino acid sequences (Gum et al., 1994). The VNTR domain contains 50 -100 
threonine/proline-rich 23 amino acid continuous repeats, while the second is composed of a 
347 residue irregular and discontinuous serine/threonine/proline-rich repeat. MUC2 
contains four cysteine-rich D domains, three located at the NH2-terminus and the fourth at 
the COOH-terminus of the protein. This D domain organization is similar to that seen in von 
Willebrand factor, a glycoprotein involved in hemostasis. The MUC2 D domains contain a 
characteristic -cysteine-X-X-cysteine- sequence (where X is any amino acid) that mediates 
mucin oligomerization through disulfide bonding. The glycan moieties of MUC2 contain an 
equal fraction of neutral (40%) and sialylated (40%) residues with the remainder being 
sulphated (Karlsson et al., 1996). Mass spectrometry identified the sulfate group attached to 
C-6 of the N-acetylglucosamine moiety. 
 

D4D3D2D1

COOHNH2

Tandem repeats

 

Upper, MUC2 cDNA. D1, D2, D3 = dimerization domains; yellow = cysteine-rich regions; 
blue = cysteine knot. Lower, MUC2 protein. Tan = non-repeat NH2–terminal region; red = VNTRs; 
green = non-repeat COOH-terminal region. 

Fig. 2. Schematic structure of MUC2. 

2.2.2 MUC3, the major membrane mucin of the intestinal tract 

MUC3 is the most abundantly expressed membrane mucin in the small intestine (Kim and 
Ho). Here, MUC3 expression on epithelial cells shows a maturational gradient with 
increasing expression from the crypt to villus. The MUC3 protein consists of two subunits, 
an extracellular region containing heavily O-glycosylated VNTR domains and two 
epidermal growth factor (EGF)-like domains. The EGF-like regions are separated by a SEA 
(sperm protein, enterokinase, and agrin) module, containing a proteolytic cleavage site 
during biosynthesis. A membrane-spanning, hydrophilic region that is responsible for 
incorporation of MUC3 into the lipid bilayer and an intracellular cytoplasmic tail (CT) with 
potential phosphorylation sites involved in signalling, lie distal to the SEA domain. The 
MUC3 ectodomain may be shed from the cell surface by the activation of membrane-
associated metalloproteinases, by the separation of two subunits in the SEA domain, or by 
alternative splicing of its mRNA. Despite the mechanism involved, shed MUC3 contributes 
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to the mucus gel overlying the intestinal epithelium. In mice, the cysteine-rich EGF-like 
domains inhibit apoptosis and stimulate cell migration, implying a regulatory role in 
maintaining the structure and function of the intestinal epithelial layer. 

2.2.3 MUC1, a membrane mucin with signaling potential 

MUC1 was the first mucin gene to be cloned (Gendler et al., 1990; Lan et al., 1990). Several 
studies have provided evidence that MUC1 plays a critical role in the intestinal tract. First, 
mice deficient in MUC1 expression have reduced amounts of intestinal mucus (Parmley and 
Gendler, 1998). Second, lack of intestinal MUC1 mucin in knockout mice impairs cholesterol 
uptake and absorption (Wang et al., 2004). Similar to MUC3, MUC1 consists of a large 
extracellular domain which is heavily glycosylated through N-acetylgalactosamine O-
linkages, a single-pass transmembrane region, and a cytoplasmic CT (Figure 3). The MUC1 
ectodomain serves as a binding site for pathogenic microorganisms, including Pseudomonas 
aeruginosa (Kato et al.; Lillehoj et al., 2001), Helicobacter pyori (Linden et al., 2004; Linden et al., 
2009), Campylobacter jejuni (McAuley et al., 2007), Escherichia coli (Parker et al., 2010; Sando et 
al., 2009), and Salmonella enterica (Parker et al., 2010). During intracellular biosynthesis, the 
MUC1 ectodomain is autoproteolytically cleaved in its SEA domain to yield two 
noncovalently associated protein chains. The 72-amino acid CT domain of MUC1 contains 7 
evolutionally conserved tyrosine residues. Many of these tyrosines are phosphorylated, 
leading to MUC1 interaction with receptor and cytosolic kinases as well as various adapter   
 

TRIM46

5’ 3’

COOHNH2 VNTR CTT
MSEAL

1 2 3 4 5 6 7

 

Upper, the MUC1 gene is located on chromosome 1q21 between the genes for thrombospondin 3 
(THBS3) and tripartite motif containing 46 (TRIM46). Lower, the seven exon structure of the MUC1 
gene and corresponding protein regions. L, leader peptide; VNTR, variable number of tandem repeats; 
SEA, sperm protein, enterokinase, and agrin; TM, transmembrane; CT, cytoplasmic tail. 

Fig. 3. Genomic organization of MUC1. 

www.intechopen.com



 
Crohn's Disease 

 

22

proteins, including phosphoinositide 3-kinase (PI3K), Shc, phospholipase C-Ǆ (PLC-Ǆ), c-Src, 
and Grb-2 (Hattrup and Gendler, 2008; Theodoropoulos and Carraway, 2007). Binding of 
PI3K, c-Src, and Grb-2 to the CT have been experimentally verified, while Shc and PLC-Ǆ are 
only inferred based upon the presence of the predicted amino acid sequence motifs. Other 
proteins bind to non-tyrosine sites, including glycogen synthase kinase 3ǃ (GSK3ǃ), protein 
kinase C-ǅ (PKC-ǅ), and ǃ-catenin. Consensus sequences resembling an ITAM 
(immunoreceptor tyrosine-based activation motif) and ITIM (immunoreceptor tyrosine-
based inhibitory motif) are also present in the MUC1 CT region. Estrogen receptor ǂ (ERǂ), 
p53, p120ctn, ErbB1-4, adenomatous polyposis coli (APC), heat shock protein 70 (Hsp70), 
and Hsp90 also have been reported as binding partners of the CT, but specific amino acid 
residues have not been identified. Analysis of downstream signaling events indicated that 
the MUC1 CT activated a Ras → MEK1/2 → ERK1/2 pathway, but the mechanism is 
unclear. 

2.3 Mucus proteoglycans 

Proteoglycans are large molecular weight glycoconjugates characterized by variable 
numbers of glycan repeats (Meisenberg, 2006). The basic proteoglycan unit consists of a core 
protein with one or more covalently attached glycosaminoglycan chain(s) to a serine 
residue. The serine residue is generally in the sequence -serine-glycine-X-glycine-, although 
not every protein with this sequence has an attached glycan moiety. The chains are long, 
linear carbohydrate polymers that are negatively charged under physiological conditions, 
due to the occurrence of sulfate and uronic acid groups. As a result of the later 
modifications, proteoglycans are highly acidic in physiologic conditions allowing them to 
bind to cations, such as Na+, K+, and Ca2+. Three types of proteoglycans were shown to be 
secreted into mucus by epithelial cells cultured in vitro, hyaluronic acid containing 
proteoglycans, chondroitin sulfate containing proteoglycans and heparan sulfate containing 
proteoglycans (Kim, 1985; Paul et al., 1988; Wu et al., 1985). While the physiologic roles of 
proteoglycans in mucus remain largely unknown, suggested functions include epithelial 
development, remodeling, inflammation, and host defense (Forteza et al., 2001; Huang et al., 
1999; Ohkawara et al., 2000; Zhao et al., 1999). 

2.4 Mucus proteinases and proteinase inhibitors 

A number of proteinases are present in mucus, all of which known to be associated with 
inflammation and derived from inflammatory cells. Among these are elastase and various 
cathepsins from neutrophils and chymase and tryptase from mast cells. Neutrophil elastase 
has been shown to cause destruction of elastin (Snider et al., 1984), stimulate mucin release 
from goblet cells (Kim et al., 1987), and induce chemotaxis via production of IL-8 by the 
underlying epithelial cells ((Nakamura et al., 1992). Excess elastase released from 
neutrophils during injury and inflammation is balanced by several proteinase inhibitors, 
including ǂ1-anti-trypsin, soluble leukocyte protease inhibitor (sLPI), and elafin 
((Perlmutter and Pierce, 1989; Sallenave et al., 1993; Thompson and Ohlsson, 1986). 
Attenuated induction of sLPI and elafin has been reported in Crohn's disease (Schmid et al., 
2007). Chymase and trypase are proteinases produced by mast cells, the former being 
responsible for disruption of the epithelial cell barrier allowing antigens and inflammatory 
mediators to enter the intestinal mucosa, while the latter is responsible for stimulating 
mucus secretion as well as TGF-ǃ release from the extracellular matrix (Sommerhoff et al., 
1990; Taipale et al., 1995). 
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2.5 Trefoil peptides 

Trefoil peptides, or trefoil factors (TFFs), are a group of molecules that are characterized by 
having at least one copy of the trefoil motif, a 40-amino acid domain that contains three 
conserved disulfide bonds (Wong et al., 1999). Trefiol peptides are stable secretory proteins 
expressed in the gastro-intestinal tract. Their functions are not well defined, but they may 
protect the mucosa from insults, stabilize the mucus layer, and regulate healing of the 
epithelium. The close physical association between trefoil peptides and mucins supports 
these possible roles. The trefoil domain is found in a variety of extracellular eukaryotic 
proteins, including TFF1 (or protein pS), a protein secreted by the stomach mucosa, TFF2 (or 
spasmolytic polypeptide), a protein of about 115 residues that inhibits gastro-intestinal 
motility, and TFF3 (or intestinal trefoil factor, ITF). Other proteins with trefoil domains are 
Xenopus laevis stomach proteins xP1 and xP4, Xenopus integumentary mucins A.1 and C.1, 
Xenopus skin protein xp2, zona pellucida sperm-binding protein B (ZP-B), and intestinal 
sucrase-isomaltase. TFF1 and TFF3 contain one trefoil domain, TFF2 contains two domains, 
and the Xenopus proteins contain multiple copies. All three human proteins are clustered on 
chromosome 21q22.3. Overexpression of human TFF1 in mice was reported to reduce their 
susceptibility to dextran sodium sulfate (DSS)-induced colitis and TFF-deficient mice 
exhibited increased disease susceptibility (Mashimo et al., 1996; Playford et al., 1996). 
Unfortunately, however, these animal studies have not been translated into an effective 
clinical therapy (Mahmood et al., 2005). 

3. Paneth cell 

Paneth cells are specialized intestinal epithelial cells located at the base of ileal crypts in 
healthy individuals (Bevins, 2004; Ouellette, 2011). These cells are pivotal in maintaining the 
balance between the host and the microbiome. These cells act as sentinels for the detection of 
microbial molecules which are recognized by Toll-like receptors (TLRs), germ-line encoded 
receptors specific for bacterial and viral antigens. Genetic polymorphisms in these receptors 
and their signaling pathways affect Paneth cell function and have been associated with 
Crohn’s disease (Inohara et al., 2005; Kobayashi et al., 2005). Paneth cell function is regulated 
by two additional mechanisms, the so-called unfolded protein response or UPR and 
autophagy, a process involved in clearance of intracellular microbes. The process of 
autophagy is induced by stress in the endoplasmatic reticulum (ER), which in turn is 
activated by UPR. Genetic mutations in proteins involved in both of these mechanisms have 
been linked to Crohn’s disease as well. Variations in the autophagy protein ATG16L1 were 
identified in genome-wide studies and found to be associated with increased risk of disease 
development (Hampe et al., 2007; Rioux et al., 2007). Alterations in the gene encoding the 
UPR transcription factor protein Xbox-binding protein 1 or XBP-1 are signifiantly associated 
with inflammatory bowel disease in humans (Kaser et al., 2008). Further, loss of XBP-1 
decreases the number of Paneth cells and thus the antimicrobial capacity of the intestine and 
leads to spontaneous enteritis in mice (Kaser and Blumberg, 2009; Kaser et al., 2008). Paneth 
cells are equipped with a vast arsenal of antimicrobial agents which are deployed following 
the recognition of potential microbial threats. These include enzymes, such as lysozyme , 
trypsin, phospholipase A2 and matrix metalloproteases, cytokines such as TNF-ǂ and IL-17, 
as well as the bactericidal defensin peptides (Figure 4). In the following sections, we will 
discuss in detail the role of defensins as effectors of the innate immune system and their 
involvement in epithelial mucosal barrier function. 
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(Left) Light microscope image of isolated human ileal crypt. Paneth cells are localized at the base of the 
crypt as indicated. The box on the right lists confirmed compounds localized in dense secretory 
granules. 

Fig. 4. Localization and cellular contents of Paneth cells. 

3.1 Defensins 

Defensins constitute a major family of antimicrobial peptides that play a protective role 
against microbial invasion of various epithelial surfaces, including the skin, respiratory tract 
and gastro-intestinal tract. Primarily, these small cationic peptides act as effectors of the 
innate immune system with the ability to kill a variety of microbial pathogens, including 
bacteria, fungi and viruses (Ganz, 2003; Zasloff, 2002). Based on a difference in disulfide 
connectivity of six conserved cysteine residues, defensins have been divided in two families, 

termed  and . Both families are believed to have evolved from a common ancestral -
defensin gene (Patil et al., 2004; Schutte et al., 2002), and share similar tertiary structures 
despite low amino acid sequence identity (Hill et al., 1991; Pazgiera et al., 2006; Szyk et al., 

2006). In humans, -defensins are widely expressed in epithelial cells. Defensins of the -
family are expressed predominantly in neutrophils (termed human neutrophil peptides, or 
HNPs) or in ileal Paneth cells in the case of Human Defensin 5 and 6 (HD-5 and HD-6) 
(Porter et al., 2002; Selsted and Ouellette, 2005). 
In addition to their antimicrobial activities, increasing evidence suggests that defensins play 
a significant role in innate and adaptive immunity. Such functions include chemoattraction 
and immune cell activation and promotion of cell proliferation, often involving interactions 
with cellular receptors (Aarbiou et al., 2002; Biragyn et al., 2002; Grigat et al., 2007; Yang et 
al., 1999). The capacity to chemoattractant monocytes was first described for HNPs (Territo 
et al., 1989). Subsequently, HNPs were shown to chemoattract different subsets of T 
lymphocytes and immature dendritic cells (Chertov et al., 1997; Yang et al., 2000). Similar 

functions were reported for -defensins, which were shown to selectively chemoattract 
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immature dendritic cells and memory T lymphocytes (Yang et al., 1999; Yang et al., 2001). 

More recently, -defensins were shown to act as endogenous ligands for TLRs on immature 
dendritic cells directly. This interaction mediated signaling for dendritic cell maturation and 

triggered a polarized immune response in vivo (Biragyn et al., 2002). In the case of human -
defensin-2 (HBD-2), the observed chemotaxis of immature dendritic cells and memory T 
cells was shown to result from directly binding the chemokine receptor CCR6 (Yang et al., 

1999). Subsequently, a murine -defensin was shown to recruit tumor-infiltrating dendritic 
cell precursors through CCR6 also (Conejo-Garcia et al., 2004). In contrast to these earlier 

studies, it was reported recently that -defensins chemoattract mast cells and macrophages 
but not dendritic cells and lymphocytes and that CCR6 was not involved (Soruri et al., 2007). 

Specific receptors for the chemotactic activity of -defensins have not been identified. 

Several studies however have shown that also for -defensins this activity is blocked by 
pertussis toxin, indicating the involvement of Gi�-coupled receptors (Chertov et al., 1996; 
Yang et al., 2000). 

3.1.1 Alpha-Defensins and gastro-intestinal inflammation 

There is increasing evidence that aberrant defensin expression is correlated to inflammation 

of the gastro-intestinal tract. A specific deficiency of the enteric -defensin HD-5 was 

observed in patients suffering from ileal Crohn’s disease (Wehkamp et al., 2005b). 

Interestingly, the HD-5 deficiency was more pronounced in patients carrying loss-of-

function mutations in the cellular receptor NOD2, an intracellular receptor for the bacterial 

peptidoglycan component muramyl dipeptide (Inohara et al., 2005). NOD2 is 

predominantly expressed in the distal part of the ileum in a number of cell types including 

Paneth cells, which are the sole source of HD-5 (Bevins, 2006; Porter et al., 2002). In addition 

to recognition of bacterial ligands, NOD2 monitors the expression of enteric -defensins. 

Genetic polymorphisms in the NOD2/CARD15 gene have been identified to be tightly linked 

with susceptibility to Crohn’s disease (Hugot et al., 2001; Ogura et al., 2001) and with 

decreased defensin expression. 

A number of recent animal model studies have underscored the importance of NOD2 and 

defensin expression in relation to infection. Compared with wild-type mice, NOD2 deficient 

mice showed reduced expression of certain -defensins, resulting in increased susceptibility 

to oral infection by Listeria monocytogenes (Kobayashi et al., 2005). Similarly, mice that lack 

mature cryptdins (the murine orthologue for -defensins) are more susceptible to ileal 

colonization by non-invasive Escherichia coli (Wilson et al., 1999). Paneth cell expression of 

HD-5 rendered mice markedly resistant to oral, but not peritoneal, challenge with a virulent 

strain of Salmonella typhymurium (Salzman et al., 2003). Interestingly, HD-5 transgenic mice 

showed a striking loss of segmented filamentous bacteria and had fewer IL-17-producing 

lamina propria T cells (Salzman et al., 2010). These findings are in support of the notion that 

defensin deficiency may alter the microbiome, which in turn affects the adaptive immune 

response of the host. IL-17-producing T cells, however, were also observed in wild-type 

mice with functional defensins, in the specific absence of this class of bacteria. Additionally, 

HD-5 was shown to slightly improve mortality in lethal DSS-induced colitis in mice by 

intraperitoneal injection; however no effect on disease was noted when the defensin was 

administered orally (Ishikawa et al., 2009). This may suggest that HD-5 directly affects 

components of adaptive immunity in addition to affecting the microbiome. 
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A number of recent studies report on the role of ileal defensins in mucosal immunity and 
inflammation in humans. Single nucleotide polymorphisms in the gene encoding HD-5 have 
also been described recently in a New Zealand Caucasian population that may confer 
susceptibility to inflammatory bowel disease (Ferguson et al., 2008). Luminal processing of 
pro-HD-5 to its mature form was found to be impaired in Crohn’s patients specifically 
(Elphick et al., 2008). As in mice, human enteric defensins HD-5 and HD-6 are synthesized 
as pro-peptides in Paneth cells and processed after secretion by trypsin in humans (Ghosh et 
al., 2002). In the majority of Crohn’s disease patients, HD-5 appeared in a complex with its 
processing enzyme trypsin or chymotrypsin, thus rendering the peptide inactive (Elphick et 
al., 2008). Additionally, expression of HD-5 was markedly decreased in transplanted human 
small intestinal allografts (Fishbein et al., 2008). Rejection of allografts resembles Crohn’s 
disease clinically and pathologically (Podolsky, 2002; Shanahan, 2002). Notably, decrease in 
the expression of HD-5 preceded visible damage to the intestinal epithelium. Finally, 
expression of both HD-5 and HD-6 was reported to be non-significantly decreased in active 
ileal Crohn’s disease and decreased expression correlated positively with decreased Vil1 
expression, a marker for epithelial integrity (Arijs et al., 2009). 

3.1.2 Beta-Defensins and gastro-intestinal inflammation 

Impaired induction of -defensins in the mucosal epithelium has been predominantly linked 

to colonic Crohn’s disease (Fellermann and Stange, 2001; Wehkamp et al., 2002; Wehkamp et 

al., 2005a; Wehkamp et al., 2005c). The most widely studied -defensin in the context of gut 

inflammation is human -defensin-2 or HBD-2. Genetic polymorphisms (Fellermann et al., 

2006), and especially gene copy number of HBD-2 (Fellermann et al., 2006; Hollox, 2008; 

Hollox et al., 2003), have been identified as risk factors in colonic Crohn’s. More recently, 

expression of HBD-2 at both RNA and protein levels was found to be dysregulated in 

biopsies from colonic Crohn’s patients (Aldhous et al., 2009). Interestingly, in this study, 

HBD-2 expression correlated with IL-10 production, irrespective of variations in HBD-2 

gene copy number or variations in the HBD-2 promoter region. Additional studies on other 

members of the human -defensin family emphasize their involvement in mucosal defense. 

Expression of HBD-1 was found to be protective in colonic Crohn’s disease (Peyrin-Biroulet 

et al., 2010). Protective expression of HBD-1 occured via activation of the peroxisome 

proliferator-activated receptor (PPAR)-Ǆ with rosiglitazone (Peyrin-Biroulet et al., 2010) or 

independently via a single nucleotide polymorphism in the HBD-1 gene promoter region 

(Kocsis et al., 2008). Two studies have reported on colonic Crohn’s association of gene copy 

number of the gene encoding HBD-2, however with contrasting results (Bentley et al., 2010; 

Fellermann et al., 2006). 

4. M cells 

M cells, or microfold cells, are specialized epithelial cells of the ileum that have evolved to 
sample the gut lumen and relay this information to the underlying tissues. They are located 
in a region of the epithelium that is commonly referred to as the follicle-associated 
epithelium, or FAE, comprising the Peyer’s patches and underlying lymphoid follicles 
(Figure 5). M cells exhibit microfolds, but not microvilli, and display a thin glycocalyx 
compare with absorptive enterocytes, making them more accessible to microbes (Gebert, 
1996; Kyd and Cripps, 2008). Sensing and transport of microbes by M cells is facilitated by 
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the expression of TLRs, integrins and microbial adhesion molecules such as galectin-9 (Kyd 
and Cripps, 2008; Pielage et al., 2007). 
 

 

Microfold (M) cells specialize in antigen sampling of the gut lumen and act as a selective conduit to 
underlying components of adaptive immunity without compromising epithelial barrier function. 

Fig. 5. Structure of the follicle-associated epithelium. 

M cells do not harbor many lysosomes and do not express major histocompatibility (MHC) 

class II molecules, suggesting that most antigens that are transported are not degraded 

(Owen et al., 1986; Pickard and Chervonsky, 2010). Because of their relatively weak defenses 

compared with other sites of the ileal mucosa, M cells are exploited by pathogens as a 

potential entry site for infection. Such pathogens include EHEC and EPEC strains of 

Escherichia coli (Fitzhenry et al., 2002; Phillips et al., 2000), as well as Shigella flexneri and 

Salmonella typhymurium (Jensen et al., 1998). Viruses may also use M cells as a point of entry 

and specific receptors for HIV (Fotopoulos et al., 2002) and reovirus (Helander et al., 2003) 

on M cells have been identified. 

4.1 M cells and gastro-intestinal inflammation 

It is technically challenging to study human M cells in vitro, mainly because of the absence 

of clear cellular markers. Differentiation of enterocytes into M cells likely requires epithelial 

cell-T lymphocyte cross-talk as indicated by a co-culture model of these two types of cells 

(Kerneis et al., 1997). Most of our current knowledge on M cells and their role in gastro-

intestinal disease comes from animal studies. Various models of chemically induced 

intestinal inflammation have been used to study M cells, the FAE and interplay with the 

underlying Peyer’s patches. In an indomethacin-induced enteritis model in rats, M cell 

numbers increased initially and showed increased apoptosis in inflamed tissue only 

(Kucharzik et al., 2000; Lugering et al., 2004). In the DSS-induced model of colitis in mice, 

increased severity of disease was associated with lack of both Peyer’s patches and lymph 
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nodes, but not with mice lacking Peyer’s patches only (Spahn et al., 2002). Three further 

studies emphasize the role of epithelial cross-talk with the underlying mucosal tissue at the 

FAE. The SAMP1/Yit mouse strain develops spontaneous ileal inflammation (Matsumoto et 

al., 1998). In this model, as well as in a water avoidance stress-induced rat model, early 

inflammatory lesions were observed in the FAE (Kosiewicz et al., 2001; Velin et al., 2004). 

Very recently, the FAE and M cells were shown to be targeted specifically by adhesive-

invasive E. coli bacteria associated with Crohn’s disease (Chassaing et al., 2011). The 

interaction between these bacteria and Peyer’s patches of mouse and human was shown to 

depend on bacterial production of long, polar fimbriae. Such interactions may trigger the 

recruitment of subsets of dendritic cells or Th1 cells with increased potential for the 

production of TNF-ǂ, as observed in mucosa of Crohn’s disease patients (de Baey et al., 

2003; Koboziev et al., 2010; Kudo et al., 2004). 

5. Conclusion 

It is becoming increasingly evident that intestinal health requires a controlled and balanced 

interplay between microbes and the host. The host provides microbes with a unique 

environment of constant nutrition and temperture, whereas microbes aid in food 

degradation and shape host immunity. In maintaining this balance, the epithelium stands 

guard, constantly sampling and relaying messages to elicit a rapid immune response if 

neccesary. At the same time, epithelial cells are continually self-renewing and differentiating 

to cope with the dynamics of this balance and have evolved into specialized, recognizable 

subsets. Together, these subsets form a selective barrier consisting of physical, chemical and 

biological components. In spite of harboring a tremendous arsenal of defensive agents, this 

barrier does have weaknesses which can be exploited by potentially harmful organisms. 

Some of these weaknesses have become apparent in an environment where the host is 

genetically predisposed. The inability of the host to timely recognize or eliminate microbes 

provides a window of opportunity for penetration of the epithlium, which may eventually 

lead to inflammation.  

In addition to chemical drug treatment, biological therapy has proven its efficacy in 

treatment of active Crohn’s disease. In particular, treatment to eliminate excess tumor 

necrosis factor alpha or decrease cell trafficking and adhesion by administration of 

monoclonal antibodies is clinically used in mild to severe cases. Both excess of tumor 

necrosis factor alpha as well as increased cell adhesion negatively affect the barrier function 

of the epithelium. Whether an epithelial imbalance is primarily caused by changes in innate 

or adaptive immunty is currently unclear and will likely vary between individuals. It is clear 

that disturbance of this delicate balance by environmental factors, pathogens or underlying 

genetic predispositions of the host may lead to inflammation. Clinically, an imbalance 

caused by one of these factors is often indistuinguishable from the other. For these reasons, 

having an understanding of the patients genetic background may help to determine the 

preferential clinical therapy. Restoration of epithelial barrier function will be an important 

goal of any therapy, either by strenthening the antibacterial capacity of the gut or by 

restoring the underlying inflammatory cascade. Additionally, as more and more is revealed 

about the "black box" which we refer to as the microbiome in the human intestinal tract, 

alternative approaches to restoration of immune balance may become apparent. 
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