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1. Introduction 

Alcohol consumption is one of the major source for chronic liver diseases. It is striking that 
women are more susceptible to the toxic effects of alcohol although alcoholic liver disease 
(ALD) is common in men (1). In recent times, global burden on ALD has prompted 
researchers to investigate this disease based on age, gender, social status and race. However, 
in all these conditions and known variable severities of ALD, the basic pathophysiological 
condition is oxidative stress, which leads to liver damage (1, 2). In an overview, ALD leads 
to hepatocyte death, liver cirrhosis and organ dysfunction through production of reactive 
oxygen species (ROS), inflammatory cytokines and mitochondrial impairment. ROS are 
important mediators of apoptosis in liver diseases and are produced in response to 
paracrine factors such as ethanol (EtOH) (2). This chapter focuses on the role of EtOH 
induced ROS mediated cell death.  

Over two decades, several pathways have been proposed in ALD. Recent studies have 
educated our understanding on these pathways, most of which work as cohort induced by 
direct/indirect effects of alcohol metabolism and clearance. Majority of cell death pathways 
(apoptosis, necrosis and the recently described necroptosis) converge at cellular damage 
associated with excessive production of ROS (superoxide (O2�–) and hydrogen peroxide 
(H2O2)) that results in oxidative stress (3, 4). Under pathophysiological conditions, 
NAD(P)H oxidase, xanthine oxidase (XO) and the mitochondrial respiratory chain are the 
major sources of ROS. Normally, 5% of the metabolized cellular oxygen is converted into 
ROS which are effectively detoxified by endogenous antioxidants such as superoxide 
dismutase (SOD), glutathione peroxidase (GPx) and catalase (Cat). ROS overproduction 
resulting from acute and chronic exposure to alcohol can exceed the capacity of endogenous 
antioxidants (5, 6).  Excessive ROS triggers various cellular signaling pathways leading to 
cell death in both vascular and epithelial cells. Although ROS is known to elicit liver 
damage, the signaling pathways operative in alcohol induced ROS overproduction in liver 
cells remain elusive. 

Mitochondrial respiratory chain is the second major source of cellular ROS. However, 
mitochondria itself is an important target for cellular ROS resulting in mitochondrial 
dysfunction and permeabilization of outer mitochondrial membrane (OMM) (7, 8). In 
addition, studies have demonstrated that inhibition of mitochondrial electron transport 
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results in ROS production leading to alteration in mitochondrial morphology and 
bioenergetics (9). Furthermore, OMM permeabilization leads to cytochrome c release and 
mitochondrial dysfunction (10). 

Multidomain proapoptotic Bcl-2 family proteins are suggested to play a role in O2�– induced 
mitochondrial dysfunction (11, 12). Studies have shown that chronic EtOH consumption 
increases the expression of anti-apoptotic Bcl-2 and Bcl-xL proteins by an interleukin-6-
dependent mechanism (13, 14). Though, up regulation of proapoptotic Bax protein is 
observed in patients with ALD, the roles of Bax and Bak in initiating mitochondrial 
apoptotic events are poorly understood. Our previous studies have shown that O2�–-
mediated mitochondrial phase of apoptosis is mainly dependent on Bid but not Bax (15, 16).  

Enhanced circulation of TNF-and other cytokines have been reported in both ALD 
patients and animal models (17). In ALD, alcohol-induced O2�– elicits production of 

proinflammatory cytokine such as TNF-which subsequently sensitizes hepatocyte cell 

death through gangliosides (18-23). Interestingly, in hepatocytes, TNF-binds to either 
TNFR1 (type1 tumor necrosis factor receptor) or TNFR2 (type 2 tumor necrosis factor 

receptor) to initiate cell death. TNF-mediated activation of apoptosis requires two adaptor 
molecules such as TNF receptor associated death domain protein (TRADD) and Fas –
activated death domain protein (FADD). These in turn activate caspase 8 which further 
proteolytically cleaves downstream caspases and pro apoptotic bcl-2 family protein Bid. The 
active form of Bid (t-Bid) facilitates OMM permeabilization (15). On the other hand, ligation 

of TNF-TNFRrecruits receptor-interacting protein 1 kinase (RIP1), TNFR death domain 
serine-theronine kinase 2 (TRAF2) which generates ceramide via activation of 
sphingomyelinases. Ceramide induces mitochondrial permeability transition pore (MPTP) 
opening, mitochondrial matrix swelling and membrane permeabilization, in concert with 
pro-apoptotic Bcl-2 family protein Bad (24). Recently our study has shown that TNF-α-
induced necroptosis, the alternate form of cell death, requires TNFR adaptor protein FADD 

and NFB downstream signaling molecule NEMO. FADD mediates the formation of 
necrosome consisting of RIP1-RIP3 kinases. The necrosome induced mitochondrial 
dysfunction in necroptosis requires Bax and Bak (25). TNFR1 mediated cell death is an 
extensively studied model and has been associated in many disease conditions including 
ALD.  

Ca2+ has been known as an important intracellular second messenger that plays a dual role 
in cell survival and death. In liver, Ca2+ signaling is known to regulate a variety of cellular 
functions ranging from proliferation to apoptosis. Under pathological conditions, elevation 
in intracellular calcium ([Ca2+]i) facilitates cell death (26, 27) via inositol 1,4,5-triphosphate 
(InsP3) (28, 29) and oxidation of STIM1(30). Inositol 1,4,5-triphosphate receptor (InsP3R)  
mediated [Ca2+]i changes leads to rapid Ca2+ release from ER and the subsequent Ca2+ entry 
through slow-activating plasma membrane store operated channels (SOC) (31-33). In 
hepatocytes, the Type II InsP3 R is known to trigger Ca2+ waves that can transmit through 
intercellular junctions throughout the liver (34). ER-mitochondria link and the 
mitochondrial Ca2+ ([Ca2+]m) uptake through uniporter is known to promote [Ca2+]m 
overload which subsequently leads to mitochondrial depolarization and increased mROS 
production (10, 28, 35, 36). The aberrant Ca2+ homeostasis has been linked with ALD (37, 38). 
Despite the vast knowledge, the actual intricacies on the mechanism of Ca2+ induced 
mitochondrial dysfunction remain largely unexplored. In addition to the functional damage, 
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the structural damage to the mitochondrion is known to play a very important role in 
accelerating EtOH induced apoptosis in hepatocytes. In support, a recent study has 
evidenced the mitochondrial structural changes (fig.1) in an animal model for ALD (39). 

 

Fig. 1. Mitochondria appearance under electron microscope (EM × 6000); A: Mitochondria in 
normal group; B: Mitochondria in model group. M: mitochondria, G: glycogen, N nucleus, 
ER: endoplasmic reticulum, LD: lipid droplet. The long arrow shows abnormally distributed 
chromatin in nuclei, the short one is megamitochondrion and the arrow head is U-type 

mitochondria (Electron micrograph reproduced with permission from  2007 Yan, M  et al. 
Originally published in World J Gastroenterology 2007April 28;13(16): 2352-2356). 

2. Role of ethanol in ROS production 

Oxidative stress has been implicated to play a major role in ALD. The formation of reactive 
oxygen species (ROS) and reactive nitrogen species (RNS) represent an important cause of 
oxidative injury associated with free radical formation. ROS is known to damage and 
degrade lipids, proteins and DNA by which it affects the structure and function of the cell. 
Using animal models and samples from subjects with ALD, studies have shown the role of 
ROS in EtOH induced tissue damage (40, 41). Modification of mitochondrial proteins by 
ROS to disulphide, sulphenic, sulphinic and sulphonic residues and RNS  to nitration 
products of tyrosine residues and nitrosation products of thiols have been well documented 
to occur in membrane and matrix proteins within mitochondria (42, 43). This section 
describes in detail the role of ROS in ALD.  Oxygen is foremost common chemical 
frequently involved in the formation of free radical. Molecular oxygen is oxidized to 
generate two molecules of water by accepting four electrons and protons at one time. 
During this process several intermediary state of reactants exist like superoxide (O2�–); 
peroxide (O22-), which normally exists in cells as hydrogen peroxide (H2O2); and the 
hydroxyl radical (OH�). Superoxide, peroxide, and the hydroxyl radical are considered the 
primary free radicals. It has been estimated that only about 3 to 5 percent of the 
O2 consumed by the mitochondrial respiratory chain is converted to ROS. Nevertheless, the 
toxic effects of oxygen in biological systems—such as oxidation of lipids, inactivation of 
enzymes, nucleic acid mutations and destruction of cell membranes are attributed to the 
reduction of O2 to free radicals. The first and foremost effect of alcohol metabolism in the 
cellular milieu is the loss of NAD+/NADH ratio that affects mitochondrial respiratory chain 
and subsequent generation of superoxide anion (44). In respect to EtOH induced ROS  
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production, our laboratory has demonstrated that EtOH induced mROS production lead to 
mitochondrial morphology changes and functional alterations (Fig. 2). Briefly, (1) Acute 
delivery of EtOH (50mM) resulted in mitochondrial fragmentation (filamentous to globular 
morphology - fig.2A). (2) EtOH-fragmented mitochondria exhibit exaggerated O2�–

production (fig.2B &C). (3) EtOH treatment induced elevated mROS, altered mitochondrial 
Ca2+ handling and mitochondrial dysfunction (fig.2D&E). (4) O2�– induced mitochondrial 

membrane potentialm) loss and cytochrome c release was abrogated by the 
antiapoptotic Bcl-2 protein Bcl-xL and (5) Bax/Bak double knockout cells are resistant to 

O2�– -mediated m loss and cytochrome c release, however, Bak but not Bax is essential for 

O2�–-induced m loss and cytochrome c release (fig 3A-D).  

 

Fig. 2. EtOH augments alterations of mitochondrial morphology, O2�– production, and 
mitochondrial Ca2+ uptake in live cells. (A) Mito-eGFP (enhanced GFP)-expressing vascular 
endothelial cells (left panel) were exposed to 50 mM EtOH for 30 h (right panel). EtOH 
treatment resulted in short, globular mitochondrial tubules. (B) Mito-eGFP-expressing cells 
either left untreated (top) or exposed for 30 h to 50 mM EtOH (bottom) were loaded with the 
mitochondrion-derived O2.– indicator MitoSOX Red and imaged by confocal microscopy. 
EtOH-treated cells, but not control cells, displayed enhanced mitochondrial O2�– production. 
(C) Quantitation of mitochondrial ROS production in live cells. Following treatment, cells 
were loaded with the mitochondrial Ca2+ indicator rhod-2 for 45 min and stimulated with 
bradykinin (BK; 10 nM). Representative traces of mitochondrial Ca2+ uptake in response to 
bradykinin in (D) control and (E) EtOH-treated cells. EtOH-treated cells, but not control 
cells, displayed sustained mitochondrial Ca2+ elevation. f.a.u., fluorescence arbitrary units. 
(Reproduced with permission from © 2009 Madesh et al. Originally published in Mol Cell 
Biol. 2009 Jun;29(11):3099-112). 
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Fig. 3. (A) Wild type, bax–/– bak–/–  double knockout, bax–/–  and bak–/– MEFs were  probed for 

cytochrome c  in O2�– -generating system. m was measured after O2�– treatment in 
permeabilized, TMRE-loaded bax–/– bak–/– MEFs expressing (B) GFP alone or together with 
(C) Bak or (D) Bax. Cells were exposed to the O2�– -generating system or FCCP as indicated. 
(Reproduced with permission from © 2009 Madesh et al. Originally published in Mol Cell 
Biol. 2009 Jun;29(11):3099-112). 

Taken together it is evident that O2�–evokes mitochondrial phase of apoptosis during 
chronic EtOH exposure. In addition, O2�– mediated tBid generation induces selective 

activation of mitochondrial Bak, triggering cytochrome c release and m loss that lead to 
apoptosis (15). Though mitochondria is known to play a crucial role in EtOH induced cell 
death, the upstream signaling molecules other than O2�– that target mitochondria is a open 
area of research in ALD.  
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3. Calcium and its role in ROS mediated apoptosis  

[Ca2+]m signals are known to control variety of responses in liver including apoptosis. 
Chronic EtOH exposure in rats leads to sustained Ca2+ elevation that triggers MPTP 
opening. MPTP opening leads to Ca2+ overload in the mitochondria and results in 
mitochondrial swelling a phenomenon observed in EtOH fed rats but not in control rats (45). 
Cells at basal metabolic rate tightly regulate free Ca2+ in the range of 100 to 200 nM in both 
cytosol and mitochondria through NCX (Na+/Ca2+ exchanger), PMCA (Plasma membrane 
Ca2+-ATPase) and SERCA (Sarcoendoplasmic reticulum Ca2+-ATPase) pumps. Mitochondria 
play an important role in rapid uptake of Ca2+ through a uniporter and is then released 
slowly back into the cytosol (46-48). EtOH is known to induce elevated [Ca2+]i by altering 
the [Ca2+]m buffering capacity.  Endothelial cells lining the capillaries and veins are first to 
encounter ethanol. Ethanol exposure activates the endothelial cells which are known to 
signal the immune cells. Our studies have previously shown ROS generation by activated 
macrophages evoked an [Ca2+]i transient in endothelial cells (28). However sustained 
increase in [Ca2+]i coupled with altered mitochondrial Ca2+ handling capacity leads to 
irreversible cell injury (16, 28, 49). Though, the exact source of increased cellular Ca2+ in 
ALD is poorly understood, several pathways have been proposed for the increased calcium 
flux. Receptor mediated pathways (G Protein-Coupled Receptor and tyrosine kinase 
receptor) that generate second messengers like InsP3 which binds to InsP3R on endoplasmic 
reticulum trigger Ca2+ release (50). Further the [Ca2+]m uptake was directly proportional to 
the magnitude of  [Ca2+]c. Under pathophysiological conditions, the GPCR (G Protein-
Coupled Receptor) Ca2+ linked mROS is essential for leukocyte/endothelial cell adhesion 
(50). EtOH exposure in HepG2 cells induces [Ca2+]m overload that triggers mROS (fig 2D & 
E). In the cellular milieu, Ca2+ is compartmentalized as gradients in different organelles in 
the range of M to nM  (Ca2+=ER>mitochondria>lysosomes>cytosol=nucleus). During ALD 
the alterations in Ca2+ homeostasis leads to [Ca2+]m overload. Under pathological or 
physiological conditions [Ca2+]m  levels dictate the cells to program either towards cell death 
or survival signals in the liver. Accumulation of Ca2+ in mitochondria beyond the transition 
threshold opens the MPTP, resulting in m loss, mitochondrial swelling, mROS 
overproduction and finally leading to cell death (51).  

4. Mitochondrial permeability transition 

Ca2+-linked cell death program in ALD may be either apoptotic or necrotic phenomenon 
determined by OMM permeabilization and MPTP opening respectively. Ca2+ overload leads 
to oxidative stress that permanently leads to MPTP opening exposing the mitochondrial 
inner membrane permeable to all solutes of molecular weight up to 1.5Kd (39). Furthermore, 
the persistent MPTP opening leads to irreversible mitochondrial depolarization. 
Mitochondrial depolarization, in conjunction with mROS overproduction and subsequent 
inner mitochondrial membrane (IMM) damage sets the stage for apoptosis (52). A major 
pathway that leads to mitochondrial damage in a broad spectrum of inflammatory or 
ischemia-related conditions results from the amplification of mitochondrial and cytosolic 
O2�– production (53). ROS mediated cell death, in particular O2�–-mediated apoptosis, begins 
with rupture of the outer mitochondrial membrane (OMM) and cytochrome c release that 
subsequently trigger MPTP opening resulting in mitochondrial swelling. MPTP opening is 
also known to be involved in initiation of the apoptotic machinery without damage to the 
OMM. ROS and [Ca2+]m overload acts synergistically to trigger MPTP opening, and evokes 
cytochrome c release and subsequent activation of caspases (10).  
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O2�– or H2O2 exposure amplifies the Ca2+-induced MPTP opening in a permeabilized cell 
system which in turn could be attenuated with either O2�– scavengers SOD or SOD mimetic, 
MnTBAP, or H2O2 scavenger catalase (fig 4A & B). However, O2�– -induced cytochrome c 
release was insensitive to inhibitors of MPTP (16). Thus, MPTP opening is not essential for 
O2�–-induced cytochrome c release. In addition, exogenous delivery of cytochrome c 
eliminated the O2�– -induced m loss. These data suggest that integrity of the IMM and 
matrix space was preserved during O2�– -induced cytochrome c release (15, 16). 

 

Fig. 4. Effect of ROS on Ca2+-induced PTP opening and Cytochrome c release in 
permeabilized HepG2 cells. (A) O2�– -generating system (xanthine [0.1mM] plus xanthine 
oxidase [20 mU/ml]) and (B) H2O2 (90 mM) augmented Ca2+-induced depolarization (three 
pulses, 30 M CaCl2 each) and decreased mitochondrial Ca2+ uptake. These effects were 
inhibited by an O2�–-scavenger, MnTBAP (20 M; 68 ±4.5% decrease in depolarization and 
78 ±13% decrease in [Ca2+]c rise at 900 s; n=  3), and catalase (Cat; 2500U/ml), respectively. 
At the end of the measurements, cells were exposed to FCCP (Unc; 1M), a protonophore 
that caused rapid and complete dissipation of m. (Reproduced with permission from © 
2001 Madesh and Hajnóczky. Originally published in J. Cell Biol. 155:1003-1015). 

5. Role of Bcl-2 family proteins in ROS-induced m loss 

Although ROS-induced Ca2+ dependent MPTP opening is associated with cytochrome c 
release, in particular, superoxide selectively triggers OMM permeabilization and 
cytochrome c release independent of Ca2+ dependant MPTP opening. O2�– produced by the 
mitochondrial respiratory chain has been reported to cause cardiolipid destruction in the 
IMM and dissipation of the ΔΨm (54, 55). However, O2�– produced under various 
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pathophysiological conditions including ALD, causes OMM permeabilization in a Bax/Bak 

dependant manner. Antiapoptotic Bcl-2 family protein Bcl-xL prevents O2�–-induced m 
loss and cytochrome c release, implying a role for proapoptotic Bcl-2 proteins Bax and Bak. 
Despite their high homology, Bax and Bak have distinct subcellular localization and 
functional regulation. Bax is largely a cytosolic protein that undergoes conformational 
change that is prerequisite for mitochondrial phase of apoptosis. In contrast, Bak is a 
mitochondrial integral membrane protein which undergoes oligomerization upon activation 
by proapoptotic BH3-only proteins (tBid). O2�– -induced mitochondrial functional changes 
require either Bax or Bak. BH3 which constitute a subset of pro-apoptotic members of the 

Bcl-2 protein family are necessary to induce apoptosis (10, 56). O2�– -mediated m loss and 
cytochrome c release is absent in Bax/Bak (bax–/– bak–/–) doubly deficient cells. Interestingly, 

Bak is necessary and sufficient for O2�–-induced m loss and cytochrome c release. 
Mitochondria isolated from heart of bak–/– mice are resistant to O2�–-induced mitochondrial 
depolarization. Further, bid–/– deficient MEFs are also insensitive to O2�– -induced 
mitochondrial phase of apoptosis. Conversely, mitochondria from Bax-deficient mice 
display O2�– -induced mitochondrial depolarization. Upon TNF, Fas ligand or O2�– challenge, 
the cytosolic BH3-only protein Bid undergoes proteolytic processing (caspase 8 and caspase 
2) to generate active form of Bid-tBid. tBid elicited O2�–-induced mitochondrial 
depolarization and cytochrome c release requires Bak. Taken together, these findings  

 

Fig. 5. Mitochondria are prime target for EtOH-induced cell death-Scheme.  
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implicate the requirement of Bak and Bid for O2�–-induced m loss and cytochrome c 
release (15, 16, 24, 10, 57).  

6. Conclusion 

The aberrant rate of cell death is a hallmark of ALD. It is evident that ethanol induced ROS 
mediated oxidative stress is responsible for induction of apoptosis. The sequential events 
such as changes in redox status, increase in cytosolic ROS, sustained [Ca2+]m elevation and 
translocation of pro-apoptotic proteins from cytosol to mitochondria are intimately linked 
with ethanol metabolism (fig 5). Major cell death pathways such as apoptosis, necrosis and 
the recently described necroptosis are associated with oxidative stress. Though, ROS 
production is proposed as a major factor in ethanol induced cell death little is known about 
the downstream mechanisms of the multimode cell death. In conclusion, mitochondria are 
prime target where multiple stress signaling pathways converge to induce cell death in the 
context of ALD. 
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