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1. Introduction

Great efforts, sometimes taking the form of a race, are exerted by climate scientists to provide

medium and long-term future climate predictions on large and regional, or even local scales.

This exercise has proved to be a really challenging one. There is a wide variety of climate

characteristics between different regions on the globe. For example, tropical and subtropical

regions tend to be more influenced by what happens in the equatorial Indian and Pacific

oceans such as the El Nino Southern Oscillation (ENSO). Midlatitude regions, on the other

hand, are more affected by the north-south migration of the polar front or synonymously

the midlatitude jet stream. It is important to notice that even within the midlatitude band

climate variation differs from region to region. For example, climate variability over the North

Atlantic European region is different from that of the Pacific North America (PNA) region and

is particularly more difficult to predict.

The jet stream is a belt of strong westerly wind that goes around the globe in the subtropics

(subtropical jet) or the midlatiudes (eddy-driven jet). The subtropical jet results from the

westerly acceleration of poleward moving air associated with the upper branch of the Hadley

cell. The midlatitude jet stream, on the other hand, results from the momentum and heat

forcing by midlatitude eddies, i.e. weather systems. Weather and climate variations in the

extratropics are associated to a large extent with meridional shifts of the midlatitude westerly

jet stream. For instance, major extratropical teleconnections, including the North Atlantic

Oscillation (Fig. 1) and the PNA pattern, describe changes in the jet stream (Wittman et al.

2005; Monahan and Fyfe 2006). Over the North Atlantic region, the North Atlantic Oscillation

(NAO) is the dominant large scale mode of variability with its north-south dipole anomaly

centres (Hurrell et al. 2002). It is a seesaw in atmospheric mass between the subtropical high

and and the polar low and affects much of the weather and climate in the North Atlantic,

east of North America, Europe and parts of Russia. The positive phase of the NAO (Fig. 1b)

is generally associated with a stronger subtropical high pressure and a deeper than normal
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Icelandic low yielding warmer and wetter, than normal, conditions over Europe associated

with colder and drier, than normal, conditions in northern Canada and Greenland. The

negative phase (Fig. 1a) is the opposite of the positive phase and yields moist air into the

Mediterranean and cold air in northern Europe.
The second prominent mode of variability over the North Atlantic-European region is the East

Atlantic (EA) pattern. The EA pattern also has a north-south dipole of anomaly centres that are

displaced southward with respect to those of the NAO so that both patterns are in quadrature

and the northern centre, centered around 45oN, is stronger than the lower latitude centre,

which is more linked to the subtropics and modulated by the subtropical ridge. The positive

phase of the EA is associated with above- and below-average surface temperature over Europe

and eastern North America respectively. The variability of these modes is usually described

by patterns in pressure or geopotential height fields, or wind fields as in Athanasiadis et al.

(2009). Jet stream shifts are associated with a positive feedback between the mean flow and

the transient eddies (eg, Lorenz and Hartmann 2003).

(a) Negative NAO (b) Positive NAO

Fig. 1. Illustration of the negative (a) and positive (b) phases of the NAO pattern in terms of
winds, moisture and surface temperature. Source:
http://www.ldeo.columbia.edu/res/pi/NAO/.

Woollings et al. (2010a, WO10a hereafter) analysed the variability of the leading mode of

the 500-hPa geopotential height (Z500) derived from the 44 winters (December-February,

DJF) 1957/58-2000/01 of the 40-year European Centre for Medium-Range Weather Forecasts

(ECMWF) Re-Analysis (ERA-40) (Uppala et al. 2005). They suggested that the NAO can be

interpreted in terms of a transition between two states; a high-latitude (Greenland) blocking

and a no blocking flow. The complex behaviour of the jet stream variability means that it

requires at least two spatial patterns to describe its dominant variations (Fyfe and Lorenz

2005; Monahan an Fyfe 2006), and for the North Atlantic these are the NAO and the EA

4 Climate Variability – Some Aspects, Challenges and Prospects
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patterns (Woollings et al. 2010b). Woollings et al. (2010b, WO10b hereafter) considered the

winter (DJF) ERA-40 low-level (925-700 hPa) wind to analyse the latitude and speed of the

eddy-driven jet stream. Their analysis suggests, as it is also described below, that there are

three preferred latitudinal positions of the North Atlantic jet stream, and this is in very good
agreement with similar flow structures obtained from a Gaussin mixture model applied to the

two-dimensional (NAO,EA) state space. Two of the jet positions are found to be associated

with the two states identified in WO10a, and which reflect the NAO variability.

Climate is by definition a high dimensional and complex system involving highly nonlinear

interacting processes. Nonlinearity means, in particular, that changes in climate due to

changes in external forcing, such as greenhouse gases, do not scale linearly with the latter

and surprises are expected to occur. Weather and climate variability is not pure randomness

but embeds some sort of dynamical structure. In synoptic meteorology, for example, it has

been the practice to regard weather and climate variability as consisting of a small number of

large scale weather patterns, also known as weather regimes, that reccur intermittently hence

affecting regional climate through their persistence and integrating effect. Persistence and

meridional shifts of the jet stream could therefore hold the key to any regime-like behaviour.

Under climate warming these regimes are expected to change by changing their structure

and/or their frequency of occurrence (Palmer Palmer 1999; Branstator and Selten 2009). These

changes can have serious impacts on the economy and society. For example, under global

warming it is projected that deserts and areas susceptible to drought will increase. In the

meantime extreme precipitation events, which often damage crops, and (summer) heat waves,

which cause health problems, will become more frequent.

In the tropics different processes are involved. For the monsoons, for example, the

fundamental driving mechanisms are differential heating between sea and land masses and

moisture transport. One of the main regions of monsoon activity on Earth is the Asian

monsoon region. The Asian summer monsoon is very important not least for affecting the

lives of more than the third of the world’s population. While seasonal mean Asian monsoon

is reasonably well understood through lower-boundary forcings (Charney and Shukla 1981),

subseasonal (30-60 day timescale) variations of monsoon or monsoon intraseasonal variability

(MISV), generally linked to what is commonly known as active and break monsoon phases,

is less so. Although MISV tends to be more chaotic there is evidence suggesting increased

frequency of active (break) conditions during strong monsoon (drought) years.

This chapter reviews and discusses the state-of-the-art of climate variability and nonlinearity

in the midlatitude and the tropical regions based on the works of Woollings et al. (2010b)

and Turner and Hannachi (2010, TH10). We show, in particular, the similarirty between the

two regions in terms of nonlinearity and the possible effect of global warming using ERA-40

reanalyses. The first region is the winter North Atlantic European sector characterised by its

midlatitude climate (WO10b). The second one is the summer monsoon region around India

and South East Asia (TH10). Both regions are found to be characterised by nonlinear regime

behaviour. The study applies mixture model techniques (Hannachi and Turner 2008; TH10;

WO10b) to the jet latitude index and the NAO/EA teleconnection patterns in one case and to

a simple index of the Asian summer monsoon convection derived from the ERA-40 reanalysis

in the other. Section 2 describes the data and methodology. Section 3 discusses the case of the

North Atlantic/European region and section 4 discusses the Asian summer monsoon case. A

summary and a discussion are presented in the last section.
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2. Data and methodology

2.1 Data

We have used the 500-hPa geopotential height (Z500) data from the ERA-40 reanalysis project
(Uppala et al. 2005). The gridded data are defined on a regular 2.25o

× 2.25o grid north of
20oN and span the period December−February (DJF) 1957/58−2000/01 yielding 44 complete
winter (DJF) seasons. Daily and monthly data are used. A smooth seasonal cycle is obtained
by averaging daily data over all the years then smoothing with a discrete cosine transform
retaining only the mean and the lowest two Fourier frequencies. Daily anomalies are obtained
by subtracting the smooth seasonal cycle from the original daily data.
For the Asian monsoon, we have used the outgoing long-wave radiation (OLR) and 850-mb
wind fields from ERA-40 (Uppala et al. 2005) over the Asian summer monsoon region
(50 − 145E, 20S − 35N) for the period 1958-2001. Daily detrended anomalies are obtained
by removing the seasonally-varying mean field based on monthly averages. The monsoon
season is defined by the months June-September (JJAS). In addition, to characterise the large
scale seasonal mean influence on monsoon convection we have used the dynamical monsoon
index (WY) proposed by Webster and Yang (1992). The WY index is a proxy for the (adiabatic)
heating of the atmospheric column and is defined as the JJAS average of anomalous zonal
wind shear between the lower (850-hPa) and upper (200 hPa) tropospheric levels averaged
over the band (40 − 110E, 5 − 20N). We also used the daily India Meteorological Department
rainfall gridded data (Rajeevan et al. 2006) as an independent measure of monsoon rainfall
(see TH10 for more details).

2.2 Methodology

The jet-latitude index (WO10b) is computed for the period 1 December 1957 − 28 February
2002 by averaging daily mean zonal winds over the levels 925, 850, 775 and 700 hPa and
the longitudes 0 − 60oW. A 10-day low-pass Lanczos filter is then applied to the data and
the maximum wind speed value is used to define the jet latitude and speed. A smooth
seasonal cycle is then removed from these to give anomaly values (see WO10b for more
details). The NAO and EA patterns and associated indices are obtained as the leading
empirical orthogonal functions (Hannachi et al. 2007) of Z500 anomalies over the Atlantic
sector (20o

− 90o N, 90oW − 90oE), see WO10a and WO10b for details.
To estimate the probability density function (PDF) function we used the unidimensional
kernel density estimation method (Silverman 1981). In addition we have also used the
univariate and multivariate mixture model approach (Hannachi 2007; WO10b; TH10). In this
model, the PDF is decomposed as a weighted sum of Gaussian (univariate and multivariate)
normal PDFs. The centre and the covariance structure of each Gaussian component from the
mixture is then analysed separately.

3. North Atlantic jet and atmospheric circulation

As we have mentioned in the introduction, the NAO is the dominant mode of weather
and climate variability over the North Atlantic sector. WO10a showed that the NAO can
be explained as a transition between two flow states (Fig. 2); a Greenland blocking (GB),
associated with a negative NAO phase, and a no-blocking flow, looking like a split jet and is
associated with a positive phase of the NAO. Croci-Maspoli (2007) showed, in fact, that when
all blocking events were removed from the ERA40 the NAO is no longer the leading empirical

6 Climate Variability – Some Aspects, Challenges and Prospects
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Fig. 2. Flow regimes of the full (thick contours) and anomaly (thin contours) of the winter
(DJF) ERA-40 Z500 field obtained from the mixture model applied to the NAO time series.
Contour intervals: 100 m (full field) and 10 m (anomalies). Negative contour dashed
(reproduced from WO10a)

orthogonal function or EOF (Hannachi et al. 2007). Since much of the weather and climate
variability of the extratropics is associated with the jet stream variability it is expected that
the flow states or regimes must be associated somehow with particular structures of the jet.
WO10b identified the eddy-driven jet stream by computing the jet latitude and the associated
maximum wind.
Figure 3 shows an example of the time evolution of the jet latitude for the four winters
(DJF) 1957/1958 to 1960/1961 of the zonal wind computed over the North Atlantic region.
The jet latitude is characterised by periods of persistence at specific latitudes1 and periods
of transitions between these latitudes. This indicates that the jet stream is characterised by
persistence in addition to north-south migration. An extended period of the jet evolution over
8 winters Dec 1958 - Feb 1967 is shown in Fig. 4a as a time series. To identify the persistence
locations of the eddy-driven jet stream Fig. 4b shows the kernel PDF of the jet latitude along
with the same PDF estimated using the mixture model. The jet latitude PDF clearly has a
trimodal structure reflecting three preferred locations for the North Atlantic eddy-driven jet
stream shown by the dotted lines in Fig. 3.
The Z500 anomaly flow patterns associated with the peaks of the jet latitude PDF are shown in
Fig. 5 based on compositing over the closest 300 days to these peaks. The left hand side peak
corresponds to the southern jet regime characterised by its high pressure or blocking over

1 shown by the dotted lines in Fig. 3 and are discussed later
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Fig. 3. Daily zonal-mean zonal-wind averaged over longitudes 0 − 60oW and pressure levels
925-700 hPa versus time for the first four years of ERA-40 winters (DJF 1957/1961). The jet
latitude is shown by the thick line and the preferred jet latitudes are shown by dashed
horizontal lines. Contour interval 5 m/s, and negative contours dashed.
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Fig. 4. A segment of the jet latitude time series for the first 10 winters (DJF 1957/1967) of
ERA-40 (a), and the histogram along with the kernel (continuous) and mixture model
(dashed) PDF estimate (b). Reproduced from Hannachi et al. (2012).

Greenland. The middle peak is associated with a low pressure centre over the midlatitude
North Atlantic whereas the right hand side peak corresponds to a high pressure over the
midlatitude North Atlantic. The southern jet position is similar to the negative NAO phase
whereas the middle and north jet regimes look more like the opposite phases of the EA pattern.
A similar composite applied to the zonal wind (not shown) indicates that only for the central
and north jet composites is the eddy-driven jet stream separated from the subtropical jet
(WO10b).
To link the jet variation to the low frequency variability in the North Atlantic/European sector
we consider next the state space of the winter (DJF) daily Z500 anomalies, and we follow
WO10b by using the leading two modes of variability, i.e. the NAO and the EA patterns.
Fig. 6 shows a scatter plot of the data color-coded to show the latitude (anomaly) of each day.
The mixture model is applied as in WO10b to this scatter plot using three bivariate Gaussian
components each characterised by its centre (or mean) and its covariance matrix.
The ellipses in Fig. 6 reflect the covariance structure of the different bivariate components and
the small filled circles represent their centres. The projection onto the NAO-EA plane of the
patterns shown in Fig. 5 are indicated by crosses and they are quite close to the centres of the
mixture components. In addition the ellipses are also in very good agreement with the colors
of the data points (Fig. 6). The Z500 anomaly maps of the centres of the mixture model are
shown in Fig. 7. These regimes are very similar to the composites of the jet regimes shown in
Fig. 5.
It is clear that the low-frequency flow regimes over the North Atlantic sector are associated to
the persistent states of the eddy-driven jet stream. The southern jet position is explained by
the persistent GB blocking. The central position seems to be related to the undisturbed state
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Fig. 5. 500mb geopotential height maps corresponding to the three PDF peaks of the jet
latitude. Contour interval 20 m, negative contours dahed and zero contour omitted.
Reproduced from WO10b.

of the jet given its proximity to the mode (or peak) of the two dimensional Gaussian mixture
distribution (not shown). As for the northern jet position, it only partly reflects the occurrence
of blocking in the southwest of Europe, which could divert the jet northward (Woollings et al.
2011).

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

 

JET LATITUDE ANOMALY (DEGREES)

NAO

 

E
A

−23.4

−17.8

−12.1

−6.4

−0.7

4.9

10.6

16.3

22.0

27.6

Fig. 6. Scatter plot of the daily winter (DJF) Z500 anomalies, projected onto the NAO/EA
plane and color-coded to show the jet latitude. The ellipses and their associated centres
correspond respectively to the covariances and the means of the Gaussian component
mixture model. The crosses represent the regimes obtained from the jet latitude PDF
projected onto the same plane (reproduced from WO10b).

An important issue arises in climate variability in relation to global warming, and that is
the following. How will weather and climate variability look like in a warmer future? This

10 Climate Variability – Some Aspects, Challenges and Prospects
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is an important question for strategic planning. The available reanalyses data are generally
limited to less than 100 years, including the ERA-40, which is only about 50 years long, and
therefore cannot be used to give a definite answer to the above question. We have, never
the less, attempted to look at this question by splitting the jet latitude time series into pre- and
post-1978 subsamples and looked at the respective PDFs. The result (not shown) indicates that
the trimodal structure is conserved between the two periods. There is, however, a significant
decrease of the southern jet regime frequency in the last half of the record compared to the
first half. This is concomitant with a decrease of Greenland blocking frequency. We reiterate
again that, given the length of the data, this could simply reflect the natural variability rather
than an anthropogenic trend.

Fig. 7. As in Fig. 5 but for the centres of the Gaussian components of the mixture model.
Reproduced from WO10b.

There is also a slight increase of frequency of the central and northern jet frequency. As for the
latitudinal shift there is a slight hint of a northward shift of the jet latitude PDF peaks although
it is not significant. Climate change studies based on the climate model intercomparison
project (CMIP3) models (Barnes and Hartmann 2010) do indicate indeed a northward shift
of the jet stream in warmer climate. Despite the rather large differences between the climate
models of the CMIP experiment the northward shift of the jet stream seems to be a robust
feature.

4. Asian monsoon variability

The OLR is a proxy for convection and we use it here to discuss the MISV over the Asian
summer monsoon region. The leading EOF of the OLR anomalies explain about 24% of the
total variance and is well separated from the variances of the rest of the modes of variability
and we discuss the MISV based on this mode of variability following TH10. Figure 8a shows
the OLR EOF1 with its dipolar structure showing opposite variability between the maritime
continent and parts of India and south China. The first principal component (PC1) associated
with EOF1 (Fig. 8a) is used to analyse MISV. Fig. 8b shows the PDF of the index along with
the two Gaussian components used in the two-component mixture model.
The left hand side regime R1 (Fig. 8b) is clearly associated with the opposite phase of the
EOF1 pattern (Fig. 8a), i.e. a negative phase of OLR over southern India associated with a
positive phase over the maritime continent. The composites of daily 850-mb wind and OLR
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Fig. 8. (a) Leading empirical orthogonal function of JJAS ERA-40 OLR anomalies for the
period 1958-2001. (b) Probability density function (upper solid curve) of the OLR index and
the associated two Gaussian components of the mixture model (lower solid curves, indicated
by R1 and R2). The dashed-dotted curve represents the Gaussian PDF fitted to the index. In
(a) the contour interval is arbitrary and positive (negative) contours are dotted (continuous)
(reproduced from TH10).

anomaly fields based on days close to the PDF mode corresponding to the left regime R1 (Fig.
8b) are shown in Fig. 9a. A similar composite of rainfall for the same regime R1 is shown in
Fig. 9b. The regime flow R1 is consistent with an anticyclonic circulation over the maritime
continent and south China sea with a reversal of the Somali jet and a diversion northward
with convergence over most of the southern part of India. The composite map of rainfall (Fig.
9b) clearly shows a positive precipitation anomaly consistent with the monsoon active phase.
The second regime R2 (Fig. 8b) has an opposite OLR phase to that of R1 with a positive
OLR phase over southern India and a negative phase over the maritime continent. The wind
field composite (Fig. 9c) shows a divergent flow over india and eastern Bay of Bengal and a
cyclonic circulation over the Philippines and South China sea. The OLR amplitudes (Fig. 9c)
are smaller than those of R1, with about 5 w/m2 vs 15 w/m2 over southern India and the
Philippines respectively. The wind field is also weaker with a southward shift of the Somali
jet. The map of rainfall composites (Fig. 9d) shows dry conditions over India consistent with
a break phase of the Summer Asian monsoon. The robustness of the active and break phases
has been tested in TH10, to which the reader is referred for more details.
The trend analysis of MISV was investigated by comparing monsoon activity between the
first and second halves of ERA-40 data (TH10). The results indicate that the active monsoon
has been reduced whereas the break phase has become more frequent in the second half (Fig.
10a). The relationship between the intraseasonal monsoon and the large-scale seasonal mean
monsoon was also addressed by TH10 using the Webster-Yang (WY) index. We found that
MISV is closely related to the large-scale monsoon variability (Fig. 10b). Precisely, seasons
with above-normal monsoon heating the break and active phases have equal likelihood. On
the other hand, seasons with below-normal large-scale monsoon heating the break phase
becomes more likely.

12 Climate Variability – Some Aspects, Challenges and Prospects
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Fig. 9. Composite anomalies of OLR and wind field and rainfall over India for the first (a,b)
and second (c,d) monsoon regimes over the 1958-2001 period. Contour interval for OLR
composites is 5 wm−2, red solid (blue dotted) is positive (negative). Rainfall contours are 0.2
mm/day, and negative contour lines only are shown (reproduced from TH10).
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Fig. 10. (a) PDFs of the daily OLR time series in the early (solid) and late (dahsed) part of the
record. Upper (lower) curves represent total (mixture components) probability distributions.
The left (right) component of the mixture represents regime R1 (R2). (b) Perturbations to the
whole period mixture when the OLR index is stratified by JJAS-average dynamical monsoon,
or Webster-Yang, index: WY+ (dashed) and WY− (solid). Reproduced from TH10.
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5. Summary and conclusion

We have reviewed in this chapter some specific characteristics relating to the nature of the
large scale and low-frequency atmospheric variability. The discussion focussed essentially on
the nonlinear nature governing this variability. Two important regions are discussed in this
chapter, one in the midlatitudes and the other in the tropics. The first region is the North
Atlantic/European sector and the discussion follows Woollings et al. (2010b). The second
region is the summer monsoon Asia, and the discussion follows Turner and Hannachi (2010).
The data used come from the ECMWF and consist of the ERA-40 winter (DJF) geopotential
height, zonal wind from the lower troposphere, over the North Atlantic sector as well as the
850 mb horizontal wind and sea level pressure over the Asian summer (JJAS) monsoon region.
In the extratropics well-documented prominent modes of variability are known to control the
climate variability. The North Atlantic Oscillation, a north-south seeesaw in the atmospheric
mass, and also the East Atlantic pattern constitute major contributors to weather and climate
variation in the North Atlantic/European region. For the NAO pattern, for example, various
mechanisms have been proposed to explain its existence. WO10a, for example, suggested that
the NAO is the consequence of regime transitions between the two flow patterns; a Greenland
blocking and a no-blocking flow. Weather and climate variability in the extratropics can be
explained by variation, such as meriodinal shift, of the midlatitude westerly jet stream. It is
therefore natural to seek an explanation of the low-frequency and large-scale flow patterns in
the North Atlantic sector based on the midlatitude or eddy-driven jet stream variability.
A jet latitude index was compued by WO10b, based on the maximum of the zonal mean
zonal wind averaged over the North Atlantic sector and the four lowest pressure levels of
ERA-40. The PDF of the jet latitude was then computed and revealed a trimodal structure.
The modes represent three latitudinal positions of the eddy-driven jet stream. The first one
represents the southern jet position, situated around latitude 36oN, and is associated with the
Greenland blocking. The next one represents the middle jet position around 45oN, and the
last one represents the jet when it is at its northern most latitude, around 57oN.
These jet locations have been linked to the weather and climate variability over the sector.
Using the reduced state space spanned by the two leading modes of variability, the NAO and
EA patterns, of the 500-mb geopotential height, the mixture model yields three regimes very
similar to those associated with the peaks of the jet latitude PDF. A simple analysis based on
comparing the jet latitude time series between the two halves of the ERA-40 record reveals a
significant reduction of the frequency of the southern jet regime as we go from the first to the
second half of the data record. In addition, there is a northward shift, albeit small, of the jet
stream location.
The same analysis, based on the mixture model, was also applied to the time series of the
first OLR EOF over the Asian monsoon region. Two phases of the intraseasonal monsoon
variability were identified, which are consistent with the break and active monsoon phases
over India. The seasonal mean condition is then found to affect the likelihood of these
regimes providing evidence that large scale forcing can lend some predictability to monsoon
weather patterns during the season. For example, seasons with above-normal monsoon
heating can yield equal likelihood for both intraseasonal monsoon phases. The trend analysis
of intraseasonal monsoon activity also reveals an increase of the break phase at the expense
of the active phase. A more detailed analysis of these issues is, however, beyond the scope of
this chapter and is left for future research.
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