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1. Introduction   

Hepatocellular death is a key mechanism in alcoholic liver diseases. Although ethanol has 

been described for many years as capable of increasing membrane fluidity, it is only recently 

that this fluidizing effect has been reported to be involved in ethanol-induced liver toxicity. 

In addition, in the last decade, a better understanding of plasma membrane has led to 

suggest that this membrane is not a random association of lipids, but is rather 

heterogeneous, with various microstructures enriched in specific components depending on 

their affinity. Special attention has been paid on lipid rafts that are cholesterol- and 

sphingolipid- rich microstructures, conferring them higher rigidity compared to other 

plasma membrane microdomains. As lipid rafts can also activate or suppress cell signaling 

pathways, lipid raft discovery provides new arguments for several researchers to revisit the 

fluidizing effect of ethanol by studying the possible ethanol-induced physical and 

biochemical alteration of lipid rafts. Thus, in this chapter, we have  considered to review the 

capacity of ethanol to induce a membrane remodeling, depicted as an increase in membrane 

fluidity and alterations of physical and biochemical properties of lipid rafts, and its 

relationship with ethanol liver toxicity. 

2. Membrane fluidity   

The Singer-Nicolson fluid mosaic model indicates that membranes consist of a phospholipid 
bilayer, where lipids, in a fluid phase, act as solvent for proteins (Singer & Nicolson, 1972). 
In this chapter, membrane fluidity means the relative freedom of motion for membrane 
components, especially phospholipids, and represents the combination of various types of 
mobility (Figure 1). Membrane fluidity is principally determined by the acyl chain swinging 
movement and phospholipid rotation. Thus, short chains and double bonds in acyl chains of 
phospholipids create spaces in the bilayer and promote membrane fluidization. At the 
opposite, the rigid steroid nucleus of cholesterol, lying next to the first 9 or 10 carbon atoms 
of the phospholipid acyl chains, prevents the swinging movement of the acyl chains thereby 
stiffening membranes. For the evaluation of this membrane parameter, most studies have 
used either electron paramagnetic resonance (EPR) with spin-labeled fatty acids, or 
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polarization of fluorescence with hydrophobic fluorescence polarization probes. An 
increased membrane fluidity for EPR is usually assessed by a decrease of order parameter 
(S), and for fluorescence, by a decrease of polarization (P), anisotropy (A) or microviscosity 

().   

 

Fig. 1. Different types of mobility of phospholipids. 

Any alteration of the optimal range for membrane fluidity has influence on many biological 
functions such as membrane enzyme and receptor activities, or transmembrane transport 
processes (Ho et al, 1994; Schachter, 1984; Stubbs et al, 1988). Furthermore, more recently, it 
was also shown its fundamental role in cell signalling responses to xenobiotic stress 
(polycyclic aromatic hydrocarbons, cisplatin or ethanol), leading to cell death such as 
apoptosis (Rebillard et al, 2007; Sergent et al, 2005; Tekpli et al, 2011). 

2.1 Plasma liver membranes 

Since the end of the seventies, many papers have provided strong evidence that ethanol 
very rapidly induces a fluidization of membranes as reported by several reviews (Goldstein, 
1987; Rottenberg, 1992; Wood & Schroeder, 1988).  

2.1.1 Tissue type-dependent effect of ethanol  

Using electron paramagnetic resonance, Chin and Goldstein (1977a) were the first to 
demonstrate the ability of ethanol used at low concentrations (from 20 mM - 40 mM) to 
increase in vitro membrane fluidity of erythrocyte and synaptosomal plasma membranes. In 
addition, they showed that continuous exposure of mice to ethanol provided in the diet for a 
short period (8 days) (Chin & Goldstein, 1977b) or by inhalation (3 days) (Lyon & Goldstein, 
1983) respectively restored a membrane fluidity near controls or even rigidified membranes 
in the inner hydrophobic regions, testifying an adaptation. Thus, in alcoholic patients, 
erythrocytes exhibited a decrease in membrane fluidity (Beaugé et al, 1985; Parmahamsa et 
al, 2004). However, the effect of ethanol on plasma membranes is different for the liver. 
Indeed, they become more fluid, mainly in the inner hydrophobic regions, for chronically 
ethanol-intoxicated rats (Schüller et al, 1984; Yamada & Lieber, 1984) and an increase in 
fluidity was also observed in plasma membranes isolated from Reuber H35 rat hepatoma 
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cells (Polokoff et al, 1985) or WRL-68 human hepatic cells (Gutierrez-Ruiz et al, 1995) 
following a long term treatment with ethanol (3 or 4 weeks). Such an effect could contribute 
to the special sensitivity of liver to ethanol toxicity. At the opposite, other organelles in the 
liver did not exhibit any membrane fluidification after ethanol intoxication of rats (Table 1). 
It should be noted that, when primary hepatocytes isolated from chronically ethanol-treated 
rats were cultured before the evaluation of plasma membrane fluidity by fluorescence 
polarization, an increased ordering was observed (Benedetti et al, 1991). 

 

Table 1. Effect of chronic ethanol intoxication on membrane fluidity of various organelles in 
the liver. (In all experiments, rats were fed a diet containing 36 % of total calories as ethanol 
for 30 to 40 days.) 

Whatever exposure modes (ingestion, inhalation or intraperitoneal injections) (Chin & 
Golstein, 1977b; Lyon & Golstein, 1983; Johnson et al, 1979), erythrocyte and synaptosomal 
plasma membranes isolated from ethanol-treated mice did not exhibit an increase in 
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membrane fluidity after a further in vitro ethanol addition in contrast to membranes isolated 
from untreated mice. Such an in vitro resistance was also observed in erythrocyte 
membranes from alcoholic patients (Beaugé et al, 1985). Even though liver plasma 
membranes remained more fluid after chronic rat intoxication (Schüller et al, 1984; Yamada 
& Lieber, 1984) or after long term ethanol treatment of cultured hepatocytes (Gutierrez-Ruiz 
et al, 1995; Polokoff et al, 1985), these isolated membranes also exhibited an in vitro 
resistance to the disordering effect of a further direct addition of ethanol. Finally, most of the 
papers quoted in table 1 indicated such a process for microsomes or mitochondria. This 
phenomenom could be related to several changes in membrane lipid composition (Johnson 
et al, 1979) ie an increase in cholesterol within brain and liver cell membranes in rats (Chin et 
al, 1978) and in monkeys (Cunningham et al, 1983), an increased ratio of saturated to 
polyunsaturated fatty acids (Johnson et al, 1979), or reduced concentrations of sialic acid and 
galactose in the membrane surface of human erythrocytes (Beaugé et al, 1985).  

2.1.2 Molecular mechanisms whereby ethanol could increase membrane fluidity 

These mechanisms, summarized in figure 2, can occur simultaneously. The first described 
mechanism was in brain membranes and concerns physical properties of ethanol which 
allow it to directly interact with the lipid bilayer, thus triggering a direct membrane disorder 
(Goldstein, 1984; Gurtovenko & Anwar, 2009; Marquês et al, 2011; Rottenberg, 1992). This 
theory was particularly developed in the field of drug tolerance and physical dependence, 
but, in the liver, other mechanisms were also described. First, it was proposed that the 
fluidizing effect of chronic ethanol treatment could be related to changes in membrane lipid 
composition as acyl chain saturation and cholesterol are well-described to affect membrane 
fluidity. Thus, Yamada et al (1984) related the increase in membrane fluidity of liver plasma 
membranes after chronic ethanol feeding to a decrease in cholesterol plasma membrane 
content by an unknown mechanism. In hepatoma cells chronically exposed to ethanol for 3 
weeks, the increase in membrane fluidity of plasma membranes was linked to the elevation 
of the ratio phosphatidylcholine/sphingomyelin (Polokoff et al, 1985). However, the main 
distinction of liver is that most of the ethanol metabolism occurs in this organ. Thus, ethanol 
metabolism appeared to play a key role since blocking ethanol metabolism by 
methylpyrazole inhibited changes in membrane fluidity both in acute intoxicated primary 
rat hepatocytes (Sergent et al, 2005), and in chronically treated hepatoma cells (Polokoff et 
al, 1985). Logically, as ethanol metabolism was involved, our team was interested in looking 
at the involvement of oxidative stress following an acute ethanol intoxication of primary rat 
hepatocytes. Using antioxidant such as thiourea (reactive oxygen species (ROS) scavenger) 
or vitamin E (lipid peroxidation inhibitor), we showed that oxidative stress played a role in 
the fluidizing effect of ethanol (Sergent et al, 2005). This new mechanism explained how 
ethanol could very rapidly (30 minutes) increase membrane fluidity since ROS production 
could be detected as soon as 15 minutes. Several molecular mechanisms can be proposed to 
explain the influence of oxidative stress on membrane fluidity. First, lipid peroxidation by-
products could increase membrane fluidity either by interacting with membrane proteins 
(Buko et al, 1996; Subramaniam et al, 1997), or more directly by their own rearrangement 
(Jain et al, 1994; Gabbita et al, 1998). ROS, by oxidizing tubulin could also disrupt 
microtubule cytoskeleton, thereby increasing membrane fluidity (Yoon et al, 1998; Remy-
Kristensen et al, 2000). In our model of primary rat hepatocytes, paclitaxel (a microtubule 
stabilizer) prevented from the fluidizing effect of ethanol (unpublished data).  
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(ROS : reactive oxygen species). 

Fig. 2. Possible molecular mechanisms for ethanol to increase membrane fluidity. 

2.2 Liver mitochondria membranes 

As shown above, a great body of evidence indicated that, in inner membranes of 
mitochondria, ethanol intoxication induced a decrease rather than an increase in fluidity. 
This was demonstrated for chronically intoxicated rats but also with HepG2 human 
hepatocytes treated with acetaldehyde, a product of ethanol metabolism (Lluis et al, 2003), 
providing a further proof of the involvement of ethanol metabolism in membrane fluidity 
changes. In addition, this decrease was related to an elevation of cholesterol content in 
mitochondria which concerns both outer and inner membranes. Finally, the acetaldehyde 
stimulation of cholesterol incorporation into mitochondria membranes was attributed to 
endothelium reticulum stress. 

2.3 Membrane pharmacology of ethanol liver toxicity by manipulation of membrane 
fluidity 

Since the eighties, many studies suggested the influence of ethanol fluidizing effect on 
membrane protein activities (McCall et al, 1989; Mills et al, 1985; Rubin & Rottenberg, 1982). 

Only recently, researchers became interested in determining the role of membrane fluidity 
changes in ethanol-induced hepatocellular death. Thus, manipulation of plasma membrane 

fluidity by exposing primary rat hepatocytes to membrane stabilizing agents 
(ursodeoxycholic acid (UDCA) or ganglioside GM1 (GM1)) led to the inhibition of ethanol-

induced cell death, while fluidizing compounds (tween 20 or A2C) enhanced it (Sergent et 
al, 2005). In order to explain how plasma membrane fluidity could affect cell death, 

oxidative stress was also studied. At the opposite of fluidizing compounds, membrane 
stabilizing agents were shown to protect from ethanol-induced lipid peroxidation, ROS 

production and the elevation of another prooxidant factor, namely low-molecular-weight 
iron. Low-molecular-weight iron consists of iron species that can trigger oxidative stress by 

catalyzing the formation of a highly reactive free radical, the hydroxyl radical. It should be 
noted that UDCA and GM1 displayed a protection towards ethanol-induced ROS 

production only when ROS were evaluated after 1 or 5 hours of incubation with ethanol. At 
15 minutes, no protection was afforded by membrane stabilizing agents, unlike the inhibitor  
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of ethanol metabolism, 4-methyl-pyrazole. This led us to postulate a sequence of events 
whereby the early ROS formation was mainly due to ethanol metabolism and the late phase 
to the increase in membrane fluidity (Figure 3). Interestingly, the increased mitochondrial 
membrane ordering was also associated with the development of oxidative stress. Indeed, 
stabilizing agents such as S-adenosyl-L methionine (SAME) or taurine conjugate of UDCA 
(tauroursodeoxycholic acid) protected from glutathione depletion in mitochondria obtained 
from the liver of rats chronically fed with ethanol (Colell et al, 1997; Colell et al, 2001). 
Reduced glutathione, the main non protein thiol in cells, plays an important role to detoxify 
hydrogen peroxide and other organic peroxides in mitochondria. Glutathione depletion in 
mitochondria made them more sensitive to ROS production and subsequent oxidative 
stress. Thus, it was demonstrated that the increased mitochondrial membrane 
microviscosity impaired the glutathione transporter which normally allows the glutathione 
transport from cytosol to mitochondrial matrix (Coll, 2003; Lluis et al, 2003) (Figure 3).  

 

(GSH : reduced glutathione; ROS : reactive oxygen species). 

Fig. 3. Relationship between membrane fluidity and ethanol-induced oxidative stress. 

Cholesterol involvement in this process should be pointed out. Indeed, as mitochondrial 
membrane enrichment in cholesterol was responsible for the decreased mitochondrial 
membrane fluidity, lovastatin, an inhibitor of hydroxymethylglutaryl coenzyme A involved 
in cholesterol synthesis, was able to protect hepatocytes from acetaldehyde sensitization to 

tumor necrosis factor (TNF) (Lluis et al, 2003). Similarly to membrane stabilizing agents, 
membrane fluidizer (A2C) restored the initial glutathione transport rate and mitochondrial 
content (Coll et al, 2003; Lluis et al, 2003). However, the use of membrane fluidizers should 
be done with caution since, from our results about the involvement of plasma membrane 
fluidization in ethanol-induced cell death, it appears that they can be injurious for 
hepatocytes. At the opposite, UDCA and its conjugates seem to be good candidates for a 
potential therapeutic use, because, due to their membrane stabilizing properties (Güldütuna 
et al, 1993), they restore the normality in membrane fluidity for every type of membranes. 
Thus, in case of ethanol intoxication, they were able to prevent both the increase of plasma 
membrane fluidity, as we observed in primary rat hepatocytes (Sergent, 2005), and the 
decrease in mitochondria membranes of hepatocytes from ethanol-fed rats (Colell et al, 
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2001). In addition, UDCA was also shown to protect rats from the increase in liver plasma 
membrane fluidity due to chronic ethanol intake and hence from liver lipid peroxidation 
and necrosis (Oliva et al, 1998). However, although UDCA is a therapeutically relevant bile 
acid, already used for preventing human primary biliary cirrhosis (Poupon et al, 2003; 
Corpechot et al, 2011), it did not exhibit any beneficial effect on a 6-month survival of 
patients with severe alcohol-induced cirrhosis, but possibly because of inappropriate dosage 
(Pelletier et al, 2003).  

3. Lipid rafts 

Because of the well-described effect of ethanol on plasma membrane fluidity, it is not 
surprising that some researchers about alcoholic liver diseases were interested in the 
possible involvement of lipid rafts in ethanol toxicity. Indeed, plasma membrane is not 
constituted by a random lipid distribution but rather by a selective lateral lipid segregation 
due to self-associative properties of sphingolipid and cholesterol, leading to the concept of 
"lipid rafts" (Simons & Toomre, 2000; Lingwood & Simons, 2010). Thus, lipid rafts are 
detergent-resistant, sphingolipid- and cholesterol-rich microdomains of the plasma 
membrane, which form highly ordered spatial nanoscale assemblies separated from other 
membrane regions composed of more unsaturated and loosely packed fatty acids (Figure 4).  

 

Fig. 4. Schematic representation of a lipid raft (without proteins). 

Lipid rafts as nanoscale assemblies are dynamics and after cell stimulation, can coalesced to 
larger levels to form raft platforms (Harder & Engelhardt, 2004).  Concerning proteins, lipid 
rafts are notably enriched in glycosylphosphatidylinositol (GPI) proteins, receptors such as 
cell death receptors and Toll-like receptors (TLR), and signaling proteins like mitogen-
activating protein kinases, protein kinases C etc.  Some proteins are raft residents, whereas 
others are recruited after cell stimulation with receptor-specific ligands. In addition, based 
on their mobility, lipid rafts, through their aggregation, can form platforms that assembly 
many proteins on a same place leading to the formation of a receptor cluster, which can then 
activate or suppress signaling pathways (Pike, 2003; Schmitz & Orso, 2002). One might 
suppose that ethanol, through its capacity to increase liver plasma membrane fluidity, can 
disturb these microdomains and hence, various cell signaling pathways. Consequently, in 
the last past decade, new investigations were undertaken to possibly link lipid rafts to 
ethanol toxicity. Researches were conducted in two directions: the main one concerned 
perturbation of innate immunity via TLR4 signaling and the other one, hepatocyte cell death 
via the activation of phospholipase C (PLC) signaling.  
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3.1 Lipid rafts in the TLR4 signaling dysfunction by ethanol 

Several components of innate immunity contribute to the pathogenesis of alcoholic liver 
disease (Gao et al, 2011). Here, we will mainly focus on lipopolysaccharide (LPS)/TLR4 
signaling pathways because of the necessary translocation of TLR4 receptor into lipid rafts 
for its activation. 

3.1.1 Involvement of LPS/TLR4 signaling pathway in alcoholic liver disease 

Strong evidence suggest that the immune cells of the liver (phagocytic cells such as 
neutrophils or resident Küpffer cells, and lymphocytes such as natural killer [NK] cells or T 
cells) play a crucial role in alcoholic liver disease including steatosis, hepatitis and fibrosis 
(Suh & Jeong, 2011). Thus, Küpffer cells are main actors in the immune response against 
endotoxin/lipopolysaccharide (LPS) via Toll-Like Receptor type 4 (TLR4) signaling pathway 

leading to the production of pro-inflammatory mediators such as cytokines (TNF-, 
interleukin [IL]-1, IL-6), chemokines (monocyte chemotactic protein-1 [MCP-1]), ROS and 
profibrogenic factors (transforming growth factor [TGF]-, platelet-derived growth factor 
[PDGF]), which subsequently activate hepatic stellate cells for the production of 
extracellular matrix (Jeong & Gao, 2008) (Gao et al, 2011) (Figure 5). Indeed, it is well 
established that ethanol intake, by increasing gut permeabilization, allows the uptake of LPS 
in portal circulation (Parlesak et al, 2000) promoting liver ethanol toxicity (Nanji et al, 1994). 
In addition, in the liver, TLR4 is also expressed on recruited macrophages, hepatocytes, 
sinusoidal endothelial cells and hepatic stellate cells (Seki & Brenner, 2008). Consequently, 
via TLR4 signalling, these last cells can also contribute to liver inflammation by releasing 
proinflammatory cytokines and chemokines. Finally, TLR4 signalling in hepatic stellate cells 

can also participate to the development of alcoholic fibrosis by enhancing TGF- signalling 
(Seki et al, 2007). Therefore, TLR4 receptor appeared crucial in the development of alcoholic 
liver disease (Gao et al, 2011).  

 

(HEP : hepatocytes; HSC: hepatic stellate cells; KC : Küpffer cells; IL : interleukin;  
LPS : lipopolysaccharide; MCP-1 : monocyte chemotactic protein-1 ; PDGF : platelet-derived growth 
factor; TGF: tumor growth factor; TLR4 : Toll-like receptor 4; TNF : tumor necrosis factor) 

Fig. 5. Contribution of TLR4 receptor to the pathogenesis of alcoholic liver disease. 
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3.1.2 Effects of ethanol on the recruitment of TLR4 into lipid rafts 

LPS does not bind TLR4 receptor directly, but is rather first bound to cell surface co-
receptors, the cluster of differentiation 14 (CD14) and the myeloid differentiation protein 2 
(MD-2), without cytoplasmic domains (Fitzgerald, 2004). However, TLR4 is the integrator of 
cell signalling since it has intracellular signaling domains. Close interactions between these 
membrane receptors are made possible by their recruitment and assembly within lipid rafts 
(Schmitz & Orso, 2002; Triantafilou et al, 2002). Thus, CD14 is a glycosyl 
phosphatidylinositol-linked protein which therefore constitutively resides in lipid rafts, 
while TLR4 needs translocation into rafts for the complex formation (Dolganiuc et al, 2006). 
Two features of the ethanol effect on TLR4 and other receptor signaling could be 
distinguished depending on ethanol concentration. 1) At high concentration (≥ 50 mM), 
ethanol prevented from LPS-induced redistribution pattern of the co-receptor CD14 within 
lipid rafts, and from the translocation of TLR4 receptor into rafts (Table 2). This alteration 
could partly explain why ethanol consumption is recognized as a risk factor for concomitant 
bacterial or viral infections (Nelson and Kolls, 2002; Szabo, 1999). Dai et al (2005) and 
Dolganiuc et al (2006) suggested that ethanol, at the concentration of 50 or 86 mM, may 
disrupt lipid rafts because similar effects were obtained with lipid raft disrupters. However, 
a protein raft marker, flotillin did not exhibit any alteration and no clear evidence of lipid 
raft disruption was given, since the cholesterol decrease was detected in culture media 
instead of lipid rafts. They also attributed changes in partitioning cellular membrane in raft 
and nonraft structures to the increase in bulk membrane fluidity (Dolganiuc et al, 2006) 
without checking this influence by the use of membrane stabilizing agents or measuring the 
increase in membrane fluidity directly in lipid rafts. Their hypothesis would be that ethanol 
by this way could disrupt lipid protein interactions (Szabo et al, 2007). Only at very high 
concentrations (200 mM), a lipid raft disruption was really observed in RAW 264.7 
macrophages (Fernandez-Lizarbe et al, 2008). However, at 50 mM, in primary rat cortical 
astrocytes, a partial disruption of lipid raft could be detected suggesting that ethanol at this 
concentration induced both effects : i) disruption leading to the inhibition of lipid raft –
induced cell signalling, and ii) promotion of TLR4 recruitment in lipid rafts (see below)) 
(Blanco et al, 2008). More recently, it was also demonstrated an ethanol inhibition of lipid 
raft-mediated T-Cell Receptor (TCR) signalling in human CD4+ T cells and in Jurkat T cells, 
but no alteration of lipid raft markers  was observed suggesting that ethanol had no direct 
effect on lipid rafts (Ghare et al, 2011). Interestingly, the authors proposed a post-
translational modification of proteins to explain the inhibition of protein translocation into 
lipid rafts. These mechanisms could also be explored for the other models. 2) At lower 
concentration (≤ 50 mM), mimicking LPS effects both in macrophages and astrocytes, 
ethanol induced the recruitment of TLR4 into lipid rafts, thus allowing the activation of 
TLR4 dependent cell signalling (Table 2). A similar process was also observed for IL-1R1 
(IL1 receptor 1) (Blanco et al, 2008). Thus, ethanol triggered cytokine and other 
inflammatory mediator secretion via lipid raft-dependent signalling pathway. According to 
Blanco et al (2008), low ethanol concentrations (10 – 50 mM) may facilitate protein-protein 
and protein-lipid interactions within the membrane microdomains to promote receptor 
recruitment into the lipid rafts. Even if this effect has not yet been directly described in the 
liver, lipid rafts might participate to the mechanisms involved in the enhancement by 
chronic ethanol treatment of liver inflammation associated with the activation of IL-1R1 
receptor in rat liver and hepatocytes (Valles et al, 2003), or TLR4 in immune cells ( Szabo & 
Bala, 2010). 
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Table 2. (Continued) 
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(ERK : extracellular regulated kinase; IL : interleukin; IRAK : interleukin-1 receptor associated kinase; 

LAT : linker for activation of T cells; lck : lymphocyte-specific protein tyrosine kinase;  

LPS : lipopolysaccharide; NF-kB : nuclear factor kappa B; PHA : phytohaemagglutinin;  

PLC: phospholipase C; TCR : T cell receptor; TNF : tumor necrosis factor). 

Table 2. Effects of acute ethanol exposure on lipid raft-mediated receptor activation. 

(In these studies, rafts were isolated by their in vitro property to resist to solubilization in 

non-ionic detergents at low temperature and to float and concentrate in low-density sucrose 

(Brown & Rose, 1992), leading to raft and non-raft fractions.) 

3.2 Lipid rafts in ethanol-induced hepatocyte damage 

Another approach was to consider the role of lipid rafts in ethanol-induced oxidative stress. 

The occurrence of oxidative stress in alcoholic liver disease and its relationship with ethanol 

liver damage have been extensively documented (Albano, 2008; Cederbaum et al, 2009; De 

Minicis & Brenner, 2008; Wu & Cederbaum, 2009), but less is known about the possible role 

of lipid rafts. Thus, it was shown by our team that lipid raft disrupters were able to protect 

from ethanol-induced ROS production and lipid peroxidation in primary rat hepatocytes 

(Nourissat et al, 2008). In addition, we have showed for the first time that oxidative changes 

within lipid rafts are a prerequisite for the oxidative stress to develop in rat hepatocytes. 
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Thus, ethanol metabolism, by producing a rapid and mild oxidative stress, was able to 

induce oxidative damage within lipid rafts leading to their clustering following protein 

crosslinkages (Figure 6).  

 

 

(CHO : carbonyl group; ROS : reactive oxygen species; SH : thiol group) 

 

Fig. 6. Ethanol-induced lipid raft clustering via oxidative stress and protein crosslinkage. 

Protein crosslinkages were obtained by the formation of disulfide bridges from two 
intermolecular thiol (SH) groups from several rafts, and by the formation of adducts with 
malondialdehyde, a well-known product of lipid peroxidation in ethanol treated-rat 
hepatocytes (Nourissat et al, 2008). This aldehyde like 4-hydroxynonenal can react with 
nucleophile residues in proteins to form carbonyl groups which then may form Schiff base 
with a lysine of another protein. Such a protein can be included in another raft leading to 
raft clustering (Figure 6). Interestingly, according to experiments performed on the 
translocation of TLR4 (see above) which proposed a role for membrane fluidity without 
fully demonstrating it, we expressly proved the involvement of the fluidizing effect in the 
ethanol-induced lipid raft clustering by the use of membrane stabilizer or fluidizers. In 
addition, ethanol was shown to be able to fluidize lipid rafts, but at a lesser extent compared 
to bulk membranes. These results also confirmed our previous results which showed the 
pivotal role of the increased membrane fluidity in ethanol-induced cell death of rat 
hepatocytes (Sergent et al, 2005), thereby emphasizing on the contribution of membrane 
remodeling in ethanol liver toxicity. Finally, lipid raft clustering also participated to the 

activation of phospholipase C--dependent signaling pathway. Indeed, this clustering 

induced translocation of phospholipase C- into rafts, which induced elevation of low-
molecular-weight-iron, a potent prooxidant factor, and hence, lipid peroxidation. To 
summarize, ethanol metabolism, by producing a mild oxidative stress can rapidly affect 
both membrane fluidity and lipid rafts, thus promoting lipid raft aggregation (Figure 7). 

Then, this lipid raft clustering, by activating phospholipase C- dependent signaling 
pathway, may in turn trigger amplification of oxidative stress and cell death (Figure 7).  
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(LMW iron: low molecular weight iron; PLC: phospholipase C) 

Fig. 7. Amplification of oxidative stress via lipid raft clustering during acute ethanol 
intoxication of rat hepatocytes. 

In this context, new therapeutic approach, called membrane lipid therapy (Escriba et al, 
2006), could be a very effective strategy to protect hepatocytes from membrane-dependent 
oxidative damage in alcoholic liver damage, especially as an increasing body of evidence 
indicated that some dietary compounds such as plant flavonoids (Tarahosky et al, 2008) or 
fatty fish long-chain polyunsaturated n-3 fatty acids (n-3 PUFAs) (Wassal & Stillwell, 2009) 
might modify physical and chemical properties of lipid rafts. Thus, n-3 PUFAs have been 
extensively described as efficient modifiers of lipid and protein composition of lipid rafts in 
many cell types such as T lymphocytes (Fan et al, 2004; Stulnig, 2001), Caco-2 cells 
(Duraisamy et al, 2007), retinal vascular endothelial cells (Chen et al, 2007) and macrophages 
(Wong et al, 2009). In this context, the nutrional significance of lipid rafts has been recently 
pointed out (Yaqoob and Shaikh, 2010). 

4. Conclusion 

Taken altogether, these studies show that physical alterations of membranes (changes in 

membrane fluidity and microstructures) can be considered as an additional mechanism 

involved in ethanol liver toxicity. It is only in the last past decade that membrane 

remodeling appeared to be linked to ethanol liver toxicity (Figure 8). Therefore, further 

studies are needed in order to determine the role of lipid rafts in chronic ethanol 

intoxication, to further explore the downstream cell signaling after lipid raft clustering such 

as pathways involved in the elevation of low-molecular weight iron cell content, or to 

understand whether receptor recruitment in lipid raft might participate to alcoholic liver 

disease. In addition, other investigation should shed light on the possible beneficial effect of 

the modulation of membrane fluidity and lipid raft. Thus, statins that are already currently 

used in patients suffering from hypercholesterolemia, have demonstrated their efficiency to 

protect hepatocytes from acetaldehyde sentization to TNF (Lluis et al, 2003), and might  also 

be proposed to disrupt lipid rafts. Finally, nutritional compounds such as plant flavonoids 
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or fatty fish long-chain polyunsaturated n-3 fatty acids might represent a new therapeutic 

approach for patients with alcoholic liver disease based upon modulation of the membrane 

structures. 

 

Fig. 8. Evolution of the "membrane remodelling" concept for alcoholic liver diseases. 
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Alcoholic liver disease occurs after prolonged heavy drinking. Not everyone who drinks alcohol in excess

develops serious forms of alcoholic liver disease. It is likely that genetic factors determine this individual

susceptibility, and a family history of chronic liver disease may indicate a higher risk. Other factors include

being overweight and iron overload. This book presents state-of-the-art information summarizing the current

understanding of a range of alcoholic liver diseases. It is hoped that the target readers - hepatologists,

clinicians, researchers and academicians - will be afforded new ideas and exposed to subjects well beyond

their own scientific disciplines. Additionally, students and those who wish to increase their knowledge will find

this book a valuable source of information.
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