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Microbial Weed Control  
and Microbial Herbicides 

Tami L. Stubbs and Ann C. Kennedy 
Washington State University and United States Department of Agriculture –  

Agricultural Research Service 
United States of America 

1. Introduction 

Microbial weed control represents an innovative means to manage troublesome weeds and 
utilize the naturally occurring biological herbicides produced by soil microorganisms. These 
compounds kill or hinder the growth of weeds so that beneficial plant species can gain a 
competitive advantage. The vast diversity of microorganisms in our environment is largely 
untapped, and the potential discovery and characterization of these microbial compounds 
represents an opportunity to complement chemical herbicides, or reduce the potential for 
erosion or soil degradation due to tillage for weed control. Invasive weeds continue to 
threaten the productivity of agricultural lands and natural areas; however, for many weeds 
adequate, cost-effective control measures presently are not available (Jones & Sforza, 2007). 
Discovery of biological controls for invasive plants represents an alternative way to slow the 
spread of these weeds using natural enemies (Jones & Sforza, 2007). Further advances in 
microbial genetics will continue to improve our understanding of the wealth of genetic 
diversity and potential in the soil and to better use plant-microbe interactions. The 
development of biocontrol agents would lessen the need for chemical herbicides and 
provide greater options for weed management. Microbes have a place in integrated, 
ecologically based weed management and their potential is only just being realized.  

The concept of utilizing microbial herbicides has been explored for more than a quarter 

century, but there remain many challenges to overcome before they can be widely used in 

agricultural, range and forest lands, or waterways. Those challenges include improving the 

efficacy of the microbial activity, survival of microorganisms, persistence of the suppressive 

compound, delivery systems, determining host range, and avoiding injury to non-target 

organisms. Other considerations are interactions with chemical herbicides, regulations, 

commercialization and mass production, and economic feasibility. 

Biological controls for weeds can generally be divided into one of three general types:  
classical, augmentative or inundative, and cultural. The classical approach involves the 
introduction of a control agent into an area where it did not previously exist, and where the 
agent eventually becomes able to sustain itself. An example of this is the release of Puccinia 
chondrillina to control Chondrilla juncea (rush skeletonweed; Barton, 2004). Augmentative or 
inundative biological control refers to repeated application of a foreign agent with the intent 
to reduce weed densities to a level where beneficial plant species can compete. An example 
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of an augmentative control is Colletotrichum gloeosporioides for control of sicklepod (Senna 
obtusifolia L.; Boyette, 2006). Cultural weed control might include crop rotation, fallow 
periods, sanitation to prevent the introduction and spread of weed seeds, and maintaining 
soil fertility to produce healthy crop plants. The successful history of insects in weed control 
and the ever increasing list of successful insect biological controls placed in the hands of 
land managers offers hope for microbial weed control. Use of biological herbicides requires 
a shift in thinking from the use of chemical herbicides, as biological controls will most likely 
not eliminate a weed problem as quickly or as thoroughly as some herbicides on an annual 
basis; the goal is to inhibit the weed pest below an economically damaging threshold over a 
long time period in order for beneficial species to gain a competitive advantage (Ghosheh, 
2005). Among the criteria that Charudattan (2005) lists for determining which invasive 
plants make suitable candidates for microbial herbicides are those that have a number of 
available pathogens that might be suitable for biological control, and where the cost of using 
that control will be competitive with other control measures. There are a number of reasons 
for developing microbial herbicides, and those include the potential for herbicide resistant 
weeds; chemical herbicides may persist in soil for longer than one growing cycle, thus 
limiting options for crop rotations; there may be limitations on herbicide registrations for 
certain crops; there is the potential for fewer undesirable effects to the environment than 
from chemical herbicides; and finally there is the potential for injury to non-target 
organisms (Guske et al., 2004). Special considerations are needed for management of 
parasitic weeds (Sauerborn et al., 2007). Herbicide use to control parasitic weeds is difficult, 
because the greatest damage to the host plant has often occurred before the parasitic weed 
emerges above the soil surface. Another challenge is that parasitic weeds are closely related 
to their hosts, and selective control with herbicides is difficult (Sauerborn et al., 2007). 

The various regions of the world may be plagued by specific invasive weed problems, while 
other weeds are problematic worldwide. No matter whether they are worldwide problems 
or regional challenges, many are elusive to management efforts. These weeds vary by region 
and ecosystem, and several microorganisms have been studied or are under development in 
greenhouse or field studies as potential sources for microbial herbicides (Table 1A and B). 

 
Weed Pest Ecosystem Region Biocontrol agent Reference 

Abutilon theophrasti
(Velvetleaf)  

Croplands U.S., Canada Fusarium oxysporum; 
Colletotrichum 
coccodes; Pseudomonas 
putida & Acidovorax 
delafieldii 

Kremer & Schulte, 
1989; Wymore & 
Watson, 1989; Owen 
& Zdor, 2001 

Ailanthus altissima (Tree-
of-heaven) 

Native 
forests, 
urban areas

North America, 
Europe 

Aecidium ailanthi J.Y. 
Zhuang sp. nov.; 
Coleosporium sp.; 
Fusarium oxysporum f. 
sp. perniciosum; 
Verticillium albo-atrum  

Review by Ding et 
al., 2006; Schall & 
Davis, 2009 

Alternanthera 
philoxeroides 
(Alligatorweed)  

Aquatic, 
upland sites

Worldwide Nimbya alternantherae Pomella et al., 2007 

Amaranthus spp. 
(Amaranthus) 

Croplands Europe, North 
America 

Phomopsis 
amaranthicola 

Rosskopf et al., 2006 
 

Amaranthus retroflexus
(Redroot pigweed) 

Croplands Europe, North 
America 

Alternaria alternata Lawrie et al., 2002a 
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Weed Pest Ecosystem Region Biocontrol agent Reference 

Amaranthus hybridus
(Pigweed), Senna 
obtusifolia (Sicklepod), 
Crotalaria spectabilis 
(Showy crotalaria)  

Croplands North America Phomopsis 
amaranthicola, 
Alternaria cassia, 
Colletotrichum 
dematium, Fusarium 
udum

Chandramohan & 
Charudattan, 2003 

Arceuthobium tsugense
(Hemlock dwarf 
mistletoe) 

Coniferous 
forests 

Vancouver Island, 
Canada 

Neonectria 
neomacrospora 

Rietman et al., 2005 

Brunnichia ovata 
(Redvine),  Campis 
radicans 
(Trumpetcreeper),  
Pueraria lobata (Kudzu) 

Croplands, 
wastelands, 
natural 
areas 

Southern U.S. Myrothecium 
verrucaria 

Boyette et al., 2006, 
2008a  

Cannabis sativa 
(Ditchweed)  

Croplands, 
grasslands 

Kazakhstan Fusarium oxysporum f. 
sp. cannabis 

Tiourebaev et al., 
2001 

Carduus pycnocephalus 
(Italian thistle) 

Grasslands, 
woodlands 

Tunisia Puccinia carduorum Mejri et al., 2010a 

Centaurea diffusa 
(Diffuse knapweed), 
Centaurea maculosa 
(Spotted knapweed)  

Rangelands Western U.S., 
Canada 

Fusarium spp. Caesar et al., 2002 

Chenopodium album
(Common 
lambsquarters)  

Croplands Worldwide Ascochyta caulina Ghorbani et al., 2002; 
Vurro et al., 2001 

Chrysanthemoides 
monilifera ssp. monilifera 
(Boneseed)  

Natural 
areas 

Southeastern 
Australia 

Endophyllum 
osteospermi 

Wood & Crous, 2005 

Cirsium arvense (Canada 
thistle)  

Croplands, 
rangelands, 
pastures, 
roadsides 

Temperate regions 
of northern 
hemisphere 

Phyllosticta cirsii; 
Stagonospora cirsii; 
Alternaria cirsinoxia; 
Pseudomonas syringae 
pv. tagetis; Mix of 
Phoma destructiva, 
Phoma hedericola, 
Mycelia sterila, Phoma 
nebulosa, Phomopsis 
cirsii 

Evidente et al., 2008;  
Yuzikhin et al., 2007;  
Bailey, 2004; 
Gronwald et al., 
2002; Tichich & Doll, 
2006; Guske et al., 
2004; Leth et al., 2008 

Cirsium arvense (Canada 

thistle), Ranunculus acris 

(Tall buttercup) 

Pasture New Zealand Sclerotinia sclerotiorum Bourdot et al., 2006a 

Damasonium minus

(Starfruit)  

Croplands 

(rice), 

aquatic 

Australia Plectosporium alismatis Jahromi, 2007  

Eichhornia crassipes  

(Water hyacinth)  

Aquatic Tropical, sub-

tropical regions 

Alternaria eichhorniae

isolate 5;  Cercospora 

piaropi 

Shabana & 

Mohamed, 2005; 

Shabana, 2005;  

Tessman et al., 2008 

Euphorbia esula/virgata

(Leafy spurge)  

Rangelands, 

natural 

areas 

North America Uromyces scutellatus Caesar, 2006 
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Weed Pest Ecosystem Region Biocontrol agent Reference 

Euphorbia heterophylla
(Wild poinsettia)  

Croplands 
(soybean) 

Brazil Sphaceloma poinsettiae Nechet et al., 2004 

Galium spurium (False 
cleavers)  

Croplands Canada Plectosporium 
tabacinum 

Zhang et al., 2002 

Gaultheria shallon (Salal) Native 
forests 

Canadian and 
American Pacific 
Coast 

Phoma exigua; 
Valdensinia heterodoxa 

Zhao & Shamoun, 
2006;  Vogelgsang & 
Shamoun, 2004; 
Wilkin et al., 2005 

Hydrilla verticillata 
(Hydrilla) 

Aquatic U.S. and 
worldwide 

Fusarium culmorum; 
Mycoleptodiscus 
terrestris 

Shabana et al., 2003; 
Shearer & Jackson, 
2006 

Isatis tinctoria (Dyer’s 
woad)  

Natural 
areas 

Western North 
America 

Puccinia thlaspeos Kropp et al., 2002; 
Kropp & Darrow, 
2006

Lantana camara 
(Lantana)  

Natural and 
cultivated 
lands 

South Africa Mycovellosiella 
lantanae var. lantanae; 
Corynespora cassiicola 
f. sp. lantanae

Den Breeyen & 
Morris, 2003; Pereira 
et al., 2003 

Matricaria perforata
(Scentless chamomile)  

Croplands Canada Colletotrichum 
truncatum 

Graham et al., 2006, 
2007; Peng et al., 
2005a 

Miconia calvescens 
(Velvet tree; miconia)  

Natural 
areas

Hawaii and French 
Polynesia

Ditylenchus 
drepanocercus 

Seixas et al., 2004 

Nasella neesiana (Chilean 
needle grass)  

Pastures, 
grasslands

Australia, New 
Zealand

Uromyces pencanus Anderson et al., 2010 

Orobanche cumana 
(Sunflower broomrape) 

Croplands Mediterranean 
region, southeast 
Europe

Fusarium oxysporum f. 
sp. orthoceras 

Müller-Stöver & 
Sauerborn, 2007 

Orobanche ramosa 
(Broomrape; branched 
broomrape)  

Croplands Central & western 
Europe 

Fusarium oxysporum
(FOG); Fusarium spp. 

Müller-Stöver et al., 
2009; Kohlschmid et 
al., 2009; Boari & 
Vurro, 2004 

Orobanche aegyptiaca
(Egyptian broomrape)  

Croplands India, Israel Fusarium solani Sharma et al., 2011; 
Dor & Hershenhorn, 
2009

Orobanche crenata, 
Orobanche foetida 
(Broomrape)  

Croplands Northern Tunisia Pseudomonas 
fluorescens Bf7-9 

Zermane et al., 2007 

Papaver somniferum
(Opium poppy)  

Illicit plants Pleospora papaveracea Bailey et al., 2004  

Portulaca oleracea 
(Common purslane), 
Trianthema 
portulacastrum (Horse 
purslane), Euphorbia 
maculata (Spotted 
spurge), Euphorbia 
supina (Prostrate 
spurge) 

Tomato 
fields 

Southeastern U.S. Myrothecium 
verrucaria 

Boyette et al., 2007a 

Raphanus raphanistrum
(Wild radish)  

Croplands, 
vineyards 

Australia Hyaloperonospora 
parasitica; Pseudomonas 
fluorescens 

Maxwell & Scott, 
2008; Flores-Vargas 
& O’Hara, 2006 
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Weed Pest Ecosystem Region Biocontrol agent Reference 

Salsola kali (Russian 
thistle)  

Croplands, 
pastures, 
rangelands 

Western U.S., 
Eurasia 

Uromyces salsolae Hasan et al., 2001 

Schinus terebinthifolius
(Brazilian peppertree)  

Forests Florida, U.S. Neofusicoccum 
batangarum 

Shetty et al., 2011 

Senecio vulgaris 
(Common groundsel)  

Croplands 
(carrots) 

Switzerland Puccinia lagenophorae Frantzen & Müller-
Scharer, 2006 

Senna obtusifolia 
(Sicklepod)  

Croplands Southeastern U.S. Colletotrichum 
gloeosporioides 

Boyette et al., 2007b 

Sesbania exaltata (Hemp 
sesbania)  

Croplands Southern U.S. Colletotrichum 
truncatum 

Boyette et al., 2007c, 
2008b 

Sonchus arvensis 
(Perennial sowthistle)  

Croplands North America, 
Europe 

Alternaria sonchi Evidente et al., 2009a 

Striga hermonthica 
(Striga, Witchweed)  

Croplands Africa Fusarium oxysporum
(Foxy 2; PSM 197); F. 
oxysporum (4-3-B); F. 
nygamai; Pseudomonas 
fluorescens; P. putida 

Venne et al., 2009; 
Yonli et al., 2004; 
Ahonsi et al., 2002 

Taraxacum  officinale
(Dandelion)  

Turfgrass Worldwide Phoma herbarum; 
Phoma macrostoma; 
Sclerotinia minor 

Stewart-Wade & 
Boland, 2004; Zhou 
et al., 2004; Abu-
Dieyeh & Watson, 
2006, 2007 

Ulex europaeus (Gorse)  Native 
areas, 
pastures, 
forests 

New Zealand Chondrostereum 
purpureum; Fusarium 
tumidum 

Bourdot et al., 2006b; 
Yamoah et al., 2008  

Xanthium strumarium
(Common cocklebur)  

Croplands Southern U.S. Alternaria helianthi Abbas et al., 2004 

Xanthium occidentale
(Noogoora burr)  

Croplands, 
rangelands 

Australia Puccinia xanthii VanKlinken & 
Julien, 2003 

Table 1A. List of current biological control research projects on dicotyledonous weed species 
that have shown promise in greenhouse and/or field trials, including the invasive weed 
species, ecosystem, region of importance, biological control agent and reference. 

Biological herbicides represent a means to reduce dependence on synthetic herbicides; focus 
on ecologically grounded methods of management; reduce weed seed bank populations 
through environmentally friendly practices; and potentially reduce costs of weed control in 
crop production, rangeland restoration, forestry and aquatic systems (Bailey et al., 2010;  
Kennedy & Stubbs, 2007).  

2. Challenges for weed control with microbial herbicides 

The list of challenges in developing a successful microbial herbicide is long. Once a potential 

biological control agent is identified, the first challenge lies in reproducing lab and/or 

greenhouse results successfully in the field. The potential biological control agent and the 

toxin responsible for weed inhibition must be able to survive the harsh, and often 

unpredictable, environmental conditions that exist in the field. Li & Kremer (2006) showed 

inhibition of several weed species using rhizobacteria isolated from various weed hosts in 
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Weed Pest Ecosystem Region Biocontrol agent Reference 

Aegilops cylindrica
(Jointed goatgrass)

Croplands Western U.S. Pseudomonas spp.; 
Xanthomonas spp. 

Kennedy & 
Stubbs, 2007 

Avena fatua (Wild 
oat) 

Cereal crops, 
croplands, 
native areas 

North America, 
Europe, 
Australia 

Fusarium avenaceum; F. 
culmorum; Drechslera 
avenacea (conidial state 
of Pyrenophora 
chaetomioides); Puccinia 
coronate f. sp. avenae 

deLuna et al., 
2011; Ghajar et 
al., 2006; 
Carsten et al., 
2001 

Bromus diandrus 
(Great brome) 

Croplands Tunisia Pseudomonas trivialis 
strain X33D 

Mejri et al., 
2010b 

Bromus tectorum 
(Downy brome; 
cheatgrass) 

Croplands, 
rangelands, 
natural areas

Western North 
America 

Pseudomonas 
fluorescens strain D7; 
Pyrenophora 
semeniperda; Ustilago 
bullata 

Kennedy et al., 
1991, 2001; 
Meyer et al., 
2001, 2007  

Digitaria sanguinalis
(Giant crabgrass; 
large crabgrass) 

Croplands China Curvularia eragrostidis 
QZ-2000; C. intermedia

Zhu & Qiang, 
2004; Jiang et 
al., 2008; Tilley 
& Walker, 2002 

Elytrigia repens 
(Quackgrass) 

Croplands Temperate 
regions of 
northern & 
southern 
hemisphere 

Ascochyta agropyrina 
var. nana 

Evidente et al., 
2009b 

(Grasses) Croplands Australia Pyrenophora 
semeniperda 

Medd & 
Campbell, 2005 

Microstegium 
vimineum (Japanese 
stiltgrass) 

Forests Eastern U.S. Bipolaris sp. Kleczewski & 
Flory, 2010 

Poa annua (Annual 
bluegrass) 

Turfgrass Japan Xanthomonas 
campestris pv. poae (JT-
P482) 

Imaizumi et al., 
1999 

Setaria viridis 
(Green foxtail) 

Croplands Worldwide 
 

Drechslera gigantea; 
Exserohilum rostratum; 
E. longirostratum; 
Pyricularia setariae 

Casella et al., 
2010; Green et 
al., 2004 

Table 1B. List of current biological control research projects on monocotyledonous weed 
species that have shown promise in greenhouse and/or field trials, including the invasive 
weed species, ecosystem, region of importance, biological control agent and reference. 

greenhouse studies. They noted the importance of greenhouse studies as a step toward 
identifying isolates that may be suitable for testing under the more variable conditions of 
the field, where there is greater competition from indigenous organisms and unpredictable 
environmental factors. In any case, the conditions under which a microorganism best 
survives depend on the microorganism itself and it cannot be assumed to be the same for all 
biocontrol agents. Cool, moist conditions are required for survival of the deleterious 
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rhizobacteria (DRB) used to control jointed goatgrass (Aegilops cylindrica) and downy brome 
(Bromus tectorum) in the field (Kennedy & Stubbs, 2007). For greatest biocontrol success, field 
application of organisms should be timed when rains are expected. On the other hand, 
Boguena et al. (2007) found that extremely cold temperatures reduced the ability of Ustilago 
bullata to infect downy brome and may limit its use as a biological control. One challenge to 
the development of fungal bioherbicides is the inability to infect the weed pest without a 
period of free water retention (Chittick & Auld, 2001). Favorable moisture and temperature 
conditions are critical to the efficacy of many mycoherbicides. Tichich et al. (2006) found that 
for optimum population growth of the pathogen Pseudomonas syringae pv. tagetis targeting 
Canada thistle (Cirsium arvense), periods of wet weather were required. This moisture 
requirement often limits candidates for biocontrol. After investigating the dew period 
requirements of three fungal pathogens that infected green foxtail (Setaria viridis), Peng & 
Boyetchko (2006) found that Drechslera gigantea was the best choice for control of green 
foxtail because this pathogen was the most virulent and it did not require a specific dew 
temperature for efficacy. 

For successful biocontrol, the microorganism’s growth stage needs to be matched with the 

period of greatest vulnerability of the weed. Studies are needed to ensure that the most 

virulent stage of biocontrol agent growth also coincides with the susceptible host habit and 

an active growth period of the host. The efficacy of Plectosporium alismatis to reduce starfruit 

(Damasonium minus (R. Br.) Buch) in rice was increased by using conidia and 

chlamydospores (Cliquet & Zeeshan, 2008) and applying the biocontrol agent on juvenile 

rather than older starfruit (Jahromi, 2007). Qiang et al. (2006) found that the mycelia of 

Alternaria alternata strain 501 were able to infect the host plant, Eupatorium adenophorum, in a 

much shorter time than with conidia. The Pseudomonas fluorescens strain D7 has the greatest 

efficacy on downy brome when the bacterium is applied in the fall. In addition, populations 

of P. fluorescens D7 in soil are greatest in the fall and spring, which coincides with active root 

growth of downy brome (Kennedy et al., 1991).  

Another challenge to successful microbial herbicides is developing strains that are effective 

against weed populations with high genetic diversity. Diversity within a species can lead to 

inconsistent results with biocontrol measures (Bailey, 2004; Ward et al., 2008). Biological 

control isolates may be specific to the region where they were first isolated, for example Ash 

et al. (2008) studied fungal pathogens from Korea and Australia, and found that Korean 

isolates showed less pathogenicity on Australian weeds than the Australian isolates. The 

efficacy of Sclerotinia minor on dandelion (Taraxacum officinale) was dependent upon weed 

accession, age and plant competition (Abu-Dieyeh & Watson, 2007). Both physiological and 

ecological considerations need to be examined for successful biocontrol interactions.  

Prior to commercialization of a biological herbicide, extensive host-range studies must be 
completed to determine effects of the agent on non-target organisms in order to minimize any 
harmful effects. Potential microbial herbicides must be virulent on the target species, while 
non-target plants remain disease-free (Bailey, 2004). Wapshere’s (1974) concept of concentric 
spheres of related plant species is a starting point for investigations of non-target plant species. 
In host-range studies of Alternaria alternata, a potential biological control of water hyacinth 
(Eichhornia crassipes), the biocontrol agent also inhibited the weed water lettuce (Pistia stratiotes 
L.; Mohan Babu et al., 2002). They evaluated 29 economically and environmentally significant 
species that encompassed more than 18 families. After finding that only two plant species were 
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inhibited, they concluded that A. alternata would not be harmful to any economically 
important plants. Kennedy et al. (2001) found that Pseudomonas fluorescens strain D7 inhibited 
the target weed, downy brome, a few other Bromus species, jointed goatgrass and medusahead 
(Taeniatherum caput-medusae) in bioassays, greenhouse and field studies. They investigated 
representatives from a wide array of families that included native, crop and weed species, 
while concentrating on familes, tribes, subtribes and accessions closely related to Bromus 
species. No dicots and only a few monocots were negatively affected by the bacterium. While a 
few other grasses were suppressed slightly by P. fluorescens D7 in bioassays, they were not 
suppressed in greenhouse studies using nonsterile soil. These two examples illustrate the 
importance of extensive testing of other plant species. The lack of host-range testing often 
leads to the early demise of a potential biocontrol agent. 

Other challenges are large-scale production and storage, survival of the organism, 

requirement of the agent for formulation, shelf-life of the organism, and delivery system of 

the biocontrol agent to the host plant. The ability to produce large quantities of microbial 

products, and maintain survival of the organisms, are the major obstacles to field-scale 

application of biological control agents (Amsellem et al., 1999). Teshler et al. (2007) 

examined shelf life of the Sclerotinia minor bioherbicide and found that storage temperatures 

less than  11oC  increased S. minor shelf life, but CO2 did not affect shelf life. Cooler storage 

temperatures helped to prolong the shelf life of Fusarium oxysporum (Foxy2 and PSM197) for 

control of Striga; however, vacuum packing was not helpful. The fungicide Apron XL 

enhanced shelf life, but another fungicide, Ridomil Gold (both fungicides Metalaxyl-M, 

Syngenta, Basle, Switzerland & Germany), did not (Elzein et al., 2009). The authors 

attributed this difference to the higher recommended application rate for Ridomil Gold, or 

possibly that Apron XL is ineffective against ascomycetes such as Fusarium oxysporum. While 

most of the microbial herbicides developed to-date have been mycoherbicides, bacterial 

herbicides are becoming available and have different challenges and advantages. These 

include simpler fermentation processes, ease of upscaling and mass-production, production 

of secondary metabolites and lack of spore formation that may require specific growth 

conditions (Li et al., 2003).  

Application technology and cultural practices also affect the efficacy of microbial 
herbicides applied in field situations. Aerosol applications in the field may need different 
inoculum levels than what are found to be successful in greenhouse studies. In addition, 
droplet size, and spray direction may need to be readjusted to reach the weed or soil for 
greatest weed reduction (Lawrie et al., 2002b). Byer et al. (2006) found that finer droplet 
size led to greater spray retention of Colletotrichum truncatum on scentless chamomile and 
Colletotrichum gloeosporioides f. sp. malvae on round-leaved mallow. Peng et al. (2005b) 
looked at spray retention for efficacy of the biological control agent Pyricularia setariae on 
green foxtail. They looked at sprayer type and nozzle size for varying application rates 
and droplet sizes. In general, finer droplet size was more advantageous, and the authors 
suggested further study with other factors such as use of adjuvants and formulations. 
Boyette et al. (2007b) found that Colletotrichum gloeosporioides was an effective biocontrol 
agent of sicklepod in soybean; however, the wider row spacings required repeat 
applications of the agent for adequate weed suppression. The challenges to successful 
biocontrol are many, and continued research and development are needed to offer the 
alternative of microbial weed management.  
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3. Successful microbial herbicides   

The majority of biological herbicides developed to-date are mycoherbicides; however, 
several bacterial herbicides are under development as well. A screening procedure for a 
bacterial biological control agent has been developed by the authors (Figure 1). Our 
screening procedure takes advantage of the soil microbial community and the diversity 
within. This screening includes sampling the soil and plant material at the peak of 
population growth and when the suppression naturally occurs. An initial assay can separate 
the weed-suppressive microorganisms from the bulk of the native population. Further 
multiple screenings on various plants are suggested to get rid of those isolates that may also 
inhibit beneficial plants. While inhibition of the target weed is critical, non-host range must 
be determined early in the process to ensure the product progresses through the registration 
process and eventually becomes marketable. Both steps need to be thorough to ensure that 
no lesser known, but economically important, host is detected later in the process. Souissi 
and Kremer (1998) utilized a multiple-well plate procedure with leafy spurge (Euphorbia 
esula L.) callus to rapidly determine phytotoxicity of rhizobacterial isolates, and Vidal et al. 
(2004) have developed a successful method to produce yellow starthistle (Centaurea 
solstitialis L.) calli for bioassay screening of biocontrol pathogens such as Phoma exigua. A 
quick substitute bioassay will reduce the length of time needed for the initial screenings. In 
many cases, a quick screen is not possible (Kennedy et al., 1991), but automating data 
recording can often make data collection easier (Doty et al., 1994). 

 

Fig. 1. Flow of assays to obtain a biological control organism from soil that successfully 
suppresses the growth of target organisms but has a limited host range and does not inhibit 
beneficial plant species. 
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Since the early 1980’s, there have been several successful biological herbicides released to 
the market. Biomal® (ATCC 20767) Colletotrichum gloeosporioides  f. sp. malvae, was 
developed as a weed biocontrol agent against round-leaved mallow (Malva neglecta) and 
registered in 1992. DeVine was marketed as a control for stranglervine (Morrenia odorata) in 
citrus, and Collego was used to control northern jointvetch (Aeschynomene virginica) in rice. 
Velgo is a potential mycoherbicide for control of velvetleaf in the U.S. and Canada 
(Mortensen, 1998; Owen & Zdor, 2001). DeVine and Collego were registered for use in the 
United States, and each controls a single weed species. Four bioherbicides released in 
Canada included two strains of Chondrostereum perpureum (HQ1 (Myco-Tech Paste) and PFC 
2139 (Chontrol Paste)) for control of trees and shrubs (Becker et al., 2005), Colletotrichum 
gloeosporioides f. sp. malvae to control round-leaved mallow (Cross and Polonenko, 1996; no 
longer available due to small market size), and Sclerotinia minor (IMI 3144141) for control of 
dandelions (Abu-Dieyeh & Watson, 2007; Bailey et al., 2010). CAMPERICO (Xanthomonas 
campestris pv. poae isolate JT-P482) was registered in Japan for control of annual bluegrass 
(Poa annua L.) in 1997 (Imaizumi et al., 1999). The fungal pathogen Alternaria destruens strain 
059 (Smolder G and Smolder WP) was registered in the U.S. in 2005 for control of dodder 
(Cuscuta sp.) in field crops and ornamental plants (USEPA, 2005).  

The mode of action of each biocontrol agent is as varied as the microorganisms themselves 
(de Luna et al., 2011). They range from simple but effective compounds like cyanide 
(Kremer & Souissi, 2001; Owen & Zdor, 2001) and organic acids to complex molecules with 
tertiary structure (Bouizgarne et al., 2006; Gurusiddaiah et al., 1994), and from secondary 
metabolites (Kroschel & Elzein, 2004) to plant growth regulators, such as auxins and 
ethylene (de Luna et al., 2005). Pedras et al. (2003) isolated toxins from Pseudomonas 
fluorescens strain BRG100. One of the toxins, pseudophomin A, showed greater inhibition of 
green foxtail than did the other, pseudophomin B, which showed greater activity against 
several plant pathogens. There are sufficient successful products out in the market or in 
development that indicate continued efforts will provide more microbial herbicides and 
better weed management options. 

4. Formulations to improve success of microbial herbicides 

In order to overcome the obstacles associated with development of a microbial herbicide, 
and dramatically improve the chances for success of microbial herbicides, numerous 
researchers have investigated combining the biological control organism with a formulation 
designed to improve application, survivability, and efficacy. Several research projects have 
studied the use of a formulation or carrier in combination with a biological control organism 
(Table 2). 

As mentioned earlier, appropriate temperatures and length of dew period are critical to the 
success of fungal bioherbicides. Formulations can extend the period of time before dew is 
required, and adjuvants such as unrefined corn oil and Silwet L-77 can improve chances for 
success of mycoherbicides (Abbas et al., 2004; Boyette, 2006; Boyette et al., 2007a). Elzein et 
al. (2004) found that Fusarium oxysporum ‘Foxy 2’ could be encapsulated in a pesta 
formulation to improve shelf life. Amsellem et al. (1999) utilized the ‘Stabileze’ formulation 
(containing starch, sucrose, corn oil and silica) to enhance preservation of mycelia from two 
Fusarium spp. and found that they remained viable for over one year. The ‘Stabileze’ method 
has also been utilized to enhance survival of bacteria. Zidack & Quimby (2002) used this 
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Biological Control 
Agent 

Weed Pest Formulation / Carrier Reference 

Alternaria eichhorniae
(Ae5) 

Water hyacinth 
(Eichhornia crassipes) 

Nine oil emulsions Shabana, 2005 

Alternaria helianthi Common cocklebur 
(Xanthium strumarium) 

Unrefined corn oil; Silwet 
L-77 

Abbas et al., 2004 

Bipolaris sp. Japanese stiltgrass 
(Microstegium 
vimineum) 

Tween 20  Kleczewski & 
Flory, 2010 

Colletotrichum 
gloeosporioides 

Sicklepod (Senna 
obtusifolia) 

Adjuvants (unrefined 
corn oil; invert emulsion-
MSG 8.25; Silwet L-77) 

Boyette, 2006 

Colletotrichum 
truncatum 

Hemp sesbania 
(Sesbania exaltata) 

Unrefined corn oil; Silwet 
L-77 

Boyette et al., 
2007c 

Curvularia eragrostidis
(QZ-2000) 

Large crabgrass 
(Digitaria sanguinalis) 

Tween 80; rapeseed oil Zhu & Qiang, 
2004 

Curvularia intermedia Large crabgrass 
(Digitaria sanguinalis) 

Silwet L-77 Tilley & Walker, 
2002 

Fusarium oxysporum f. 
sp. cannabis 

Ditchweed (Cannibis 
sativa) 

Birch sawdust; wheat 
seeds; oat seeds 

Tiourebaev et al., 
2001 

Fusarium oxysporum f. 
sp. orthoceras 

Sunflower broomrape 
(Orobanche cumana) 

Pesta granules; 
commercial iron fertilizers 

Müller-Stöver & 
Sauerborn, 2007 

Fusarium oxysporum
(FOG) 

Branched broomrape 
(Orobanche ramosa) 

Pesta granules; alginate 
pellets 

Kohlschmid et al., 
2009  

Fusarium oxysporum; F. 
arthrosporioides 

Broomrapes (Orobanche 
spp.) 

Alginate beads; ‘Stabileze’ 
(starch, sucrose, corn oil, 
silica) 

Amsellem et al., 
1999 

Fusarium oxysporum f. 
sp. strigae (Foxy 2) 

Striga (Striga 
hermonthica) 

Film-coat on sorghum 
seeds (gum arabic, 40%); 
Pesta granules; seed 
treatment (gum arabic, 
SUET binder) 

Elzein et al., 2004, 
2006, 2009  

Fusarium tumidum Gorse (Ulex europaeus) Tween 80; 5% Triton X-
100

Yamoah et al., 
2008 

Helminthosporium 
gramineum subsp. 
echinochloae; Curvularia 
lunata 

Barnyardgrass 
(Echinochloa crus-galli) 

Tween 20 Zhang et al., 2007 

Mycoleptodiscus 
terrestris 

Hydrilla (Hydrilla 
verticillata)

Diatomaceous earth Shearer & 
Jackson, 2006 

Myrothecium verrucaria Portulaca spp., 
Euphorbia spp.

Silwet L-77 Boyette et al., 
2007a 

Myrothecium verrucaria Kudzu (Pueraria lobata) Silwet L-77; unrefined 
corn oil

Hoagland et al., 
2007 

Neonectria 
neomacrospora 

Hemlock dwarf 
mistletoe (Arceuthobium 
tsugense)

‘Stabileze’ Rietman et al., 
2005 

Phomopsis 
amaranthicola 

Amaranthus spp. 16 adjuvants Wyss et al., 2004 

Pseudomonas fluorescens
strain G2-11 

Green foxtail (Setaria 
viridis); velvetleaf 
(Abutilon theophrasti) 

Corn gluten meal; 
semolina flour 

Zdor et al., 2005 
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Biological Control 
Agent 

Weed Pest Formulation / Carrier Reference 

Pseudomonas syringae
pv. tabaci; P. syringae 
pv. tagetis 

Multiple weeds ‘Stabileze’ method 
(bacteria, oil, sucrose; 
silica) 

Zidack & 
Quimby, 2002 

Pseudomonas syringae
pv. tagetis 

Canada thistle (Cirsium 
arvense) 

Silwet L-77; Canada 
thistle sap 

Gronwald et al., 
2002; Tichich et 
al., 2006; Tichich 
& Doll, 2006 

Puccinia thlaspeos Dyer’s woad (Isatis 
tinctoria) 

Surfactants Sylgard, IFA-
S90, Regulaid  

Kropp & Darrow, 
2006 

Sclerotinia minor Dandelion (Taraxacum 
officinale) 

Barley (Hordeum vulgare) 
grits 

Teshler et al., 2007 

Table 2. Research projects examining formulations or carriers to improve survival and 
efficacy of microbial herbicides. 

method with two Pseudomonas spp., and showed that populations were still high after one 
year, and that components of the formulation could be varied depending on bacterial 
species response. 

Elzein et al. (2006, 2010) studied seed coatings containing Fusarium oxysporum isolates to 

control Striga, and found a 40% gum arabic seed coating combined with dried 

chlamydospores to be the most effective combination of seed coating and inoculum type for 

causing disease in Striga (Elzein et al., 2006). Zhao & Shamoun (2005) tested combinations of 

gelatin and potato dextrose broth concentrations for optimum efficacy of Phoma exigua to 

control salal (Gaultheria shallon), a perennial evergreen shrub. Fusarium oxysporum f. sp. 

orthoceras (FOO) is known to suppress the root parasitic weed broomrape (Orobanche 

cumana) in sunflower. In addition, Benzo(1,2,3)thiadiazole-7-carbothioic acid S-methyl ester 

(BTH) induces sunflower resistance to Orobanche cumana. Using FOO and BTH, Müller-

Stöver et al. (2005) improved the efficacy of Fusarium oxysporum f. sp. orthoceras (FOO) to 

reduce broomrape infection in greenhouse studies. They also found FOO incorporated into a 

wheat–kaolin and iron mix further improved efficacy by increasing FOO survival (Müller-

Stöver & Sauerborn, 2007).  

Chittick & Auld (2001) examined the use of hydrophilic polymers as a formulation for a 
mycoherbicide to improve efficacy of Colletotrichum orbiculare on Xanthium spinosum 
(Bathurst burr) in Australia. Hoagland et al. (2007) studied formulation, application method 
and growth media for control of kudzu (Pueraria lobata) using Myrothecium verrucaria fungi. 
Shabana (2005) found that the efficacy of Alternaria eichhorniae isolate #5 could be improved, 
and the requirement for a dew-period avoided, by applying the fungi using an oil emulsion. 
With that formulation, complete control of water hyacinth under field conditions in Egypt 
was achieved. Hurrell et al. (2001) found a granular mycelium–wheat formulation of 
Sclerotinia sclerotiorum controlled Cirsium arvense best in pasture lands of New Zealand when 
the formulation was a water-miscible powder applied as a slurry rather than a dry product. 
They also found that spring and early summer applications, when some moisture was 
present, were more effective at reducing the weed than late summer or early autumn. While 
some moisture was needed for efficacy, too much rain was thought to wash the agent off the 
leaf. Kohlschmid et al. (2009) found that a combination of alginate pellets and pesta granules 
formulated with the Fusarium oxysporum isolate FOG was more efficacious and reliable for 
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controlling the parasitic weed branched broomrape (Phelipanche ramosa) than the untreated 
control under field conditions. Boyette (2006) examined several adjuvants in combination 
with the mycoherbicide Colletotrichum gloeosporioides for control of sicklepod. These 
compounds reduced length of the dew period requirement, and improved the performance 
of this organism in controlling sicklepod. Boyette et al. (2007c) showed that Colletotrichum 
truncatum formulated with unrefined corn oil and the surfactant Silwet L-77 was able to 
effectively control hemp sesbania in the greenhouse and field by reducing the dew period 
requirement. Zhang et al. (2007) utilized protoplast fusion as a means to improve the 
biocontrol efficacy of Helminthosporium gramineum subsp. echinochloae strain HM1 against 
barnyardgrass (Echinochloa crus-galli ) in rice. 

Most of the research conducted to develop formulations that improve survival and efficacy 
of microbial herbicides has been directed at fungal herbicides; however, there have been a 
few studies aimed at improving delivery of bacterial herbicides. Zdor et al. (2005) studied 
effects of DRB (Pseudomonas fluorescens strain G2-11) in combination with corn gluten meal 
and semolina flour in soil assays using weed and crop species. Zhang et al. (2010) studied 
the stability of pyoluteorin, a polyketide metabolite produced by fluorescent pseudomonads 
that has shown potential to control weeds, among other pests. Tichich and Doll (2006) 
examined a novel application approach for the pathogen Pseudomonas syringae pv. tagetis 
where the sap of infected Canada thistle is extracted, combined with water and Silwet-77, 
and sprayed. While there was disease expression in the treated plants, it was not enough to 
control the Canada thistle and further work is needed on this approach. 

Various technologies have been used and will continue to be used to enhance biological 
weed control (Cohen et al., 2002). The protoplast fusion technique was used to create new 
strains using Helminthosporium gramineum subsp. echinochloae strain HM1 (high 
pathogenicity, low spore formation) and Curvularia lunata (low pathogenicity, high spore 
formation) to create strains that effectively control barnyardgrass and other weeds in rice 
production (Zhang et al., 2007). Hypervirulence selection or manipulation may improve 
efficacy of biological control agents. Cohen et al. (2002) transformed genes of the indole-3-
acetamide (IAM) pathway to cause an auxin imbalance that increased the virulence of 
Fusarium oxysporum and F. arthrosporioides, pathogenic on broomrape (Orobanche aegyptiaca). 
Sands and Pilgeram (2009) outline the steps to enhance virulence of the biocontrol agent 
using amino acid overproduction. They discuss control of the parasitic weeds Orobanche and 
Striga, which are especially challenging to control due to the close relationship they develop 
with their hosts. Economic formulations and genetic manipulations to alter phenotype will 
assist in the understanding and development of microbial herbicides. 

5. Integrating microbial herbicides with other control measures 

In many cases, microbial herbicides alone will not be enough to remedy invasive weed 
problems. Researchers worldwide have shown that an integrated approach utilizing 
microbial weed management in a synergistic or additive manner with chemical herbicides 
or in combination with cultural practices or biological controls with insects is more 
successful than any of the control measures alone. Innovative approaches for microbial 
management of several different weed species in various regions of the world have been 
employed to sustainably manage some of the world’s worst weed problems in diverse 
systems.  
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Denoth et al. (2002) reviewed biological control projects on weeds and insects, and 
determined that for weeds, those projects where a number of agents were released showed 
greater success. Wandeler et al. (2008) used weevils as an insect vector to apply Puccinia 
punctiformis to creeping thistles (Cirsium arvense) in the field, causing systemic rust infection. 
Another integrated approach to biological control with microorganisms utilizes mixtures of 
organisms, rather than a single pathogen to control weed growth. Chandramohan & 
Charudattan (2003) propose the use of a mixture of four fungal plant pathogens (Phomopsis 
amaranthicola, Alternaria cassia, Colletotrichum dematium f.sp. crotalariae, Fusarium udum f.sp. 
crotalariae) to control pigweed (Amaranthus hybridus L.), sicklepod and showy crotalaria 
(Crotalaria spectabilis Roth.). In their greenhouse study, they showed that it was possible to 
control these three weeds together using several fungal strains without losing efficacy or 
host-specificity. Some potential biological control agents work best as individual 
applications, and do not exhibit synergy when applied together. Dooley & Beckstead (2010) 
found no improvement in downy brome inhibition using Pseudomonas fluorescens strain D7 
in combination with the fungal pathogen Pyrenophora semeniperda. These two 
microorganisms suppress downy brome at different growth stages. Another example of this 
is Chondrostereum purpureum, which is applied in spring and Fusarium tumidum, which is 
applied in early winter to reduce gorse (Ulex europaeus) regrowth in New Zealand forests 
(Bourdot et al., 2006b). These mycoherbicides inhibit gorse at different growth stages, but 
together they did not further reduce the regrowth of stumps. Further studies are needed to 
understand the weed reduction and ecological implications of consortia in biocontrol  
efforts. 

In greenhouse studies, Caesar (2003) found that the combined effects of Fusarium oxysporum 

and Rhizoctonia solani with flea beetle adults and larvae resulted in greater inhibition of 

Euphorbia esula/virgata than any of the biological control agents alone. In their survey of 

Lepidium draba throughout Europe, Caesar et al. (2010) showed that plants sustaining both 

insect damage and disease were being colonized by the root pathogen Rhizoctonia solani. 

They concluded that when determining potential biological control agents, the synergistic 

relationships between plant pathogens and insects should be considered. Likewise, Kremer 

et al. (2006) found that the most effective biocontrol of leafy spurge occurred with the 

synergistic effect of “plant-associated microorganisms and root-damaging insects”. There 

was a higher incidence of Fusarium and Rhizoctonia isolates in Euphorbia plants that had 

injury caused by insect feeding. Rayamajhi et al. (2010) noted the additive effects of using 

combinations of a weevil, psyllid, and rust fungus (Puccinia psidii) to reduce regrowth of tree 

stumps of Melaleuca quinquenervia in southern Florida. The use of multiple enemies against 

invasive weeds is another combination that could be successful in biocontrol programs. 

Babalola et al. (2007) examined the use of trap crops such as cowpea (Vigna unguiculata) 

combined with application of bacteria (Enterobacter sakazakii and Pseudomonas spp.) to 

stimulate germination and cause the subsequent death of the parasitic weed Striga 

hermonthica. Similarly, Ahonsi et al. (2003) used ethylene-producing Pseudomonas syringae 

pv. glycinea in combination with nitrogen-fixing Bradyrhizobia japonicum strains to induce 

germination and death in Striga hermonthica seeds in the presence of cowpea or soybean. No 

matter how successful a biocontrol agent may be, the control is never considered to be 100% 

and additional practices and management efforts need to be integrated with these 

microorganisms or insects to attain weed management or control.  
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Two methods have been employed to determine whether a synergistic relationship exists 
between a chemical herbicide and a microbial herbicide (Gressel, 2010):  1) random testing of 
herbicides, and 2) screening chemical herbicides with the intent to alter the target plant’s 
defenses, leaving it more vulnerable to attack by pathogens. Better control of Chenopodium 
album was achieved by using low rates of herbicides in combination with toxins from 
Ascochyta caulina (Vurro et al., 2001). Jahromi et al. (2006) studied interactions between 
herbicides and Plectosporium alismatis to control starfruit in rice. Kropp & Darrow (2006) 
found that herbicides and surfactants did not negatively affect teliospore viability of 
Puccinia thlaspeos when it was sprayed on to Isatis tinctoria (Dyer’s woad) plants in the field. 
Abu-Dieyeh & Watson (2006) examined the relationship between the fungal pathogen 
Sclerotinia minor Jagger applied with different turfgrass mowing heights compared to 
herbicide alone to control dandelion. In the greenhouse, S. minor caused greater damage to 
dandelions than the herbicide at all mowing heights; however, under field conditions, close 
mowing had an unfavorable effect on Sclerotinia minor for dandelion control. Magani et al. 
(2009) demonstrated that the fungal mycoherbicide Fusarium oxysporum, when applied in 
granular form followed by a post-emergence herbicide treatment, was successful in 
controlling the parasitic plant Striga in Nigeria. 

Peng and Byer (2005) tested seven herbicides at reduced rates to determine whether there 
might be synergistic effects with Pyricularia setariae for control of green foxtail. Responses 
were variable and depended on weed growth stage, herbicide and application rates. 
However, each of the herbicides at a one-quarter rate applied with a sub-lethal dose of the 
biocontrol organism succeeded in controlling green foxtail in the greenhouse (Peng & Byer, 
2005). Jahromi et al. (2006) studied interactions between the fungal pathogen Plectosporium 
alismatis and herbicides for control of starfruit in Australian rice production. In glasshouse 
experiments, there was no synergistic effect with the pathogen and 2-methyl-4-
chlorophenoxyacetic acid (MCPA); however, there was a synergistic effect when the 
pathogen was applied after the sublethal dose of the herbicide Londax® (bensulfuron 
methyl, DuPont, Wilmington, DE). 

Gressel (2010) notes that glyphosate is most commonly utilized in synergistic relationships 
with plant pathogens, and hypothesizes that this is due to the capability of glyphosate to 
affect multiple weed defense mechanisms. Boyette et al. (2008a) in a field study controlled 
redvine (Brunnichia ovata) and trumpetcreeper (Campis radicans) using the synergistic 
relationship between glyphosate and the fungus Myrothecium verrucaria. The combination of 
the chemical herbicide and the microbial herbicide was able to control the weeds better than 
either treatment alone. Boyette et al. (2008b) concluded that hemp sesbania (Sesbania exaltata) 
control might be augmented by utilizing the biological control agent Colletotrichum 
truncatum in combination with reduced rates of the herbicide glyphosate when the fungus is 
applied after the herbicide. In a previous experiment under controlled conditions, Boyette et 
al. (2006) tested Myrothecium verrucaria in combination with glyphosate on kudzu (Pueraria 
lobata), redvine and trumpetcreeper at various temperatures. Greatest disease development 
was achieved at higher temperatures, and weed inhibition was greatest when the fungus 
was applied after the herbicide rather than prior to or with the glyphosate. Cook et al. (2009) 
found that dodder (Cuscuta pentagona) was more effectively controlled in greenhouse studies 
using a mixture of the pathogen Alternaria destruens, glyphosate, oil and an ammonium 
sulfate surfactant than when using any of the treatments alone, while not harming the host 
citrus (Citrus spp.) plant. 
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Care must be taken when integrating biological controls with herbicides so that the 
herbicide does not affect microbial survival and efficacy. Ray et al. (2008) found that dose 
and herbicide type may be detrimental to the water hyacinth pathogen Alternaria alternata. 
The effects of four herbicides at recommended and reduced rates were tested on the rust 
fungus Puccinia lagenophorae to be used against Senecio vulgaris (common groundsel). Wyss & 
Müller-Scharer (2001) found that the herbicides they tested were either too toxic to the 
fungus, or did not increase plant susceptibility to the fungus, and so the combination of the 
rust fungus and herbicide was not an option for control of Senecio vulgaris. Shabana & 
Mohamed (2005) combined Alternaria eichhorniae isolate 5 with 3,6-dichloro-2-
pyridinecarboxylic acid (MDCA) to weaken water hyacinth defenses, which increased 
disease severity and has the potential for greater biocontrol. 

The soil possesses a wealth of genetic potential waiting to be discovered and used in weed 
management systems. Soil quality or the chemical, physical and biological properties of soil 
can influence plant-microbe interactions and the success of any biocontrol agent (Kennedy & 
Papendick, 1995). In addition, soil quality investigations often include weed populations as 
an indicator of soil quality, in part because a healthy soil and healthy desirable plant is the 
best weed control (Magdoff, 2001; Ryan et al., 2011). Soil investigations are needed in 
determining the impact of the soil environment on weed populations. The structure and 
function of soil microbial communities develop depending on the soil, location, climate, 
slope, aspect and vegetation. Management practices can influence the soil microbial 
community and plant-microbe interactions (Wander et al., 1995; Lupwayi et al., 1998; 
Kennedy & Schillinger, 2006). Cultural practices and application of amendments may also 
play a part in weed-suppressive soils, although the modes of action may be different for 
each practice. Cropping systems also influence weed-suppressive bacteria (Kremer & Li, 
2003; Ryan et al., 2011). Kremer & Li  (2003) found that high enzyme activity and greater 
volume of water stable aggregates correlated with more weed-suppressive bacteria. They 
found that uncultivated prairie and no-tillage systems contained the highest populations of 
deleterious rhizobacteria compared to other land use and soil quality indicators, and may be 
useful in selecting for weed-suppressive practices. In a similar study in Washington state, 
Kennedy & Stubbs (2007) could not find relationships among management systems and the 
prevalence of weed-suppressive bacteria.  

The concept of weed-suppressive soils can be defined as soils, amendments, or management 
practices that have the capacity to reduce or limit specific weeds. Management for weed-
suppressive soils is the ultimate goal for biological control efforts. The dynamics of weed-
suppressive soils may be similar to what is seen with disease-suppressive soils (Mazzola, 
2004). The biology, chemistry and physical properties of soil that comprise a weed-
suppressive soil need to be characterized in order to manage for suppressive soils. As with 
all soil quality determinations, no one indicator will explain the complexity of weed 
suppression. 

6. Regulatory issues 

Rigorous testing is required prior to the release of a biological herbicide to ensure the safety 
of humans, animals and the environment. Host-range studies are needed to reduce potential 
risk and ensure that beneficial, non-target plant species are unaffected by the biocontrol 
agent. However, the length of time needed to complete assessments of new biological 
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herbicides adds to the costs and the length of time required before an agent can be released 
(Ghosheh, 2005). Non-host testing is important and the ranges of plant species tested 
depend on the areas of release, ecosystem variability and potential for dissemination of the 
biocontrol agent by wind or water. Testing should cover all economically important plant 
species of the area, and those plants known to be involved in ecosystem maintenance. In 
agronomic ecosystems, the major crop species are of interest. The U.S. Environmental 
Protection Agency (EPA) published a list of the top 25 major agricultural crops. Plants were 
placed on this list because of their economic importance, ecosystem activity or total 
production values (EPA, 2011). In aquatic systems, several aquatic plants are suggested that 
include algae, aquatic bacteria, marine and freshwater diatoms. In rangeland ecosystems the 
non-target species would include native or near native plant species. It is recommended to 
test six species covering at least four families in the Dicotyledonae, and at least four species 
of at least two families in the Monocotyledonae. Testing must be performed on all plants of 
economic importance in agriculture, horticulture or rangeland systems or known to be 
beneficial to maintenance of the ecosystem that have any reasonable likelihood of serving as 
hosts. This selection of additional plant species should be based upon a survey of plants 
closely related (same genus or, if not available, same family) to the target plant and a survey 
of known hosts of pathogens closely related to the microbial herbicide (EPA, 2011; 
Wapshere, 1974). 

With thorough host-range testing, very few, if any, detrimental effects occur from the release 

of fungal herbicides to control weeds (Barton, 2004). In a review of pre- and post-release 

records from 26 projects, Barton (2004) found that there were no reports of a fungal 

biological control agent striking an unintended plant species. Additional animal, avian, fish 

and daphnia testing are also required in many countries before bioherbicides can be 

registered. In addition, as with all research and new products where there are safety 

concerns, buffer zones are often required to protect animal pastures and other non-target 

areas (Bourdot et al., 2006a). The risk of applying a microbial herbicide to the environment 

needs to be considered at the beginning and throughout the development of biocontrol 

agents. 

7. Future prospects for microbial herbicides in sustainable ecosystems  

The future of biocontrol is bright and full of possibilities with the many novel, successful 

biocontrol agents being studied. The advancements in microbial genetics, microbial 

community analyses and understanding plant-microbe interactions continue to accumulate 

and will be instrumental in helping microbial biocontrol of weeds move forward.  

The area of biological control using soil microorganisms needs further investigations to 

discover additional isolate-host pairs that are a biocontrol match consisting of a biocontrol 

agent of highest virulence in contact with the host at its greatest susceptibility. Formulations 

are needed to increase shelf life of the living organisms to improve survival and efficacy. 

Research and development of each biocontrol agent are needed so that stakeholders and 

industry buy in to the marketing, economics and time investments of this approach to weed 

management. An understanding of microbial community, weed, and soil quality 

characteristics, and management practices is needed for the development of weed 

suppressive soils.  
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Investigations of the structure and function of soil microbial communities are needed to 
advance the area of biological control. Traditional techniques of microbial analyses to 
describe the composition and diversity of microbial populations in soils has commonly 
relied on phenotypic characteristics alone, and molecular investigations add to the 
information on structure and function of the soils (Mazzola, 2004). Profiling or 
fingerprinting of soil and soil microbial community structure using substrate utilization and 
fatty acid methyl ester analyses may be the first step in targeting weed-suppressive 
potential. There are several nucleic acid-based methods that can be used to probe soil and 
identify those microbes that produce similar compounds to those already known. Probes 
will assist field studies of known agents to follow survival in soils and explore soil for 
additional weed-suppressive factors. Nucleic acid technologies provide greater information 
on genetics, and possibly function of a given organism. Array, pyrosequencing and 
metagenomic investigations can provide information on the microbial community and the 
biological agent within that community. Selection for hypervirulence; construction of 
molecular probes; understanding the genetic material of the agent, weed-suppressive 
compounds, and host-microbe interactions can be investigated more thoroughly with these 
methods. The continual development of novel molecular methods to investigate genetics of 
a system will provide key information to better understanding of the plant-microbe 
phenomena. These methods are forever changing and improving to allow us to have 
increased knowledge of the microbial portion of the ecosystem and the various interactions 
that can occur.  

Soil microbial ecology and the soil microbial community will affect weed ecosystem 
dynamics, diversity, function, and populations. As with soil quality, the compilation of 
indicators has been attempted often to hone in on a few indicators of importance. No one 
approach or method can be used to characterize and follow biocontrol agents, or to isolate 
and research additional novel plant-microbe interactions. The future is bright for continued 
development of microbial herbicides to reduce herbicide reliance and provide multiple 
options in weed management. 

8. Conclusions 

The wealth of genetic potential of microorganisms on this earth is boundless. There have 

been many investigations of potential products for weed management. Some have been 

successful at suppressing weeds in the field and a select few are marketed products that 

now reduce weed infestations. Further studies are needed to continue to search for 

additional tools to combat weeds. Increasing our understanding of plant-microbe 

interactions will assist in this effort. Biocontrol agents need to be specific, competitive and 

well–matched with the weed of interest. The search for biocontrol agents from the 

environment entails not only finding microorganisms that inhibit a weed, but that are 

specific for the weed or related plant species and have an economically viable market. Host-

range testing and non-target species testing are needed early in the process. In addition, the 

development of formulations and delivery systems is necessary to prolong the shelf-life and 

efficacy of the biocontrol agents in a variety of environments. Biocontrol should not be 

considered a stand alone option, but may be best if integrated with other methods of 

control, especially with those that are ecologically sound. Biocontrol agents to reduce or 

complement chemical herbicides expand options in weed management and tend toward the 
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use of ecologically based systems. They add additional tools in the arsenal of weed 

management efforts. There is a wealth of genetic potential in the soil and the environment to 

be explored, screened and tested for weed suppression. 
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