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1. Introduction 

Modest levels of stored iron, far less than conventional iron overload, may promote 
cardiovascular disease, i.e.  sustained iron depletion may be protective [1-6]. This so-called 
“iron hypothesis” was initially presented to explain for the sex difference in cardiovascular 
disease and the increase in disease following menopause. The idea, although continually 
debated for more than 25 years, has achieved standing as a plausible and testable hypothesis 
[7-18] [19]. 
The hypothesis has not yet been definitively tested. A first randomized clinical trial (FeAST) 
to  address aspects of the hypothesis was recently reported [7]. The FeAST trial [7] had 
significant limitations as a general test of the idea: 1) it was a trial of secondary prevention, 
and 2) the iron reduction protocol fell far short of achieving full iron depletion. Zacharski et 
al [7] reported that reducing iron stores significantly improves survival for patients with 
symptomatic but stable peripheral arterial disease (PAD), if iron reduction begins at a young 
age. The FeAST trial provides compelling support for a new trial designed to test the 
original hypothesis. 
Controversial results from multiple epidemiological studies investigating a variety of 
atherosclerotic events using all kinds of variable parameters of body iron load have 
presented a confusing picture of the iron hypothesis [20]. Confusion became complete when 
it appeared that patients with homozygous hemochromatosis who were afflicted with 
serious, life long iron overload had no increased atherosclerosis and might even be 
protected against atherosclerosis. In the debate on the hypothesis, the disease pattern in 
homozygous hemochromatosis has been intrepreted as perhaps the most persuasive 
evidence against the hypothesis [21]. This “hemochromatosis paradox” is seen as a anomaly 
that makes the hypothesis untenable for some investigators. How can normal stored iron 
levels be bad for the vascular system, when massive amounts of stored iron in genetic iron 
overload are not associated with increased atherosclerosis? 

2. Hemochromatosis and atherosclerosis: More to it than iron load alone 

An early corollary to the iron hypothesis was the proposal that heterozygous 
hemochromatosis might be a significant risk factor for premature myocardial infarction [22]. 
This was proposed despite the general impression at the time that homozygous 
hemochromatosis was not prominently associated with increased atherosclerosis. In the 
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absence of definitive data, this was not seen as necessarily incompatible with the iron 
hypothesis [22-24]. An impact on cardiovascular event rates in hemochromatosis was not 
excluded based on available data. In addition, even without promotion of atherosclerosis by 
genetic iron overload, relevant issues that continue to be unresolved include roles of 
hemochromatosis mutation-associated iron overload in myocardial reperfusion injury [2;24-
26] and endothelial dysfunction [27;28]. Future investigations are needed, as long term 
exposure to non-transferrin bound iron (NTBI) in genetic iron overload may contribute to 
life-long progression of atherosclerosis as it promotes monocyte-endothelium interaction 
and inflammatory pathways. 
Mutational effects other than promotion of an increase in total body iron were not 
considered in the  1990 hypothesis relating heterozygosity to early onset of myocardial 
infarction [22]. The idea that total body iron load was the only factor that might influence 
cardiovascular disease expression in hemochromatosis was restated as recently as 2007 in a 
JAMA editorial on the status of the iron hypothesis by Hu [8]: 
“The 1996 discovery of HFE gene mutations responsible for most cases of hereditary hemochromatosis 
[[29]] has led to the use of genetic markers of iron stores (ie, heterozygosity for the C282Y mutation 
in the HFE gene as a marker of lifelong moderate iron overload) in epidemiologic studies. In contrast 
to biomarkers, genetic markers of iron overload can be measured exactly and are not influenced by 
such factors as inflammation, recent blood loss, diet, and use of medications (eg, aspirin).” 
The corollary hypothesis that heterozygosity might be associated with myocardial infarction 
[22] led to a number of investigations, especially after the identification of the disease-
causing mutation in most cases of hemochromatosis in 1996 [29]. Early findings appeared to 
support some increase in cardiovascular events among heterozygotes [23;30;31]. However, 
these studies taken together with  subsequent investigations [32-36] do not support an 
increase in myocardial infarction, stroke or atherosclerosis in patients who are heterozygous 
for hemochromatosis. In fact, the body of relevant work, including some older studies 
[37;38] does not exclude protection against atherosclerosis in hemochromatosis. In an 
autopsy series that examined coronary artery disease in heavily iron overloaded 
individuals, Miller and Hutchins [37] reported an odds ratio of coronary artery disease with 
iron overload of 0.18. This is suggestive of a significant protective effect in patients 
presumptively homozygous for hemochromatosis who comprised 80% of the autopsy cases 
reviewed by Miller and Hutchins [37]. Could some poorly understood feature of 
homozygous hemochromatosis confound the relationship between iron load and 
atherosclerosis?  

3. Hepcidin and a resolution of the hemochromatosis paradox 

An iron loading mutation is not just “a marker of lifelong moderate iron overload” as 

indicated by Hu [8]. Hemochromatosis mutations also radically alter the distribution of 
body iron [39]. Iron-poor Kupffer cells adjacent to iron-loaded hepatocytes are a classic 

finding in hereditary hemochromatosis [39]. Another classic finding in homozygotes is a 
relative scarcity of coronary artery iron deposition despite extensive iron deposits in 

myocardial tissue [39;40]. 
In 1998, Moura et al [41] reported that monocytes from hereditary hemochromatosis patients 
released twice as much iron in the low molecular weight form as normal human monocytes 
after erythrocyte phagocytosis. Thus, even before the discovery and understanding of the 
iron regulatory hormone, hepcidin [42-44], there was an understanding of  “a macrophage 
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defect in hemochromatosis leading to a constriction. of the macrophage/reticuloendothelial iron pool” 
[24]. This macrophage defect [41] in hereditary hemochromatosis was suggested as a factor that might 
“protect homozygotes from foam cell formation and thus, to a degree, gives some specific protection 
against atherosclerosis,” [24] with a partial protective effect in heterozygotes. 
The discovery of hepcidin [42-44] and the details of its influence on iron metabolism [45-49] 
illuminated patterns of macrophage iron retention and led to a conceptual volte-face on the 
possibility of diminished atherosclerosis in homozygotes [4;6].  
Hepcidin is the major regulator for the amount of iron retained within macrophages. 
Production of hepcidin is regulated by iron intake and a number of interrelated factors. 
Elevated levels, favoring macrophage iron retention, are seen with increased iron intake, 
infection and inflammation. Iron loading in secondary iron overload in wild type 
individuals is associated with increased hepcidin expression. Reduced hepcidin levels and 
iron-poor macrophages accompany iron deficiency, hypoxia, anemia and hereditary 
hemochromatosis. Hepcidin binds to the iron exporter protein ferroportin, leading to the 
internalization, and intracellular degradation of ferroportin. Loss of the iron exporter 
function of ferroportin from macrophages leads to intracellular retention of iron and to 
reduced serum iron levels. In intestinal epithelial cells, hepcidin-induced loss of ferroportin 
results in reduced iron internalization into the systemic circulation.   
Remarkably, the most extreme reductions in hepcidin level are associated with the opposite 
extremes of total body iron load, i.e. in iron deficiency anemia and in homozygous 
hemochromatosis [50]. Loss of hepcidin expression can be produced by mutations in 
hepcidin, hemojuvelin, TFR2, and HFE [51]. Mutations at these sites leads to hereditary iron 
overload. In this discussion, the term “hemochromatosis” indicates hereditary iron overload 
associated with one of the mutations causing lower hepcidin expression. The homozygous 
HFE C282Y mutation is the most common cause of hereditary iron overload and is 
associated with lower liver expression of hepcidin mRNA [51]. 
The very low hepcidin levels seen in homozygous hemochromatosis are associated with 
systemic iron loading because reduced hepcidin levels permit unregulated ferroportin-
mediated transfer of iron from intestinal epithelial cells into the systemic iron pool. The 
more extreme the degree of hepcidin deficiency, the more severe the level of parenchymal 
iron load, but also the more extreme the macrophage iron retention deficit. These patterns 
offer a potential resolution of the paradox of the proposed protection by iron depletion in 
wild type subjects against cardiovascular disease despite of the lack of increased 
atherosclerosis in genetic iron overload [4;6]. Hepcidin may act as an iron-dependent risk 
factor for atherosclerosis by causing iron loading of plaque macrophages with promotion of 
foam cell formation. According to this proposal, hepcidin amplifies the plaque iron loading 
effects of an increased iron load as iron itself upregulates hepcidin concentration. At the 
other end of the iron status spectrum, iron deficiency downregulates hepcidin and promotes 
removal of iron from plaque macrophages. In hemochromatosis, the associated hepcidin 
deficiency is hypothesized to reduce progressive iron accumulation within arterial walls and 
foam cell formation. Hemochromatosis patients may thus enjoy a specific protection against 
plaque progression in proportion to the severity of hepcidin deficiency. Hepcidin deficiency 
would not protect these patients from direct iron-mediated injury to heart muscle from 
parenchymal iron accumulation in myocardial tissue. The corollary hypothesis that 
identifies hepcidin as a risk factor for atherogenesis [4] may explain the conundrum of 
decreased atherosclerosis in the face of massive iron loading and provide additional 
justification for the contention that the macrophage has a key role in atherogenesis.  

www.intechopen.com



  
Atherogenesis 

 

498 

Previous studies, especially the work of Miller and Hutchins [37] and Pirart and Barbier [38], 
raised the possibility of a protective effect of hereditary hemochromatosis against 
atherosclerosis. An unknown “facteur constitutionnel” [38] linked to hemochromatosis that 
enhances resistance to vascular lesions was proposed. A mechanistic hypothesis to explain 
the findings [37;38] was not proposed as the studies were done prior to identification of 
either the principal iron overloading genotypes or the iron regulatory hormone hepcidin. 
More recent evidence supporting the hypothesis that hemochromatosis-associated hepcidin 
deficiency is protective against atherosclerosis has been reported [52]. Valenti et al [52] 
studied vascular disease, iron status, hepcidin levels and HFE mutations in 506 consecutive 
patients with nonalcholic fatty liver disease (NAFLD). None were homozygous for 
hereditary hemochromatosis. Serum ferritin was associated with common carotid intima-
media thickness (CC-IMT) (p = 0.048) and with prevalence of atherosclerotic carotid plaques 
(p = 0.0004), except in patients whose heterozygous HFE mutations lower hepcidin levels. 
Hyperferritinemia was associated with vascular damage only in patients with wild type 
HFE genotypes (p<0.0001). Hepcidin was elevated in those without such an HFE mutation 
and was found to be an independent predictor of the presence of carotid atherosclerosis. 

4. Iron, hepcidin, inflammation and vascular disease 

Inflammation accelerates atherogenesis [53]. The mechanism may involve iron- and 
hepcidin-mediated mechanisms [4;6]. Hepcidin is upregulated by interleukin-6 (IL-6), a 
cytokine induced by inflammatory processes. IL-6 has also been found to be a 
cardiovascular disease risk factor [54]. An important end result of any process that induces 
IL-6 is increased deposition of iron within reticuloendothelial cells, including atherosclerotic 
plaque macrophages, because of hepcidin upregulation. Continued inflammation-mediated 
hepcidin synthesis maintains iron in storage sites even in the face of a low hematocrit as in 
the anemia of inflammation (i.e. the “anemia of chronic disorders”). 
Hepatic hepcidin may be normally upregulated in inflammation even in hemochromatosis 
homozygotes who usually have markedly low hepcidin levels [55]. The effects of 
inflammatory processes in hemochromatosis patients on possible redistribution of iron from 
parenchymal cells to the reticuloendothelial compartment, including arterial plaque 
macrophages, are not currently known. Interactions between mutational effects and 
inflammation-induced effects on hepcidin level may result in complex epidemiological 
patterns in studies of cardiovascular disease expression in hemochromatosis patients.  

5. Blunted inflammatory responses in macrophages in hemochromatosis or 
induced iron depletion 

A recent study of macrophages in the Hfe knockout (Hfe -/-) mouse [56] is pertinent to the 
present discussion of iron, inflammation and atherosclerosis. Wang et al [56] found 
attenuated inflammatory responses in a mouse model of human hemochromatosis and 
reduced translation of cytokine mRNAs in Hfe -/-  macrophages in response to Salmonella 
and LPS exposure. Intramacrophage iron levels were decreased in the Hfe -/- mice in 
association with upregulation of macrophage iron exporter ferroportin (FPN). Salmonella- 
and LPS-induced inflammatory responses were diminished in the Hfe knockout animals. 
Less severe enterocolitis was observed in vivo and reduced macrophage TNF-  and IL-6 
secretion was observed in vitro.  
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Of special significance in the present discussion, the reduced translation of cytokine mRNAs 
of the mutant macrophages could be reproduced in wild-type cells by reducing the 
intracellular iron concentration with chelation. Atherosclerotic plaque macrophages in 
patients with hemochromatosis mutations associated with diminished hepcidin may display 
similar attenuated inflammatory responses such as those from Hfe -/- mice [56], and thereby 
a diminished tendency to form atherosclerotic foam cells. 

6. Iron, hemochromatosis and other cell types in vascular disease 

Iron plays a role in vascular disease in other cell types than the macrophage, e.g.  
endothelial cells [3;9;14;18;57-59] and vascular smooth muscle cells [60-62]. Patients with 
hemochromatosis have endothelial dysfunction that is improved by iron reduction therapy 
[63]. This suggests that iron overload itself rather than mutational effects of iron overload 
genes influences endothelial function.  Proliferaton of vascular smooth muscle cells [60-62] 
also requires iron. How hemochromatosis mutations might modifies iron-mediated 
atherogenic processes in these cell types will require additional studies. 

7. Serum cholesterol level, hemochromatosis, macrophage iron loss, and 
cardiovascular disease 

Adams et al [64] reported that hemochromatosis patients homzygous for C282Y have 

diminished serum cholesterol and low-density lipoprotein (LDL) levels. Systemically lower 

cholesterol and LDL could represent an additional mechanism by which hemochromatosis 

patients are relatively protected from atherosclerosis.  This could be associated with the iron 

retention deficit in mutant macrophages. A role for macrophage iron metabolism in 

regulation of cellular lipid level has been proposed [65]. As noted above, the most extreme 

reductions in hepcidin level are seen at the opposite extremes of total body iron load, i.e. in 

both iron deficiency anemia and in homozygous hemochromatosis. Consistent with a 

hepcidin level similar to that in hemochromatosis, iron deficiency is also associated with 

lower systemic levels of serum cholesterol and LDL [12;66;67]. Future studies are needed to 

determine if lower macrophage iron level in iron deficiency or inherited iron overload 

negatively regulates systemic cholesterol level. 

8. Mutational protection against atherogenesis: Epidemiological implications 

The literature on the role of iron in cardiovascular disease in the general population is 
contradictory and inconsistent, as has often been noted [8]. There have been misconceptions 
regarding the hypothesis leading to inadequate study designs [20;68]. Another key 
limitation of previous studies that has not been addressed is the possibility of a protective 
effect of hemochromatosis mutations against iron-mediated atherogenesis. If 
hemochromatosis mutations confer protection against atherogenesis, previous 
epidemiological studies of iron and atherosclerosis may be critically flawed. The highest 
serum ferritin levels in population groups whose hemochromatosis gene status has not been 
ascertained will select a disproportionate share of subjects who are heterozygous or 
homozygous for hemochromatosis. These high serum ferritin individuals may have less 
disease because of mutational protection against atherosclerosis and may confound 
underlying associations of iron load and atherosclerosis in normal subjects. 
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9. Penetrance and testing the hepcidin hypothesis 

This problem of clinical penetrance of the hemochromatosis mutations needs to be 
considered in the design of a study to test the hepcidin hypothesis. There is undoubtedy a 
variable impact of genotype on hepcidin expression. Genotype of subjects in a study to test 
the hypothesis shouldbe determined; however, testing the hypothesis would not rely 
directly on showing an association of genotype with disease. The hypothesis suggests that 
protection against atherogenesis is inversely proportional to hepcidin expression. In an 
epidemiological study, the hypothesis suggests that, among those with any one of a number 
of iron overloading genotypes, protection against atherogenesis would be seen in 
proportion to the degree of life long hepcidin downregulation. 
It would be inappropriate to simply look at a group of all subjects with hepcidin 
expression below some prespecified level. It would be necessary to exclude the iron 
deficient subjects from a group defined by such a criterion, as iron deficiency is associated 
with quite low hepcidin levels. A future interventional study of the effect of long term 
iron deficiency-induced reduction in hepcidin expression on atherogenesis would  be of 
interest. 

10. Conclusions and future directions 

The hypothesis that iron depletion protects against atherosclerosis may apply even in 

hemochromatosis homozygotes because of the mutational effect of selective iron depletion 
of the macrophage, a key cell type in atherogenesis. In homozygotes, a sea of tissue iron 

deposition surrounds islands of iron depleted cells of the reticuloendothelial system. Low 
hepcidin expression is a mutational feature of hemochromatosis and also of systemic iron 

deficiency that may protect against iron-mediated atherogenesis in both conditions. What is 
known at present about disease patterns in genetic iron overload is compatible with the 

hypothesis that iron depletion protects against atherosclerosis. Hereditary hemochromatosis 
may be a special case of selective cellular iron depletion that inhibits atherogenesis. 

More detailed investigations are needed on hepcidin as a risk factor for atherosclerosis 
including more studies of atherosclerotic disease in patients with hemochromatosis 

mutations. Work is also needed on the effects of the inflammatory response on iron 
metabolism, especially the impact of inflammatory processes on hepcidin and macrophage 

iron in patients with hemochromatosis mutations.  
It would be of interest to replicate the low hepcidin levels of those with hemochromatosis 

mutations in normal subjects and to assess the effects of low hepcidin levels on 

atherogenesis. A well established and safe method that would have the effect of reducing 

hepcidin production in normal subjects is induced iron depletion. Long-term modest 

reduction in storage iron can be  achieved in patients with established vascular disease and 

is associated with decreased cancer mortality [69] and, among younger participants, 

decreased cardiovascular mortality [7].  

In humans with intact hepcidin responses, atherosclerotic plaque has a substantially higher 

iron concentration than that in healthy arterial wall [15].  Increased lesional iron is also seen 

in cholesterol fed animals. In a series of studies with rabbits fed a 1% cholesterol diet, Watt 

and colleagues [70-74] used nuclear microscopy to show a 7-fold increase in iron 

concentration within newly formed atherosclerotic lesions compared to healthy arteries. 

Iron accumulation was seen at the onset of lesion formation.  
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A role for iron in foam cell formation and lesion progression has been implicated by 
numerous observations and experiments [4-6;75-83]. Recent work shows that iron can be 
mobilized out of atherosclerotic plaque by manipulation of body iron status, and that this 
process may be associated with reduction in lesion size. Animal experiments suggest that 
systemic lowering of stored iron levels reduces intralesional iron content and also the size of 
atherosclerotic plaques [70;84]. It is well known that iron-deficient erythropoiesis can 
mobilize and relocate almost all stored iron in the body to maturing erythroid precursors. In 
iron deficiency, mobilization is facilitated by extreme downregulation of hepcidin. Key 
questions in future human studies include the following: What duration and degree of iron 
reduction therapy is needed for restoring iron levels in atherosclerotic vessel segments to the 
much lower level seen in healthy vascular tissue? How much reduction in the level of 
hepcidin is required to facilitate the relocation of stored iron from intralesional macrophages 
to erythroid precursors? And, is it possible in normal subjects to inhibit the formation of 
atherosclerotic foam cells by rendering their macrophages as iron poor as in those with 
hemochromatosis mutations? 
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