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1. Introduction 

1.1 Inflammation in atherosclerosis 
Inflammation is a process integral to atherosclerosis, a concept that dates back from the studies 
by Ross (1999). Since then, circulating markers have been established as predictive to 
atherosclerosis and its clinical events (Hansson et al., 2005; Packard & Libby, 2008).  
Accumulated subendothelial lipid, particularly if oxidized, exacerbates the local inflammatory 
reaction and maintains activation of the overlying endothelium (Tiwari et al., 2008). Atheroma 
formation involves expression of selectins and adhesion molecules and also expression of 
chemokines, in particular monocyte chemoatractant proteins-1 (MCP-1). Chemokines are 
proinflammatory cytokines that function in leukocyte chemoattraction and activation. 
Atheroma prone mice lacking MCP-1 develop smaller atherosclerotic lesions than those 
expressing MCP-1. Once captured at the vascular wall, inflammatory cells migrate into the 
subendothelial space where, under the influence of local chemokines, they become activated. 
There the monocytes mature into macrophages and express the necessary scavenger receptors 
to ingest modified lipids and become macrophage foamy cells. The predominant role of the 
macrophages in atherosclerosis is to ingest and dispose of atherogenic lipids. However, 
activated macrophages and T cells also express a variety of proinflammatory cytokines and 
growth factors that may contribute to atherosclerotic plaque formation. The progression of an 
atherosclerotic plaque is best understood in terms of dynamic interaction between a 
subendothelial inflammatory stimulus and the local reactive “wound healing” response of 
surrounding vascular smooth muscle cells (VSMCs) (Clarke & Bennett, 2006).  
Inflammation produces reactive oxygen species (ROS) as a by-product, and antioxidant 
therapeutic  strategies may have proved disappointing possibly because oxidative events are a 
consequence, rather than a cause of atherosclerosis. In this scenario, ROS scavenging would 
have little impact on the disease process. This notion is consistent with the observation that the 
relationship between the risk factors of atherosclerosis and inflammation is tight, in that all of 
the established cardiovascular disease risk factors are predictive of circulating inflammation 
markers. Also, modification of atherosclerotic risk factors by lipid lowering therapies, 
cessation of smoking, weight loss, and improved glucose control reduces circulating markers 
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of inflammation. These and other findings suggest that inflammation is a primary process and 
oxidative stress is only secondary one in relation to atherosclerosis (Rodriguez-Moran et al., 
2003). Nevertheless, traditional anti-inflammatory therapies do not add to the recovery 
process, moreover, they may even slightly exacerbate atherosclerotic events (Libby et al., 2011).  

1.2 Therapeutic strategies in atherosclerosis 
The presence and biological consequences of DNA damage in atherosclerosis imply that 
both prevention and reversal of damage are therapeutic aims. In vitro, antioxidants can 
ameliorate ROS-induced DNA damage, even though antioxidant trials in humans have been 
disappointing so far. Whereas high dietary intake of vitamin E and C is associated with 
reduced risk of cardiovascular disease (CVD), well powered clinical trials in atherosclerosis-
related CVD have indicated that supplements with vitamin C or vitamin E alone do not 
provide sufficient benefit, in comparison to, for example, statins (Kunitomo et al., 2009). 
Specific antioxidants scavenge or metabolize some, but not all of the relevant oxidized 
species. For example, radical scavengers will limit lipid peroxidation, but will have no 
effects on protein modification by peroxinitrite (ONOO-), cell signalling by H2O2, or HOCl 
mediated oxidation reaction. Thus, whenever a physiological process goes unchecked in 
case of disease, strategies that rely simply on scavenging the offending species must be 
employed with extreme caution (Stocker and Keaney, 2005). 
In contrast, cholesterol lowering by diet is associated with a reduction in DNA damage, at 
least in animal models (Singh et al., 2009). Drugs that have been proven to alter plaque 
progression have also been shown to alter vascular oxidative stress. In particular, 3-
hydroxy-3-methylglutaryl coenzyme A (HMGCoA ) reductase inhibitors (Statins) reduce 
NAD(P)H oxidase activation and superoxide production in vitro, in part because of their 
capability to inhibit membrane translocation (and thus activity) of the small GTP-binding 
protein Rac-1, which is a regulatory component  of vascular NAD(P)H oxidase activation 
(Cosotpoulos et al., 2008). Another trial, which investigated the use of niacin combined with 
a prostaglandin D2 receptor antagonist, intended to reduce cutaneous flushing, and has 
shown durability of benefit (Insull, 2009; Libby et al., 2011). Namely, together with lipid 
lowering therapy acute clinical benefits were cumulative, but tolerability issues has limited 
its use. Understanding the non-lipid associated events in atherogenesis raises the prospect 
of developing drugs targeted at specific events in its pathogenesis which might act 
synergistically with lipid lowering drugs to enhance plaque stability (Singh et al., 2009).  

1.3 Translocator Protein 18 kDa (TSPO) as a potential participant in atherosclerosis 
It was shown previously that the 18 kDa translocator protein (TSPO) is present throughout 
the cardiovascular system and may be involved in cardiovascular disorders such as 
ischemia. At cellular levels TSPO is present in virtually all of the cells of the cardiovascular 
system, where they appear to take part in responses to various challenges that an organism 
and its cardiovascular system face (Veenman & Gavish, 2006), including atherosclerosis and 
accompanying symptoms (Onyimba et al., 2011; Bird et al., 2010; Dimitrova-Shumkovska et 
al., 2010a,b,c). 

1.3.1 TSPO - Structure and localization 
TSPO can be found in various tissues (Gavish et al., 1992, 1999).  The TSPO is also known 
as peripheral type benzodiazepine receptor (PBR), since it is capable of binding 
benzodiazepines and is found in most if not all peripheral tissues (Veenman et al., 2007).  
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Mitochondrial membranes form the primary location for TSPO (Anholt et al., 1985). The 
present name of the TSPO, translocator protein, was chosen because of the TSPO’s 
capability to transport molecules over the outer the mitochondrial membrane 
(Papadopoulos et al., 2006).  For example, TSPO is known to transport cholesterol over the 
outer the mitochondrial membrane. At the mitochondria, TSPO are closely associated 
with the 32 kDa voltage-dependent anion channel (VDAC) and the 30-kDa adenine 
nucleotide translocator (ANT) ( Mc Enery et al., 1992; Veenman et al., 2007; Figure 1). 
VDAC and ANT are considered to form the core components of the mitochondrial 
permeability transition pore (mPTP) (Galiegue et al., 2003).  The ratio of TSPO to VDAC 
and ANT appears to be tissue- and treatment-dependent (Golani et al., 2001; Veenman et 
al., 2002). The mitochondrial location of the TSPO is interesting in relation to 
cardiovascular diseases, as it is well known that mitochondria are a main source of 
cellular ROS (Lenaz, 1998).  Furthermore, several studies have shown that the TSPO 
appears to be a participant in ROS generation at mitochondrial levels (Veenman et al., 
2008,2010a; Zeno et al., 2009; Choi et al., 2011). As discussed above, ROS may play a role 
in cardiovascular diseases.   
Furthermore, by its interactions with the VDAC and the ANT, the TSPO is able to modulate 
the flow of electrolytes over the outer and inner mitochondrial membranes and participate 
in the collapse of the mitochondrial membrane potential (Kugler et al., 2008; Zeno et al., 
2009).  In this context, TSPO is a participant in the initiation of mitochondrial apoptosis 
cascade, including release of cytochrome c from the mitochondrial membrane potential 
(Levin et al., 2005; Kugler et al., 2008; Veenman et al., 2010).  It has been suggested that the 
role of TSPO in importing proteins and cholesterol into the mitochondria may partake in 
mitochondrial membrane biogenesis, required for cell growth and proliferation 
(Papadopoulos et al., 2006; Veenman et al., 2007).  Even though many functions were 
attributed to the TSPO, its primary roles are still discussed and the mechanisms whereby 
TSPO takes part in many of these functions still need further clarification (Veenman & 
Gavish, 2006; Veenman et al., 2010b).  Because TSPO appear to be involved in a large variety 
of physical diseases, mental disorders and responses to stress, clinical benefit may be 
attainable by increasing knowledge regarding the TSPO.  Including its  involvement in 
cardiovascular disorders. 
TSPO are found throughout the animal kingdom, including insects, mollusks, pisces, 
amphibians, aves and mammals (Peterson et al., 1988; Veenman et al., 2007), yet have not 
been found in reptiles as to date (Bolger et al., 1986).  Widely expressed throughout the 
body, TSPO exhibit different patterns of tissue specific expression (Golani et al., 2001; 
Veenman et al., 2002).  In vivo studies showed the rank order of TSPO binding density in rats 
to be adrenal >> kidney ~ heart ~ testis ~ ovary >> liver ~ brain (Awad & Gavish, 1987; 
Gavish et al., 1999).  In humans and dogs, the heart appears to be one of the organs with 
high TSPO density (Veenman & Gavish, 2006). 
The rat TSPO protein consists of 169 amino-acids, is highly hydrophobic, and is rich in 
tryptophan. TSPO appears to constitute a five ┙-helical transmembrane structure that 
stretches the outer mitochondrial membrane.  The human homologous TSPO also consists of 
169 amino-acids, including two cysteine residues that may allow for S-nitrosylation of the 
protein. (Gavish et al., 1999; Babbage, A. Direct Submission, GenBank: CAB55884.1, 2009).  
The TSPO gene is conserved from prokaryotes to plants and animals, including humans and 
appears to have the hallmarks of a typical housekeeping gene, suggesting that this gene’s 
product has a basic cellular function (Gavish et al., 1999).   
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Fig. 1. TSPO structure, localization and functions.  TSPO molecules are often found in 
groups and in conjugation with VDAC and ANT.  As indicated in the figure, pk10, PRAX-1, 
and PAP7 face the cytosol.  Furthermore, molecules of the Bcl-2 family and creatine kinase 
and hexokinase can be attached to VDAC and ANT.  The TSPO is involved in various 
functions some of which are indicated towards the bottom of the figure.  The encircled 
functions may relate to an association of the TSPO with cardiovascular pathology.  
Abbreviations: ANT, adenine nucleotide transporter; ATP, adenosine triphosphate; DBI, 
diazepam binding inhibitor; PAP7, PBR associated protein 7; PBR, peripheral-type 
benzodiazepine receptor; pk10, protein of 10 kiloDalton; PLA2, phospholipase A2; PRAX-1, 
PBR associated protein 1; TSPO, translocator protein (18-kDa); TTN, triakontatetra-
neuropeptide; VDAC, voltage dependent anion channel  (Veenman et al., 2007). 

Recently, TSPO has been found to occur not only in the 18 kDa form, but also as 36-, 54-, and 
72 kDa TSPO polymers (Delavoie et al., 2003).  This topic has arisen from the electron 
microscopic observation that the 18 kDa TSPO protein was organized in clusters of 2-7 
molecules on Leydig cell mitochondrial membranes (Papadopoulos et al., 1997). It was also 
suggested that free TSPO (meaning not in complex with VDAC and ANT) may be present in 
mitochondrial membranes (Veenman et al., 2002; Liu et al., 2003).  This claim further takes into 
consideration that modulation of steroidogenesis only requires a mitochondrial channel that is 
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formed by the mitochondrial TSPO, without participation of VDAC and ANT (Papadopoulos 
et al., 2006). It should be noted that, apart from mitochondria, TSPO can be found in various 
other subcellular locations (Veenman & Gavish, 2006). Nuclear/perinuclear-located TSPO, for 
example, is considered to play a part in cell proliferation (Brown et al., 2000).  Other studies 
detected TSPO binding in plasma membrane and in mature human red blood cells, which lack 
mitochondria (Oke et al., 1992). It has been suggested that intracellular locations of the TSPO in 
human lymphocytes might be correlated with its capacity to bind to various endogenous 
TSPO ligands at these locations, and that this capability might be related to the ratio of TSPO 
to VDAC and ANT in such locations (Gavish et al., 1999). 

1.3.2 General TSPO functions  
TSPO have been implicated in various functions (Figure 1), including apoptosis, 
steroidogenesis, oxidative stress, mitochondrial respiration, modulation of voltage 
dependent calcium channels, effects on the immune and phagocyte host-defence response, 
microglial activation related to brain damage, ischemia, regulation of the mitochondrial 
membrane potential, inflammation, cell growth and differentiation, and cancer cell 
proliferation (For reviews, see: Gavish et al., 1999; Veenman & Gavish, 2006, 2011; Veenman 
et al., 2007, 2008, 2010b, 2011).  TSPO may potentially be involved in the regulation of 
several major stress systems, such as the Hypothalamic-Pituitary-Adrenal (HPA) axis, the 
sympathetic nervous system, the renin-angiotensin axis and the neuroendocrine-immune 
axis (Gavish et al., 1999; Veenman and Gavish, 2000, 2006). Thus, TSPO possibly plays a role 
in the mediation of organisms’ various adaptations to stress and anxiety disorders.  
In the endocrine system, TSPO is well known to participate in steroid production and may 
also play a role in the host-defence response (Papadopoulos et al., 2006).  The presence of 
TSPO in glia of the central nervous system (CNS) has suggested that they might also be 
involved in glial functions in the brain. In neurodegenerative disorders, including 
Alzheimer’s disease, TSPO ligand binding density is increased in the affected brain regions. 
Thus, it has been suggested that TSPO in glia may play a role in neurodegenerative 
processes and brain damage. In animal studies, both PK 11195 and Ro5-4864 presented 
neuroprotective effects against brain injury, which have been suggested to involve 
neurosteroid activation (Veenman et al., 2002; Veenman & Gavish, 2006, 2011; Soustiel et al., 
2008). Alternatively, it has been suggested that enhanced levels of TSPO in neural cells (due 
to damage, disease, etc.)  are inductive for apoptosis.  In particular, activation of the TSPO 
may lead to a decrease of the mitochondrial membrane potential, mitochondrial 
dysfunction, and subsequent release of mitochondrial cytochrome c, followed by the 
activation of a caspase cascade leading to apoptosis (Levin et al., 2005).   
Interestingly, as ROS generation accompanies in cardiovascular diseases, it has also been 
shown that oxidative stress modulates TSPO structure and function (Delavoie et al., 2003).  
Vice versa, TSPO appears to be an essential participant in ROS generation at mitochondrial 
levels induced by various agents (Veenman et al., 2008, 2010a; Zeno et al., 2009; Choi et al., 
2011).  In addition, Carayon et al. (1996) demonstrated that Jurkat cells transfected with 
human TSPO cDNA exhibited increased resistance to H2O2 toxicity, suggesting a function of 
these sites and their ligands in protecting cells against the toxicity of ROS produced during 
inflammatory processes.  In the liver, the TSPO was found in co-localization with a ROS 
scavenger, the mitochondrial manganese-dependent superoxide dismutase (SOD) (Fischer 
et al., 2001). At present, no conclusive model is available to incorporate the various 
interactions between the TSPO and ROS. 
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1.3.3 Cholesterol translocation and steroidogenesis in relation to TSPO 
TSPO has been reported to take part in the translocation of cholesterol from the outer to the 
inner mitochondrial membrane, which is the rate-limiting step in steroidogenesis 
(Papadopoulos et al., 1990).  The fact that TSPO is abundant in steroidogenic endocrine 
organs (Benavides et al., 1983; Gavish et al., 1999; Papadopoulos et al., 2006), such as the 
adrenal gland and male and female gonads in rats, has been the first suggestion that TSPO 
may play a role in steroidogenesis.  
The biosynthesis of steroids in all steroidogenic tissues begins with the enzymatic conversion 
of the precursor cholesterol to form pregnenolone.  This reaction is catalyzed by the enzyme 
cholesterol side-chain-cleavage (P-450scc), which is located on the matrix side of the inner 
mitochondrial membrane and is dependent on an electron transport system comprised of 
adrenodoxin and adrenodoxin reductase. Pregnenolone leaves the mitochondrion to undergo 
enzymatic transformation in the endoplasmic reticulum, giving rise to the final steroid 
products (Papadopoulos et al., 2006; Veenman et al., 2007).  The rate-limiting step in this 
process, is the transport of cholesterol from cellular stores across the aqueous intermembrane 
space of the mitochondria to the inner mitochondrial membrane and P-450.  
It has been suggested that TSPO and StAR (steroidogenic acute regulatory protein), the latter 
which is involved in the acute trophic hormone regulation of steroid synthesis, work together 
in the cholesterol transport into the mitochondria (Stocco & Clark, 1996).  Steroids have also 
been shown to be able to affect TSPO ligand-binding characteristics (Veenman et al., 2007), for 
example, as demonstrated by a 10-day estradiol treatment of rats that resulted in a marked 
reduction in TSPO binding in the rat testis, and up regulation of these sites in the kidney 
(Gavish & Weizman, 1997).  Other observations were provided by the removal of the testes, 
which caused a significant decrease in TSPO density in Cowper's glands and the adrenal 
gland, while administration of testosterone acetate prevented this castration induced TSPO 
depletion (Weizman et al., 1992).  Furthermore, removal of the pituitary gland, which resulted 
in the elimination of corticotrophin (ACTH) secretion, caused a significant reduction in the 
adrenal TSPO density (Anholt et al., 1985).  Recently, it has been shown that steroid treatment 
can regulate gene expression of the TSPO (Mazurika et al., 2009). 
Three-dimensional models of the channel formed by the five ┙-helices of the TSPO indicated 
that it would be able to accommodate a cholesterol molecule in the space delineated by the 
five helices. According to these models, the inner surface of the channel formed by the TSPO 
molecule would present a hydrophilic but uncharged pathway, allowing amphiphilic 
cholesterol molecules to cross the outer mitochondrial membrane (Papadopoulos et al., 2006; 
Veenman et al., 2007).  
TSPO ligands are reported to induce TSPO-mediated translocation of cholesterol from the 
outer mitochondrial membrane to the inner mitochondrial membrane (Papadopoulos et al., 
1997).  Moreover, PK 11195 and Ro5-4864 (the classical specific TSPO ligands) increased 
cholesterol transport into the mitochondria and subsequent steroid synthesis in gonadal, 
adrenal, brain, and liver cells (Delavoie et al., 2003).  Ro5-4864 directly stimulated the release 
of corticotrophin releasing hormone (CRH) in rats, whereas PK 11195 directly stimulated the 
secretion of ACTH.  In various models of induced stress in rats, the increase in CRH and 
ACTH was attenuated by treatment with diazepam. It was reported that the presence of the 
endogenous ligand DBI was vital for steroidogenesis and stimulated cholesterol transport.  
DBI regulated steroidogenesis activated by ACTH and luteinizing hormone via binding to 
TSPO, and thus controlled mitochondrial cholesterol transport (Papadopoulos et al., 1991; 
Brown et al., 1992).  
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Fig. 2. Proposed model of cholesterol and ligand binding to TSPO.  TSPO is found either as a 
monomer or polymer in the outer mitochondrial membrane.  Binding of cholesterol and 
TSPO ligands to TSPO at this site may result in import of cholesterol or protein into the 
mitochondria.  This may support cellular functions such as membrane biogenesis, 
mitochondrial permeability, and mitochondrial respiration. The final effects may include 
steroidogenesis, apoptosis, and immune responses. Abbreviation:  OMM, outer 
mitochondrial membrane (Veenman et al., 2007).  

The actual participation of TSPO in mitochondrial cholesterol translocation was 
demonstrated by disruption  of the TSPO gene in Leydig cells, which resulted in the arrest 
of cholesterol transport into the mitochondria as well as steroid formation, while the 
reintroduction of TSPO by cDNA rescued steroidogenesis (Papadopoulos et al., 1997).  The 
suggestion of TSPO involvement in steroidogenesis modulated by TSPO ligands was further 
supported by TSPO antisense knockdowns in MA-10 Leydig cells, which reduced steroid 
production (Hauet et al., 2005). 
It has been proposed that TSPO polymerization modulates the function of this receptor in 
cholesterol transport, since polymer formation induced by ROS increased both TSPO ligand 
binding and cholesterol-binding capacities (Delavoie et al., 2003).  The monomer binds 
cholesterol with high affinity but not so with TSPO ligands.  The presence of cholesterol on 
the TSPO monomer prevents the ROS - induced polymer formation.  The polymer binds 
TSPO ligands with high affinity and ligand binding induces rapid cholesterol binding.  This 
process would allow a membrane that contains TSPO to import high levels of cholesterol in 
a time and ligand dependent manner. Apart from the significance of cholesterol transport by 
TSPO for steroidogenesis, it may also be relevant for membrane biogenesis and metabolic 
needs required for cell survival (Veenman et al., 2007).  TSPO’s interactions with cholesterol 
may be suggestive of a role of TSPO in atherosclerosis. 

1.3.4 TSPO and responses to cardiovascular damage 
In the cardiovascular lumen, TSPO are present in platelets, erythrocytes, lymphocytes, and 
mononuclear cells (Maeda et al., 1998).  In the walls of the cardiovascular system, TSPO can 
be found in the endothelium, the striated cardiac muscle, the vascular smooth muscles, and 
the mast cells (Taniguchi et al., 1980; Veenman & Gavish, 2006). Regarding cardiovascular 
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diseases, the TSPO has been found to be involved in ischemic processes, including oxidative 
stress and apoptosis (Kunduzova et al., 2004).  Furthermore, TSPO may be involved in aortic 
damage due to diet and toxins (Dimitrova-Shumkovska et al., 2010a,b,c).   
TSPO in the cardiovascular system appears to play roles in several aspects of the immune 
response, such as phagocytosis and the secretion of interleukin-2, interleukin-3, and 
immunoglobulin A (Veenman & Gavish, 2006).  Mast cells have been implicated in immune 
responses to pathogens, in the regulation of thrombosis and inflammation, and in 
cardiovascular disease processes such as atherosclerosis, as well as in neoplastic conditions 
(Wojta et al., 2003; Marshall, 2004).  Studies have shown that the benzodiazepines’ inhibition 
of serotonin release in mast cells could reduce the blood brain permeability and influence 
pain levels and decrease vascular smooth muscle contractions (Veenman et al., 2006).  
Benzodiazepines have been found to bind to specific receptors on macrophages and to 
modulate in vitro their metabolic oxidative responsiveness (Lenfant et al., 1985).  Since these 
tissues and cells possess TSPO, but not CBR, it is most likely that these benzodiazepines 
cause their effects via the TSPO present in these tissues and cells. 
Recently, we have established that the TSPO appears to be an active participant in the 

generation of ROS at mitochondrial levels and maintenance of the mitochondrial membrane 

potential, in relation to apoptosis (Kugler et al., 2008; Zeno et al.,  2009).  In turn, ROS levels 

also affect TSPO function (Delavoie et al., 2003).  As a result of this, we suggest that the 

TSPO may be involved in oxidative stress related to cardiovascular disorders. 

1.3.5 TSPO ligands 
A wide variety of endogenous molecules with affinity for the TSPO have been identified, 

including Diazepam Binding Inhibitor (DBI), which is an 11 kDa polypeptide of 86 amino 

acids.  As its name suggests, DBI was originally shown to inhibit the binding of [3H] 

diazepam to brain membranes and gamma aminobutyric acid (GABA) activated Cl - 

channel activation. DBI has the same low (µM) affinity for both the TSPO and the CBR.  

Other putative endogenous ligands  for TSPO include the porphyrins (protoporphyrin IX, 

mesoporphyrin IX, deuteroporphyrin IX and haemin), which are known to modulate 

enzymatic activity of several enzymes and are involved with several mitochondrial proteins 

(Gavish et al., 1999; Zeno et al., in press).  These compounds exhibit a very high (nM) 

affinity for TSPO, and hence are considered as putative endogenous TSPO ligands (Verma et 

al., 1987). Regarding synthetic ligands, the TSPO exhibits nanomolar affinity to the 

benzodiazepine Ro5-4864 (4’- chlorodiazepam, Figure 3), but low affinity to most other 

benzodiazepines species (Le Fur et al., 1983).  Furthermore, it has been reported that 

isoquinolines, such as 1-(2- chlorophenyl)-N-methyl-N-(1-methyl-prop 1)-3 isoquinoline-

carboxamide (PK 11195, Figure 3) interact specifically with TSPO (Le Fur et al., 1983; 

Gavish, 2006Veenman &) and that PK 11195 is currently the most widely used TSPO ligand, 

in part due to its high affinity for TSPO for all of the studied species (Le Fur et al., 1983; 

Veenman & Gavish, 2006).   

PK 11195 and Ro5-4864 compete with each other in binding experiments, suggesting 
overlapping but not necessarily identical binding sites.  It has been suggested that they 
interact with two different conformations or domains of the mitochondrial TSPO (Awad & 
Gavish, 1987).  Behavioral studies have demonstrated that Ro5-4864 possesses anxiogenic 
and convulsant properties, whereas PK 11195 has been found to be anxiolytic and 
anticonvulsant (Gavish et al., 1999).  Other studies have shown that Ro5-4864 and PK 11195 
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have identical effects, for example inhibition of apoptosis (Kugler et al., 2008).  These effects 
are similar to, albeit less strong than TSPO knockdown, implying that these TSPO ligands 
block the pro-apoptotic functions of the TSPO (Levin et al., 2005; Zeno et al., 2009).   
 

 

Fig. 3. Chemical structures of the two archetypical TSPO ligands: (A) the benzodiazepine, 
Ro5-4864; and (B) the isoquinoline carboxamide, PK 11195. 

In some cases, various effects of TSPO ligands have been observed in TSPO deficient and 
TSPO knockdown cells (Hans et al., 2005), raising the issue of the possible presence of 
TSPO-independent mechanisms of action of these ligands (Falchi et al., 2007). 
The effects induced by TSPO ligands have been widely investigated in steroidogenic cells 
(Gavish et al., 1999; Casellas et al., 2002).  In addition, effects of TSPO ligands have been 
studied in non-steroidogenic cells, including cardiovascular tissues:  1)  they were shown to 
modulate physiological mechanisms such as cellular respiration in heart, kidney, and liver 
(Moreno-Sanchez et al., 1991; Veenman & Gavish, 2006),  2)  generation of ROS in neurons and 
HL60 human leukaemia cells (Fennell et al., 2001; Jayakumar et al., 2002), 3) anion transport in 
kidney (Basile et al., 1998),  4) mitochondrial permeability transition in cardiomyocytes (Chelli 
et al., 2001),  5)  inhibition of cell proliferation in human fibroblasts (Kletsas et al., 2004), and  6)  
apoptosis in various cell lines (Decaudin et al., 2002; Chelli et al., 2004). 
Numerous findings have suggested that TSPO ligands might act as potential therapeutic 

agents that may be useful for the treatment of a large spectrum of diseases.  TSPO drug 

ligands are evaluated regarding their ability to regulate neurosteroid synthesis and brain 

function, to detect tumor cells in vivo, and to modulate apoptotic rates, with major potential 

therapeutic implications for cancer therapy (Galiegue et al., 2003). PK 11195 has been 

administrated safely to patients, and has been suggested to be included in clinical trials as a 

chemo sensitizing agent. In addition, alternative TSPO ligands with potential therapeutic 

effects are being developed in various laboratories. 

2. TSPO binding density decreases in aorta due to atherogenic challenges 

By its very nature, plaque rupture is difficult to study directly in humans. Therefore, animal 
models have been developed to study atherosclerosis, including plaque rupture and 
thrombus formation, and also how to take measures to prevent these from happening.  
However, all of the existing models (biological or mechanical triggering models, the 
Watanabe heritable hyperlipidemic (WHHL) rabbit model,  the apolipoprotein E (ApoE) 
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mouse model, and the LDL-receptor mouse model) suffer the drawback of lacking an end-
stage atherosclerosis that would show plaque rupture accompanied by platelet and fibrin-
rich occlusive thrombus at the rupture site (Singh et al., 2009). This is a very important 
limitation. There are additional disadvantages of the existing models, such as long 
preparatory activities, complicated manipulation, high cost of development, low yield of 
triggering, and high mortality, which hamper the execution of large-scale studies. Also, the 
study of human tissue in in vitro cell systems is limited by the obvious fact that these are not 
whole organisms, accompanied by the inherent problem of drifting phenotypes. 
For the present study, regarding the potential involvement of the TSPO in atherosclerosis, 

we used outbred rats (Wistar) to study dietary factors applied by us that contribute to 

cardiovascular damage.  We chose these outbred rats since they are atherosclerotic non - 

prone animals and under normal circumstances they typically do not show cardiovascular 

damage within the time-frame we applied. Although the use of rodents as a model may 

have some limitations to achieve complete understanding of the diet - disease relations in 

humans, it presents a unique opportunity to simultaneously explore several underlying 

mechanisms in vivo in the whole organism which is otherwise difficult to achieve with other  

approaches (Dorfman et al., 2003). 

Classes of risk factors for cardiovascular disorders (CVD), also named “cardiovascular toxins”, 

are presented by environmental pollutants with very well known carcinogenic effects (Iwano et 

al., 2006). Not only may pollutants exacerbate and accelerate CVD, risk factors associated with 

CVD could predispose and sensitize for pollutant toxicity. Chronic hypercholesterolemia, for 

instance, could significantly affect xenobiotic metabolism and disposition by either altering the 

expression of detoxification enzymes in liver and peripheral tissues, or by providing additional 

circulating nucleophylic binding sites, e.g., lysine residues of apolipoprotein and ethanolamine 

phospholipids (Miyata et al., 2001; Miller and Ramos, 2001).   Realizing the need to study 

cardiovascular toxicity as a significant consequence of exposure to environmental pollutants, 

one of the aims of our research was to highlight the effects and cell responses due to exposure to 

carcinogen and air pollutant  7, 12 dimethylbenz [┙]anthracene (DMBA) on hyperlipidemic rats 

chronically exposed on high fat high cholesterol (HFHC) diet.  In previous studies we showed 

that HFHC diet as well as DMBA exposure caused oxidative stress in the aorta, in association 

with damage to this organ, as well as reduced TSPO binding density in this organ (Dimitrova-

Shumkovska et al., 2010a,b,c). To further illustrate these effects, we present here data from a 

recent study combining HFHC diet with DMBA exposure. 

To determine the effects of an HFHC diet in combination with DMBA exposure in our 
paradigm of cardiovascular damage, rats received a custom tailored HFHC diet (Dimitrova-
Shumkovska et al., 2010a).  Before application of the HFHC diet, the rats were randomized 
into 2 general groups: 1) control rats (C-rats) receiving commercial standard pellet feed for a 
period of 18 weeks (n = 18); 2) experimental rats (HFHC+DMBA) (n = 12) receiving HFHC 
diet for a period of 18 weeks, and then a single  administration of 10 mg DMBA / 1 mL 
sesame oil applied by gavage), followed by an additional  4 weeks with HFHC diet. After 22 
weeks in total, animals were sacrificed by exsanguination, and procedures related to TSPO 
binding characteristics, ROS parameters in aorta and histopathology were done, as 
described in detail previously (Dimitrova-Shumkovska et al., 2010 a,b,c).   Specimens of 
aorta and plasma were collected for lipid analysis and analysis of parameters of oxidative 
stress. The parameters of oxidative injury that we studied included lipid peroxidation 
(TBARs assay described by Okhawa et al., 1989, modified by Draper and Hadley, 1990); 
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protein carbonylation  (Levine et al., 1990, adopted by Reznick et al., 1994 and modified by 
Shacter, 2000), and advanced oxidized protein products (AOPP, Witko-Sarsat et al., 1996). 
Furthermore, anatomical observation and histopathology of aorta were performed. To 
determine TSPO binding characteristics in this paradigm we applied binding assays with 
[3H]PK 11195. The effects of HFHC diet and of DMBA application by themselves were 
analyzed previously (Dimitrova-Shumkovska et al., 2010 a,b,c).  Building on these previous 
studies, the present study seeks to determine whether the toxin DMBA may exacerbate the 
oxidative stress due to atherogenic diet. 
In the endothelium of the aorta wall of the HFHC+DMBA rats, we observed the appearance 
of foamy cells (20-25% of the lumen circumference, visible among 5 animals from 8 
analyzed). Early mild fibrosis, was observed in 2 of the 8 rats. All the control aortas 
remained negative for these changed, as described before (Dimitrova-Shumkovska et al., 
2010 a, b, c). These present results indicate that combining the HFHC diet with the DMBA 
exposure do not cause more damage to the aorta of rats than previously found with HFHC 
diet alone (Dimitrova-Shumkovska et al., 2010a,b,c).  These previous studies also did show 
that HFHC diet was more damaging to the aorta than the administration of 10 mg of DMBA 
alone (Dimitrova-Shumkovska et al., 2010a, b).   
Regarding protein oxidation and lipid peroxidation in the aorta (Table 1), in the HFHC + 

DMBA rats significant increases in TBARs, AOPP and PC levels could be observed, 
compared to vehicle control.  In detail, regarding lipid peroxidation, TBARs production was 

significantly increased more than 2 fold (+129%, p < 0.05) in comparison to control (Table 1). 

Regarding protein oxidation, AOPP levels showed a significant more than 3 fold increase 
compared to control (+216%, p < 0.001).  Protein carbonyls (PC) in the aorta showed an 

increase of 47% compared to control. The obtained results were similar to those of the 
HFHC diet only group (Dimitrova-Shumkovska et al., 2010a), but the observed effect of 

enhanced  oxidative stress was higher than in DMBA only treated rats (Dimitrova-
Shumkovska et al., 2010b).   In the control tissue (kidney) such effects differences between 

the HFHC-DMBA and vehicle groups not observed (data not shown).  
 

Variables / Aorta Control HFHC + DMBA 

 TBARs nmol/mg  1.22 ± 0.2 (n=8) 2.8 ± 1.4*    (n=7) 

AOPP   nmol/mg  12.5 ± 4.5 (n=8) 39.5 ± 13.0** (n=7) 

 PC        pmol/mg  63.5 ± 24.0 (n=8) 93.5 ± 24.1*  (n=7) 

Table 1. Effects of HFHC diet combined with a DMBA exposure  (HFHC + DMBA) on aorta 
oxidative stress parameters in rats. Mann Whitney non-parametric test, * p < 0.05, ** p < 0.01. 

Binding assays of the aorta with the TSPO specific ligand [3H]PK 11195 were done to 

determine potential effects on TSPO binding characteristics in HFHC + DMBA treated rats. 

For representative examples, see Figure 4. The kidney was used as a control tissue, where no 

changes were expected.  The Bmax and Kd values for TSPO in the aorta and kidney of control 

rats (Table 2) were in the range of previous described results (Gavish et al., 1999; Dimitrova-

Shumkovska et al., 2010a,b,c). In the present study TSPO binding characteristics of the aorta 

of untreated vehicle rats were as follows:  Bmax = 4100 ± 1400 fmol/mg and Kd = 1.2 ± 0.4 nM 

(Table 2). Regarding the effect of HFHC+DMBA, we observed significantly reduced TSPO 

binding capacity in aorta by 49% compared to vehicle control (Table 2, Figure 4). 

www.intechopen.com



  
Atherogenesis 

 

396 

The TSPO Bmax in aorta of the HFHC+DMBA group (Bmax = 2092 ± 670 fmol/mg) was not 

significantly different from those subjected to HFHC diet alone as reported previously 

(Dimitrova-Shumkovska et al., 2010a,b) or DMBA exposure alone. No significant differences 

were observed between experimental and control groups regarding the Kd (Table 2).  

In contrast to aorta, a highly significant enhancement in the Bmax of TSPO (+ 41%) 
determined with [3H]PK 11195 binding was observed in testis tissue due to the HFHC + 
DMBA treatment, compared to control (data not shown). This was similar to the effects seen 
with HFHC diet alone and DMBA treatment alone (Dimitrova-Shumkovska et al., 
2010a,b,c).  [3H]PK 11195 binding levels in kidney appeared not to be significantly affected 
by the HFHC + DMBA treatment (Table 2).  For all tissues, both in the HFHC + DMBA 
group and control group, Kd values determined with [3H]PK 11195 binding were in the nM 
range (0.8 – 1.9 nM, which is in the range typically observed for [3H]PK 11195 binding 
(Awad & Gavish, 1987; Dimitrova-Shumkovska et al., 2010a,b).  This implies also that all of 
these Kd values were not affected by HFHC and DMBA exposure. 
 

 

 

Fig. 4. Representative examples of Scatchard plots (B, D) and saturation  curves (A,C) of 

[3H]PK 11195 binding to membrane homogenates of  aorta, respectively of vehicle control  rats 

(A,B) and of rats exposed to HFHC  and DMBA (C,D).  Abbreviations:  C = vehicle control; 

The experimental group of HFHC+DMBA treatment (HFHC + DS 10 DMBA) is as described 

in the text.  B: bound; B/F: bound over free.   

A 

C D 

B 
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  C - Control       HFHC+DMBA 

Tissue  n B max (fmol / mg)  Kd (nmol) n B max (fmol / mg)  Kd (nmol) 

Aorta  10 4100  ± 1400  1.2  ± 0.4  6 2092  ± 670 *  1.4  ± 0.8  

Kidney  7 4270  ± 900  1.9  ± 0.9  7 4543  ± 870  2.8  ± 0.8  

Table 2. Average Bmax values fmoles / mg protein and Kd values (nM) of [3H]PK 11195 
binding to TSPO of aorta and kidney of HFHC+DMBA exposed rats  versus vehicle control 
(C-Control).   Kruskal-Wallis non-parametric, one-way analysis of variance ANOVA was 
used, with Mann-Whitney as the post-hoc, non-parametric test, * p < 0.05. 

3. Discussion 

It is well known that the  TSPO is involved in tumorigenicity and also appears to be 
involved in atherosclerosis (Veenman & Gavish, 2006;  Veenman  et al., 2008; Dimitrova-
Shumkovska et al., 2010a,b,c). Research over the past 30 years has suggested striking 
similarities between the pathways leading to atherosclerosis and cancer (reviews: Ross et al., 
2001; Ramos and Partridge, 2005). Benditt and Benditt (1973) proposed that atherosclerotic 
plaque could be seen as neoplasm of smooth muscle cell origin, thereby paving the way for 
further research on the parallels between atherosclerosis and cancer. In accordance to this 
hypothesis, there is a body of evidence showing that established mutagenic and carcinogenic 
polycyclic aromatic hydrocarbons (PAHs), including methylcholantrene, benzopyrene, and 
DMBA, cause DNA-adducts in atherosclerotic lesions in humans or atherosclerotic prone 
animals (Izzoti et al., 2001; Iwano et al., 2005; Knaapen et al., 2007). Furthermore, smoking 
represents major risk factors for both cardiovascular disease and cancer (Knaapen et al., 2007; 
Catanzaro et al., 2007; Chiang et al., 2009). In addition, several animal studies have shown that 
components in tobacco smoke accelerate atherosclerosis in atherosclerotic prone animals, 
because of an increase in inflammatory cell content in atherosclerotic plaques (Izotti et al., 2001; 
Curfs et al., 2005).  
For this study a HFHC diet was used in order to determine relations between systemic 
hypercholesterolemia, atherogenic pathology and oxidative stress in the cardiovascular 
system, in correlation with modulations in TSPO binding characteristics in these organs 
(Dimitrova-Shumkovska, 2010a).  To observe the development of atherosclerosis in various 
animal models, atherogenic diets containing cholesterol, saturated fat, cocoa butter, and 
chocolate have been applied to vertebrates, including rodents (Faggiotto et al., 1984; 
Dimitrova, 2002; Kitade et al., 2006). Since the rat presents a resistant animal model for 
provoking atherosclerosis, relatively long time-courses are required to induce even 
moderate hypercholesterolemia and triglyceridemia (Nakamura et al., 1989; Lorkowska et 
al., 2006).  Previous studies applying 1 – 2% cholesterol diets did not affect the endothelium, 
even though increased density of lipid loading at the adventitial vasa vasorum could be 
observed (Pisulewski et al., 2006; Lorkowska et al., 2006). Generally, HDL cholesterol is the 
dominating form in rats. Interestingly, increased expression of inflammatory cytokines 
(TNF, IL-1, IL-8 and VCAM-1) and augmented foamy cell formation can be found during 
chronic infection induced by Chlamydia pneumonia in white rats (Aziz, 2006). Furthermore, 
rats show augmented thrombotic response under hypertensive and hyperlipidemic 
conditions (Singh et al., 2009).  These previous studies suggested that rats could present a 
useful model for studying hypercholesterolemia along with hypertension, but not a suitable 
model for atherosclerosis.   Our diet containing 3% cholesterol not only was able to 
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overcome at least in part the rats’ resistance to elevation of plasma cholesterol levels but also 
initiated moderate cardiovascular damage (Dimitrova-Shumkovska et al., 2010a).   
As a further indication of the validity of the HFHC diet (with 3% cholesterol) applied by us, 

the rats in our study showed obesity as well as hyperlipidemia and steatohepatitis (Dimitrova-

Shumkovska et al., 2010a).  Parameters for enhanced oxidative stress, as we detected in plasma 

of our HFHC rats may correlate with inflammatory processes, including atherogenic effects 

observed by us and others (Witko-Sarsat et al., 1998; Liu et al., 2006; Dimitrova-Shumkovska et 

al., 2010a).  In particular the high AOPP levels observed in the liver, plasma, and aorta, as 

induced by the HFHC diet, may present factors reflecting liver pathology and atherogenesis 

(Watanabe et al., 2004; Oettl et al., 2008; Dimitrova-Shumkovska et al., 2010a).).  In general, the 

involvement of oxidized proteins in atherosclerosis has been studied less than oxidized lipids. 

However, protein oxidation products have been found in the extracellular matrix of human 

and animal atherosclerotic plaques (Woods et al., 2003; Li et al., 2007). The study by Liu et al. 

(2006) was the first to our knowledge to provide in vivo evidence for a causal relationship 

between chronic AOPPs accumulation and atherosclerosis.  This research suggests that 

increases in plasma AOPP, particularly in a hypercholesterolemic environment, accelerate 

atherosclerosis. Interestingly, a study from Wong et al. (2008) showed that protein carbonyls 

are not merely damaging, but can also serve as a second messenger for signal transduction in 

vascular smooth muscle cells.  

Previous studies have shown that the TSPO is present throughout the cardiovascular system 

(Veenman & Gavish, 2006).  Furthermore, the TSPO has been reported to be involved in 

oxidative stress and inflammation. In more detail, the TSPO is involved in various 

mechanisms that also have been found to play a role in atherosclerosis, including oxidative 

stress, ROS generation, inflammation, immune responses, apoptosis, and mitochondrial 

cholesterol transport (Papadopoulos et al., 1997, 2006). Most recent experimental data 

suggest that TSPO plays regulatory roles in adhesion to the extracellular matrix, 

vascularization, heme metabolism, and processes affected by nitrosylation of various 

proteins (Veenman and Gavish, 2011; Zeno et al., 2011; Bode et al., submitted).  Thus, we 

assumed that the TSPO may be involved in cardiovascular disorders as induced in our 

paradigm. 

Oxidative damage mediated by DMBA exposure and HFHC diet presents two examples of 
the plethora of risk factors in provoking atherosclerosis. Different forms of oxidative stress 
may give rise to different oxidation products, several of which were elevated in the aorta of 
our model induced by DMBA exposure and HFHC applied to the rats of this research 
(Table 1). As we used outbred Wistar rats, genetic disposition apparently is not a 
precondition for cardiovascular damage induced by DMBA.  Histopathological analysis of 
the aorta showed that the HFHC + DMBA treatment induced foamy cells and fibrinoid 
connective tissue accumulation, as reported also for the separate treatments of HFHC and 
DMBA by themselves (Dimitrova-Shumkovska et al., 2010a,b,c). Furthermore, in the aorta 
the TSPO expression was inversely correlated with aggravated oxidative stress (Table 2).   
Previous in vitro studies of rat liver have shown as well that particular forms of oxidative 
stress can reduce TSPO binding density in this organ. For example, 0.001 mM Fe [2+] in 
combination with 1 mM ascorbate reduced TSPO binding density by half (Courtiere et al., 
1995).  Interestingly, it was also shown that in response to UV irradiation-induced ROS 
covalent TSPO polymers were formed in Leydig and breast cancer cells in vitro and in vivo, 
resulting in increased binding affinity of the TSPO (Delavoie et al., 2003).  Other evidence 
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for TSPO’s participation in oxidative processes has been indicated in a study by Carayon et 
al. (1996), where a correlation between the levels of TSPO expression and the resistance to 
H2O2 toxicity was demonstrated in hematopoietic cell lines.   It may be considered that the 
reduction in TSPO binding density determined in the present research and other studies 
may impair such protective, anti-oxidative functions of the TSPO (Dimitrova-Shumkovska 
et al., 2010a,b,c). Alternatively, the reduced levels of TSPO may be a compensatory response 
to the challenges posed by the HFHC diet and DMBA exposure, i.e. reduced ROS generation 
otherwise due to TSPO activation and protection against the triggering of cell death, as for 
example was also found in various studies applying knockdown of TSPO by genetic 
manipulation in vitro (Levin et al., 2005; Zeno et al., 2009).  Possibly, the enhanced levels of 
AOPP found in liver and aorta may be a contributing factor to the reduced binding density 
of TSPO in these organs (Dimitrova-Shumkovska et al., 2010a, b,c). As an alternative 
explanation, regulation of TSPO binding density can take place via modulations of gene 
expression (Giatzakis and Papadopoulos, 2004).  With various studies we have 
demonstrated that steroids and stress are able to regulate TSPO binding density (for 
example, Veenman & Gavish, 2006; Veenman et al., 2007, 2009; Mazurika et al., 2009). As 
mentioned, growth hormone may take part in the effects of obesity.  Similarly, testosterone 
levels may also be involved in the effects of atherogenic diet as discussed further below. 
Our previous studies indicated the HFHC diet alone had more profound effects than DMBA 

exposure with a single dose of 10 mg in regard to aortic damage, histopathological changes in 

the liver, and oxidative stress measured in blood plasma and liver of rats (Dimitrova-

Shumkovska et al., 2010a,b,c,).  In the present study, also regarding oxidative stress in aorta, 

effects of HFHC combined with DMBA were more pronounced than of DMBA alone with a 

dose of 10 mg, but not more pronounced than of HFHC alone. The combination of HFHC diet 

and DMBA exposure did not appear to present a major synergetic effect on TSPO binding 

characteristics in the aorta. Possibly TSPO responses in the aorta may be part of a protective 

mechanism against lipid overload.  Others have also suggested a role for TSPO in vascular 

inflammatory responses, for example in vascular permeability caused by carrageenin 

(Lazzarini et al., 2001). Presently, it is not known which components of the vascular wall, i.e. 

mast cells, smooth muscular, or dermal vascular endothelial cells, would be important for the 

potential correlation between TSPO expression and atherosclerosis (Morgan et al., 2004; 

Veenman & Gavish, 2006).  Also, the importance of TSPO in relation to other mechanisms 

potentially associated with cardiovascular damage needs further research.   

As TSPO may be modulated by ROS, and can modulate ROS generation itself (Courtiere et 

al., 1995; Papadopoulos et al., 1997, 2006; Delavoie et al., 2003; Veenman et al., 2007, 2008; 

Zeno et al., 2009), it can be postulated that the oxidative stress detected in aorta of our 

HFHC +DMBA rats may be associated directly with a reduction in TSPO binding density in 

these organs.  While we did not see synergetic effects of HFHC and DMBA in rat aorta, 

preliminary data by us suggest that the combined effect of HFHC and DMBA in rat liver 

may lead to enhanced reductions in TSPO binding densities in this organ, compared to each 

treatment alone (unpublished results).  At present it is not clear whether the TSPO levels 

modulate oxidative stress, or whether TSPO levels are only affected by oxidative stress.  

More studies are needed to resolve these questions.  

As our studies showed an increase in the Bmax of TSPO binding in the testes, it would be 
interesting to study by which mechanisms this may occur.  As discussed above, steroid 
hormones can have an effect on TSPO expression. Interestingly, several studies reported 

www.intechopen.com



  
Atherogenesis 

 

400 

important positive correlations between high fat saturated supplementation and the levels 
of urinary excretion of testosterone (Hammoud et al., 2006). This is an important point to 
consider in evaluating levels of testosterone bioactivity in the body (Hill et al., 1980). 
Another approach to increase bioavailable testosterone would be to decrease the levels of 
sex-hormone binding globulin (SHBG). Reed et al. (1987) noted that normal men fed with a 
high fat diet showed increased SHBG levels, whereas a diet low in fat resulted in decreased 
in SHBG levels.  It has been reported that decreased SHBG levels result in elevated 
testosterone bioactivity (Longcope et al., 2000).  As with previous studies, showing 
increased TSPO binding density in the testes after DMBA and HFHC exposure (Dimitrova-
Shumkovska et al., 2010a,b,c), also the combination of DMBA and HFHC exposures 
increased TSPO binding density in the testes (unpublished results). Potentially, this may be 
due to changes in testosterone levels, as previous studies have shown that increased 
testosterone can increase TSPO binding levels (Weizman et al., 1992). 
Regarding future studies, it would be interesting indeed to find out whether modulation of 

TSPO responses by TSPO ligands would be able to counteract or enhance the effects of HFHC 

alone or with DMBA exposure.  Similarly, it would be interesting to study in this paradigm the 

effects of hormones, as they are known to affect TSPO expression.  For example, it is known 

that testosterone levels are reduced in humans as well as in rats as a consequence of a fattening 

diet and obesity (MacDonald et al., 2010).  Since reduced testosterone levels are correlated with 

reduced TSPO levels in various tissues (Weizman et al., 1992), this may very well present part 

of the mechanism whereby the HFHC diet and the obesity of the rats of this research may lead 

to reduced TSPO levels in the aorta and liver.  Alternatively, if enhanced oxidative stress in 

our paradigm contributes to changes in TSPO levels in various types of tissue, it will be 

interesting to study TSPO homomer polymerization, a phenomenon that has been reported by 

Delavoie et al. (2003).  The potential appearance of TSPO multimers would suggest whether 

changes in TSPO binding capacity in some of the tissues studied may be due to the oxidative 

stress caused by the HFHC diet.   

4. Conclusions 

Our studies have shown that HFHC diet as well as DMBA exposure of rats can lead to 

oxidative stress in the aorta, as well as a reduction of TSPO binding density.  The 

combination of HFHC diet plus an exposure to DMBA of rats did not affect the studied 

parameters regarding histopathological damage, oxidative stress and TSPO binding 

characteristics in aorta more than the maximal effects achieved by HFHC diet (Dimitrova-

Shumkovska et al., 2010a), although they were higher than with DMBA treatment alone 

(Dimitrova-Shumkovska et al., 2010b).  As addition of DMBA to HFHC treatment does 

not enhance levels of oxidative stress or changes in TSPO binding density in the aorta 

elicited by HFHC alone, this may indicate that HFHC treatment by itself already elicit 

maximal response from the TSPO / oxidative stress “system” in the aorta. Potentially, as 

the effects are not further enhanced, this may mean that the TSPO responses in the aorta 

indeed are a physiological response and do not simply represent damage to the TSPO 

protein (due to oxidative stress or otherwise).  

We consider that the TSPO responses in aorta may present compensatory functions to deal 

with the oxidative stress induced by HFHC diet and DMBA exposure. Alternatively, the 

TSPO response may either be part of the oxidative stress mechanisms, or result from it.  As 
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discussed, TSPO function is not restricted to oxidative stress, but also encompasses adhesion 

to the extracellular matrix, angiogenesis, heme metabolism, protein nitrosylation, apoptosis, 

and immune responses.   

Our research does show that exposure to irritants of the vascular endothelium (metabolical 
of chemical) decreases 18kDa TSPO binding capacity in the aorta. These decreases in TSPO 
binding capacity are potentially related to the oxidative stress in this organ. The data of this 
study suggest that TSPO may present a target for novel therapies designed to reduce the 
risk of atherosclerosis, including its component of oxidative stress.   

5. Summary 

The 18 kDa translocator protein (TSPO) is present throughout the cardiovascular system and 
may be involved in cardiovascular disorders. At cellular levels TSPO is present in virtually 
all of the cells of the cardiovascular system, where they appear to take part in the responses 
to various challenges that an organism and its cardiovascular system face, including 
atherosclerosis and accompanying symptoms.  Several studies have shown that the TSPO 
appears to be a participant in reactive oxygen species (ROS) generation at mitochondrial 
levels.  This may be part of oxidative stress challenges a cell may face.  This potentially may 
play a role in cardiovascular diseases. In this context, TSPO modulates the initiation of 
mitochondrial apoptosis cascade.  Furthermore, TSPO may be a participant in processes 
related to adhesion to the extracellular matrix, vascularisation, heme metabolism, and 
processes affected by nitrosylation of various proteins.  Oxidative damage mediated by 
DMBA exposure and HFHC diet presents two examples of the plethora of risk factors in 
provoking atherosclerosis. Our studies have shown that a high fat, high cholesterol (HFHC) 
diet as well as 7, 12 dimethylbenz[┙]anthracene (DMBA) exposure of rats can lead to 
oxidative stress in the aorta, in association with damage to the aorta wall, as well as a 
reduction of TSPO binding density.   We consider that the TSPO responses in aorta may 
present compensatory functions to deal with the oxidative stress induced by HFHC diet and 
DMBA exposure.  Alternatively, the TSPO response may either be part of the oxidative 
stress mechanisms, or result from it.  The reviewed studies suggest that TSPO may present a 
target for novel therapies designed to reduce the risk of atherosclerosis, including its 
component of oxidative stress.   

6. Explanation of abbreviations and symbols 

ACTH, adrenocorticotropic hormone; ANOVA, analysis of variance; ANT, 30kDa adenine 
nucleotide translocator; (AOPPs), advanced oxidation protein products; Apo E-/- KO, 
apolipoprotein E knockout mice; cAMP, adenosine 3,5-cyclic monophosphate; CBR, central-
type benzodiazepine receptor; DBI, Diazepam Binding Inhibitor CVD, cardiovascular 
disease; DMBA, 7, 12 Dimethylbenz[a]anthracene; DS 10 - single dose of 10 mg  DMBA 
administered (10 mg/ 1ml of sesame oil); GABA, gamma-amino butyric acid; HDL, high-
density lipoprotein; HFHC- high fat high cholesterol diet; HMGCoA, 3-hydroxy-3-
methylglutaryl coenzyme A reductase; H2O2, hydrogen peroxide; Hb, hemoglobin; IL-1, 
interleukin-1 (IL-2, etc.); kDa, kilodalton; Kd, equilibrium dissociation constant; Km, 
equilibrium constant related to Michaelis-Menten kinetics (similarly, Kd, Ka, Keq, Ks); LDL, 
low density lipoproteins; mPTP, mitochondrial permeability transition pore; MCP-1, 
monocyte chemoatractant proteins-1; NADP, nicotinamide adenine dinucleotide phosphate; 
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NADH, reduced nicotinamide adenine dinucleotide; PAHs, polycyclic aromatic 
hydrocarbons; PBR, peripheral-type benzodiazepine receptor; PC protein carbonyls; PK 
11195, 1-(2- chlorophenyl)-N-methyl-N-(1-methyl-prop 1)-3 isoquinolinecarboxamide; 
ONOO-, peroxinitrite ; Ro5-4864, (4’- chlorodiazepam); ROS , reactive oxygen species; SaβG, 
senescence-associated ┚ galactosidase; SOD, superoxide dismutase activity;  TBARs, 
thiobarbituric acid reactive substances; TNF, tumor necrosis factor; TSPO, 18 kDa 
translocator protein; VCAM, vascular cell adhesion molecule; VDAC, 32 kDa voltage-
dependent anion channel; VSMCs, vascular smooth muscle cells. 
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