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1. Introduction  

Approximating digital curves using polygonal approximations is required in many image 

processing applications [Kolesnikov & Fränti, 2003, 2005; Lavallee & Szeliski, 1995; Leung, 

1990; Mokhtarian & Mackworth, 1986; Prasad, et al., 2011; Prasad & Leung, 2010a, 2010b; 

Prasad & Leung, 2010; Prasad & Leung, 2012; Prasad, et al., 2011a]. Such representation is 

used for representing noisy digital curves in a more robust manner, reducing the 

computational resources required for processing and storing them, and for computing 

various geometrical properties of digital curves. Specifically, properties like curvature 

estimation, tangent estimation, detecting inflexion points, perimeter of the curves, etc., 

which are very sensitive to the digitization noise. Polygonal approximation is also useful 

in topological representation, segmentation and contour feature extraction in the 

applications of object detection, face detection, etc.  

Most contemporary methods require some form of control parameter for selecting the most 

representative points (referred to as the dominant points) in the digital curve to be used as 

the vertices of the polygonal approximation [Arcelli & Ramella, 1993; Bhowmick & 

Bhattacharya, 2007; Carmona-Poyato, et al., 2005; Carmona-Poyato, et al., 2010; Carmona-

Poyato, et al., 2011; Chung, et al., 2008; Chung, et al., 1994; Davis, 1999; Debled-Rennesson, et 

al., 2005; Douglas & Peucker, 1973; Gritzali & Papakonstantinou, 1983; Kanungo, et al., 1995; 

Kolesnikov, 2008; Kolesnikov & Fränti, 2003, 2005, 2007; Latecki, et al., 2009; Lavallee & 

Szeliski, 1995; Leung, 1990; Lowe, 1987; Marji & Siy, 2004; Mokhtarian & Mackworth, 1986; 

Pavlidis, 1976; Perez & Vidal, 1994; Phillips & Rosenfeld, 1987; Prasad & Leung, 2010c; 

Ramer, 1972; Ray & Ray, 1992; Rosin, 1997, 2002; Salotti, 2002; Sankar & Sharma, 1978; 

Sarkar, 1993; Sato, 1992; Sklansky & Gonzalez, 1980; Tomek, 1975; Wall & Danielsson, 1984; 

Wang, et al., 2008]. The value of control parameter in all the known algorithms is chosen 

heuristically. In reality, choosing such control parameter can be very challenging because a 

suitable value of such control parameters depends upon the nature of the digital curve and 

one value may not be suitable for all the curves in an image and definitely not suitable for 

all images in a dataset or an application. In section 2, we first propose a parameter 

independent method for polygonal approximation of the digital curves. 
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In addition to the heuristics, another issue is the problem of measuring the quality of the 
polygon fitted by an algorithm. It was shown in [Carmona-Poyato, et al., 2011; Rosin, 1997] 
that most contemporary metrics to compare and benchmark such algorithms are ineffective 
for different types of digital curves. The reason for this is that the polygonal approximation 
has conflicting requirements in terms of the local and global quality of fit. In section 3, we 
show explicitly that these requirements are conflicting. Quality metrics for local and global 
characteristics are presented in section 3.5. The presented metrics can be used to measure 
the quality of not only one edge of the approximated polygons, but also for the complete 
polygon for a digital curve and for all curves in an image.  

A few contemporary methods are discussed qualitatively in section 4 and numerical 
comparisons are provided in section 5. The conclusions are presented in section 6. 

2. Parameter independent polygonal approximation method 

The proposed method uses the framework of the method proposed by Lowe [Lowe, 1987] 

and Ramer-Douglas-Peucker [Douglas & Peucker, 1973; Ramer, 1972] (referred to as L-RDP 

method for convenience). The L-RDP method of fitting a series of line segment over a digital 

curve is described here. For a digital curve  1 2 Ne P P P  , where iP  is the i th edge 

pixel in the digital curve e . The line passing through a pair of pixels ( , )a a aP x y  and 

( , )b b bP x y  is given by: 

     0a b b a b a a bx y y y x x y x y x      . (1) 

Then the deviation id  of a pixel ( , )i i iP x y e  from the line passing through the pair  1 , NP P  

is given as: 

    1 1 1 1i i N i N N Nd x y y y x x y x y x      . (2) 

Accordingly, the pixel with maximum deviation can be found. Let it be denoted as maxP . 

Then considering the pairs  1 max,P P  and  max , NP P , we find two new pixels from e  using 

the concept in the equations (1) and (2). It is evident that the maximum deviation goes on 

decreasing as we choose newer pixels of maximum deviation between a pair. This process 

can be repeated till a certain condition (depending upon the method) is satisfied by all the 

line segments. This condition shall be referred to as the optimization goal for the ease of 

reference.   

The condition used by L-RDP [Douglas & Peucker, 1973; Lowe, 1987; Ramer, 1972] is that for 
each line segment, the maximum deviation of the pixels contained in its corresponding edge 
segment is less than a certain tolerance value: 

 tolmax( )id d . (3) 

where told  is the chosen threshold.  

In general, the value of told  is chosen heuristically to be a few pixels and told  functions as 

the control parameter. Now, we present the method to choose the value of  told  

automatically using the characteristics of the line, such that the user does not need to specify 
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the value of told  [Prasad, et al., 2011a]. First we show that if a continuous line segment is 

digitized then the maximum distance between that digital line segment and the continuous 

line segment is bounded and can be computed analytically. Then, this bound can be used to 

choose the value of told  adaptively. 

We consider the effect of digitization on the slope of a line connecting two points (which 
may or may not be pixels) [Prasad, et al., 2011a]. Due to digitization in the case of images, a 

general point ( , )P x y  is approximated by a pixel ( , )P x y    as follows: 

 round( ); round( );   ,x x y y x y        (4) 

where round( )x denotes the rounding of the value of real number x  to its nearest integer. 

( , )P x y    satisfy the following: 

 ; ;    0.5 0.5, 0.5 0.5x x x y y y x y                (5) 

 

Fig. 1. Representation of the line 1 2P P  and the digitized line 1 2P P  . 

Let the slope of the line 1 2P P  (actual line) be denoted as m  and the slope of the line 1 2P P   
(digital line) be denoted as m , where 1P   and 2P   are obtained by digitization of 1P  and 

2P  using (4). See Fig. 1 for the illustration. Then m  and m  are given as: 

 2 1

2 1

y y
m

x x





 (6) 

 2 1 2 1 2 1

2 1 2 12 1

1
y y y y x x

m m
x x x xx x

                         
 (7) 

The angular difference between the numeric tangent and the digital tangent is used as the 
estimate of the error. This angular difference is given as: 
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

       

        
           

            
  

 (8) 

where,    22
2 1 2 1s x x y y     and 

     2 1 2 12 1 2 1
2 2

y y y yx x x x
t

s s

      
  . Due  

to (5), the maximum value of 2 1x x    and 2 1y y    is 1. Further,  2 1x x s  and 

 2 1y y s  are both less than 1. Thus, 1t   if 2s  , which is true for any line made of 

more than 2 pixels (i.e. 3 pixels or more). Thus, infinite geometric series expansion can be 

used in (8) and   can be approximated as: 

 

     

     

1 22 1
2 1 2 12

22 1
2 1 2 12

tan 1

1

x x
m x x y y t t

s

x x
m x x y y t t

s

                
  

           
 

 (9) 

Further we note that,   has a maximum value when 2 1 2 1 1x x y y        : 

       22
max 3

1
max sin cos cos sin cos sins s

s
              


 (10) 

where,  1tan m  . Then, the maximum deviation is given by: 

  max maxd s   .  (11) 

Based on the above analysis, in L-RDP, the suggested value of told  at every iteration is 

max maxd s   . At each step in the recursion, if the length of the line segment most fit on the 

curve (or sub-curve) is s  and the slope of the line segment is m , then using (10), we 

compute tol maxd s    and use it in (3).  

3. Global vs. local characteristics of line fit 

It is expected that while fitting a polygon on a digital curve, which is effectively fitting a 

series of line segments on the digital curve, either we have to take very small local area in 

order to achieve high precision or we have to take a larger area in order to have a reliable 

and practically usable fit. This was formally stated and explained by Strauss in the context 

of Hough transform [Strauss, 1996; Strauss, 1999], “This duality could be set out as 

follows: as the shape detection precision increases, the reliability of the detection 

decreases. This seems to be due to the binary aspect of the vote in the classical Hough 

transform.”  
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While Strauss is right in pointing out the duality between the precision (quality of local fit) 

and reliability (quality of global fit), he is incorrect in attributing it to the nature of Hough 

transform. It can be shown using simple metrics, precision and reliability measures, that 

there is a perennial conflict in the quality of fit in the local scale (precision at the level of few 

pixels) and global scale (reliability at the level of complete curve) [Prasad & Leung, 2010c]. It 

is due to this reason, most absolute measures fail in quantifying the quality of fit properly 

[Carmona-Poyato, et al., 2011; Rosin, 1997].  

Assuming that we are not bound by the limitation that the points used for representing the 

digital curve should be a subset of the digital curve, we just use least squares method to get 

the best line(s) fit for a digital curve and show that the precision and reliability measures are 

at conflict with each other. Suppose, for a digital curve with the sequence of pixels 

  ,i i iS P x y , 1 to i N , we intend to fit a line 1ax by  . Then, the coefficients of the 

line, a  and b , can be determined by casting the problem of fitting into the following matrix 

equation [Acton, 1984]: 

 XA = J , (12) 

where    T T
1 2 1 2M Mx x x y y y    

X   ,  Ta bA , the superscript T  denotes  

the transpose operation, and J  is a column matrix containing M  rows, whose every 

element is 1.  

3.1 Precision 

The precision of fitting can be modeled using the residue of the least squares method: 

 p    XA J BJ J , (13) 

where   represents the Euclidean norm,  T T
-1

B X X X X  is obtained by substituting A  

obtained using (12). The subscript p  in p  represents precision, and we shall refer to p  as 

the precision parameter for the ease of reference. The lower the value of p , the greater the  

precision. Noting that T T B B B B , (13) can simplified as    T

p    BJ J BJ J  

   4cos cosM   J J BJ J BJ , where NJ  (since J  contains N  elements, 

each equals to 1) and   is the angle between J  and  J BJ . However, since p  J BJ , 

p  can be written as: 

 cosp N  . (14) 

It is evident that by choosing lesser number of pixels, i.e., reducing N , p  can be reduced 

and hence, the precision can be increased. It should be noted that with the decrease in the 

number of pixels, X  and consequently B  change, and thus the contribution from cos  

may vary. However, if continuous pixels are considered, the overall variance in X  is 

reduced, and hence the impact of cos  is also reduced. In effect, this means that fitting the 

line in a smaller local region is more precise than a large region. 
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3.2 Reliability 

In this sub-section, we first present a quantitative measure of reliability that can be 

understood and compared with respect to the precision measure. Generally, for the 

reliability of a fit, the fit is expected to satisfy at least two conditions. First, the fit should be 

valid for a sufficiently large region (or in this case a long edge) and second, it should not be 

sensitive to occasional spurious large deviations in the edge. A combination of both these 

properties can be sought by defining a reliability parameter as follows: 

 max1r i
i

s   X A  (15) 

where  i i ix yX ,   represents the magnitude and maxs  is the maximum Euclidean 

distance between any two pair of pixels. Subscript r  in r  denotes reliability. As before, 

lower the value of r , higher the reliability.  

3.3 Duality 

As evident from (14) and (15), and the discussion between them, there is always a 

contradiction between precision and reliability. In order to increase the precision, we need 

to consider smaller regions for fitting, whereas for increasing the reliability, we need to 

consider larger regions for fitting (largest region being the region spanned by the 

connected edge pixels under consideration). Indeed the contradiction does not occur in 

ideal lines as shown in Fig. 2(a)-(d). It is also not an issue if the lines are in general 

smooth, so that the precision within a large region is already very high, such that 

reliability and precision are already sufficiently high and there is no practical need to 

increase the precision or reliability. Some such examples are presented in Fig. 2(e)-(g). 

This is illustrated in Fig. 3 and Table 1. However, if indeed an application calls for still 

higher precision, the reliability will have to be compromised and the duality comes into 

picture. Examples of more practical cases are shown in Fig. 2(h)-(p). In such cases, the 

duality comes into picture strongly and a balance has to be achieved in order to obtain a 

fit that is sufficiently reliable as well as precise. 

 

 

Fig. 2. Example of small images. Each image is of size 20 20  pixels. The grey pixels are the 

edge pixels, on which line has to be fit.  
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Fig. 3. Lines that have been fit on the images using least squares approach. The lines are 
shown in red asterisk. 

 

Image (a) (b) (c) (d) (e) (f) (g) (h) 

p   0.000 0.000 0.000 0.000 0.024 0.035 0.013 0.071 

r  0.000 0.000 0.000 0.000 0.022 0.031 0.008 0.066 

Image (i) (j) (k) (l) (m) (n) (o) (p) 

p   0.047 0.015 0.072 0.121 0.150 0.111 0.121 0.233 

r  0.048 0.007 0.057 0.114 0.135 0.107 0.115 0.248 

Table 1. Value of parameters p   and r  corresponding to Fig. 3. Values are shown till 3 

decimal points. 

3.4 Performance measures in the context of precision and reliability 

We use various performance measures for comparing various algorithms.  

1. Maximum deviation of any pixel on the edge from the fitted polygon ( max ):  

In the context of a general line given by (12), the maximum deviation max  is specified by  

max


 XA J A , where   denotes the infinity norm (i.e. maximum norm). Since 

   , max p  A . Thus, it can be concluded that max  is a form of precision measure. 

2. Integral square error (ISE):  

This is the sum of squares of deviation of each pixel from the approximated polygon. It is 

given by    2 2 TISE p p  A A A . Thus, effectively, ISE is also a precision measure. 

3. Dimensionality reduction (DR) ratio or compression ratio (CR):  

The compression ratio is the ratio of number of pixels in the digital curve ( N ) to the 

number of vertices of the polygonal approximation ( M ), CR N M . Though this measure 

is not related to either precision or reliability, it is an important performance metric in 
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practice. In addition to other metrics representing precision and/or reliability, a larger value 

of this is beneficial for reduction of data and computational resources. Instead of 

compression ratio, its reciprocal dimensionality reduction ratio 1DR CR M N   can be 

used as a minimization metric (i.e. the lesser, the better).  

4. Figure of merit (FOM) 

Figure of merit is given by FOM=CR ISE . This is a maximization metric, i.e., larger value of 

FOM is preferred over a lower value. However, it is well known that FOM is biased towards 

ISE [Carmona-Poyato, et al., 2010]. For example, if the break points of a digital curve 

[Masood, 2008] are considered as the dominant points, the ISE is zero and inconsequent of 

the CR, FOM is infinity. If we intend to use a minimization metric, we may consider 
1WE =1/FOM  [Marji & Siy, 2004]. It suffers with the same deficiency as FOM. 

5. Fidelity, Efficiency and Merit 

Researchers tried relative measures like fidelity, efficiency, merit to quantify the quality of 

fit [Carmona-Poyato, et al., 2011; Rosin, 1997]. In relative measures, a so-called optimal 

algorithm is considered as the reference for comparing the performance of the algorithm 

being tested. The method proposed by Perez and Vidal [Perez & Vidal, 1994] based on 

dynamic programming is generally used by the researchers as the reference algorithm. This 

is because it targets min   and min #  such that the fitting error is minimized for a certain 

number of points ( min  ) or the number of points for fitting is minimized for a given value 

of fitting error ( min # ). It is logical that there is no way of determining an optimal value 

for the fixed number of points ( min  ) or the fixed value of fitting error ( min # ), because 

such a value depends upon the nature of the digital curve for which polygonal 

approximation is sought. 

3.5 Proposed performance measures 

As seen in section 3.4, none of the existing methods cater for the global nature of the fit. 

Thus, the reliability measure is very important addition to the performance metrics of the 

polygonal approximation method. For the line segments (edges of the polygon), the 

precision and reliability measures are computed: 

 
 

p
 

 
J J XA

A
 (16) 

 max1r i
i

s   X A  (17) 

where p   and r  are the precision and reliability measures,  i i ix yX ,  and maxs  is the 

maximum Euclidean distance between any two pair of pixels [Prasad & Leung, 2010c]. 

Notation   represents the magnitude in the scalar case and the Euclidean norm in the case 

of vectors. 

1. Precision measure for an edge 

Suppose J  line segments are fitted upon a digital curve. Then we define the net precision 

measure for the digital curve as follows: 
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    
Curve

mean ;  to1  j
p p j J    , (18) 

where j
p   is the precision measure of the j th line segment, defined using (16).  

2. Reliability measure for an edge 
The net reliability measure of the digital curve is defined as follows: 

   1

Curve

max
1

1
J

j j
i

j i
r J

j

j

s

 










X A

, (19) 

where j
iX , j
A , and max

js  correspond to iX , A , and maxs  defined after (17) for the j th line 

segment.  

3. Precision measure for a dataset of images 

Suppose a dataset contains L  number of images, the number of edges in the l th image is 

lK , then, the precision measure for the dataset is: 

 
   

   
Dataset Image

Image Curve

mean ; 1 to 

max ; 1 to 

l

p p

k

p p

l L

k K

 

 

    
 

    
 

, (20) 

4. Reliability measure for a dataset of images 
In a manner similar to (20), the reliability measure for a dataset is: 

 
    
    

Dataset Image

Image Curve

mean ; 1 to 

max ; 1 to 

l
r r

k
r r

l L

k K

 

 

 

 
, (21) 

4. Contemporary polygonal approximation method in the perspective of 
duality and the upper bound 

4.1 Optimal polygonal representation of Perez and Vidal [Perez & Vidal, 1994] 

The algorithm proposed by Perez and Vidal (PV) [Perez & Vidal, 1994] is by far the most 
popular algorithm used as a benchmark for comparing the performance of polygonal fitting 

algorithms. The reason for its popularity is twofold. For a given number of points N N  , 

where N  is the number of pixels in the digital curve, it computes the optimal choice of N  

points from the digital curve such that some error metric is minimized. Since the error 
metric can be flexibly defined by a user, it is versatile in its use. Further, for the purpose of 
benchmarking, the designers of other algorithms can first perform the polygonal fitting 

using their own algorithms, obtain a value of N  as obtained by their own algorithms, use 

this value of N  in the algorithm by PV and simply compare the points obtained by their 

method against the optimal points obtained by PV. 
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Since PV can use any error metric to be minimized, it is interesting to note that we can either 
use the precision score or the reliability score as the error to be minimized. If precision score 
is used as the error function, PV attempts to fit segments such that all the line segments are 
of approximately the same length. If reliability score is used as the error function, PV 
attempts to fit segments that are combination of two types: first type are the small segment  

with small value of maxd  but with very small (close to zero) value of 1i
i

 X A ; the second 

type are long segments with comparatively larger values of 1i
i

 X A  but significantly  

larger value of maxd  such that the reliability score is also small valued.  

On the other hand, PV do not guarantee that the maximum deviation of the pixels in curve 

is within the upper limit of the error due to digitization. If the value of N  is very large, it is 

likely that PV will fit the segments such that the maximum deviation is lesser than the upper 

bound. This means that the polygonal approximation will over fit and be sensitive to the 

error due to digitization. On the other hand, if the value of N  is small, the maximum 

deviation of the fitted segments is larger than the upper bound, thus indicating under-

fitting. In essence, this means that using a fixed value of N  or solving min-   problem is 

not suitable for optimal polygonal approximation of the digital curves.   

4.2 Lowe [Lowe, 1987] and Ramer-Douglas-Peucker [Douglas & Peucker, 1973; 
Ramer, 1972] (L-RDP method) 

Lowe [Lowe, 1987] and Ramer-Douglas-Peucker [Douglas & Peucker, 1973; Ramer, 1972] is 
basically a splitting method in which the point of maximum deviation is found recursively 
till the maximum deviation of any edge pixel from the nearest line segment is less than a 
fixed value. Since this is a splitting algorithm, it begins with a very high value of maxd , 
which reduces as the edge is split further. The algorithm stops at a point where the 
maximum deviation satisfies a minimum criterion. Thus, this algorithm focuses more on 
reliability and attempts to barely satisfy a precision requirement.  

In the sense of the upper bound, this algorithm gives a mixed performance. For a few 
segments, the chosen threshold may be below the upper bound and the result is an over-
fitting for this segment. On the other hand, the chosen threshold may be above the upper 
bound for certain line segments, thus resulting in under-fitting for such segments.  

4.3 Precision and reliability based optimization (PRO) 

In this method, though the method of optimization is the same as the L-RDP method, the 
optimization goal is different than (3). Instead of (3), the optimization goal is: 

   0max ,p r    , (22) 

where, 0  is the chosen heuristic parameter. Since this method explicitly uses the precision 
and reliability measures as the optimization functions, this method is expected to perform 
well for both precision and reliability measures.  

However, this method does not take into account the upper bound of the error due to 
digitization. 
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4.4 Break point supression method of Masood [Masood, 2008] 

Masood begins with the sequence of the break points, i.e., the smallest set of line segments 
such that each pixel of the curve lies exactly on the line segments, which is considered as the 
initial set of dominant points. Then, he proceeds with recursively deleting one break point at 
a time such that removing it has a minimum impact in its immediate neighborhood and 
optimizing the locations of the dominant points for minimum precision score. Although the 
aim of optimization is to improve the global fit and thus indirectly improve the reliability, 
evidently, Masood’s method is tailored for optimizing the precision and performs poorly in 
terms of reliability.  

Since Masood begins with largest possible set of dominant points and removes the 
dominant points till a certain termination criterion is satisfied, if the termination criterion is 
not very relaxed, the maximum deviation is in general lesser than the upper bound. Thus, in 
essence, Masood’s method is sensitive to the digitization effects and gives an unnecessarily 
close fit to the digital curve. 

4.5 Dominent point detection method of Carmona-Poyato [Carmona-Poyato, et al., 2010] 

Like Masood [Masood, 2008], Carmona also begins with the sequence of break points and 
the initial set of dominant points. However, unlike Masood, Carmona recursively deletes the 
dominant points with minimum impact on the global fit of the line segments. Thus, 
inherently Carmona-Poyato focuses more on reliability than on precision. It is evident in the 
results reported in [Carmona-Poyato, et al., 2010] that this method has a tendency to be 
lenient in the maximum allowable deviation in the favor of general shape representation for 
the whole curve. 

5. Numerical examples 

We consider the following methods for comparison: 

1. L-RDP_max (from section 2) 

2. L-RDP0.5, L-RDP1.0, L-RDP1.5, and L-RDP2.0 (from sections 2 and 4.2) correspond to 

the values of told  as 0.5, 1.0, 1.5, and 2.0 pixels respectively. 

3. PRO0.2, PRO0.4, PRO0.6, PRO0.8, and PRO1.0 (from section 4.3) correspond to the 

values of 0  as 0.2, 0.4, 0.6, 0.8, and 1.0, respectively. 

4. Masood (section 4.4, [Masood, 2008]) using the termination criterion specified in 

[Masood, 2008], i.e., max 0.9  . 

5. Carmona-Poyato (section 4.5, [Carmona-Poyato, et al., 2010]), using the termination 

condition specified in [Carmona-Poyato, et al., 2010], i.e., 0.4ir  .  

5.1 Images of Fig. 2 

First, we consider L-RDP_max. The results are in the second row of Fig. 4. We see that L-
RDP_max is able to avoid the fluctuations due to digitization and noise (in Fig. 4, see columns 
(g-p), row 2). In the meanwhile, it is able to retain good fit for snippets with important curvature 
changes, see columns (h,m,n,p), row 2 of Fig. 4. Conclusively, due to the consideration of the 
upper bound of digitization error, L-RDP_max considers the general features of the digital 
curve rather than concentrating on every single small scale feature of the curve. 
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The first observation is that L-RDP algorithms are very sensitive to the tolerance values. L-
RDP0.5 algorithm gives a performance comparable to PRO0.2 and PRO0.4, both 
qualitatively (specifically note the columns (h,i,m,n) of Fig. 4) and quantitatively (see Table 
2). A slight increase in tolerance from 0.5 to 1 changes the quality and performance 
parameters of the line fitting significantly, as evident in Fig. 4 and Table 2. The performance 
of L-RDP1 is closer to PRO0.6 and the performance of L-RDP1.5 is closer to L-RDP_max and 
PRO0.8. As the tolerance is increased further in L-RDP algorithms, the fitted line segments 
start losing information about the major curvature changes and represent the digital curves 
only crudely. Thus, though L-RDP2.0 provides significant dimensionality reduction (see DR 
in Table 2), it performs poorly for all the remaining performance parameters. 

Next, we consider the results of PRO algorithms. It can be seen in the row PRO0.2 of Fig. 4 
that it follows the digital curves very closely. As a consequence it is very sensitive to 
digitization and generates numerous small line segments to represent the curve, strongly 
evident in columns (e-i,k-p) of Fig. 4. Though definitely very reliable and precise, as evident 

from  
Dataset

p   and  
Datasetr  in Table 1, due to the tendency to fit the curves very closely, 

it performs poorly in dimensionality reduction (see DR values in Table 1). In the next set: 
PRO0.4-0.8, we see that these algorithms tend to follow the curvature of the digital curve, 
better than PRO0.2. We highlight the results in column (m) of Fig. 4. While PRO0.2 generated 
many line segment for the right side of the curve, PRO0.4-0.8 are more selective in fitting the 
line segments and fit the line segments focusing at the location of changes in curvature.  

Further, as the value of 0  increases from 0.4 to 0.8, the tendency to concentrate further on the 
general characteristics of the curve (rather than following every small scale feature of the  
curve) increases. This is significantly evident in the results in columns (h), (n), and (p) of Fig. 4. 
In the last PRO algorithm, PRO1.0, we see that rather than focusing on small features of the 
digital curve, these algorithms tend to follow the general characteristics of the digital curve on 
a relatively larger scale. Due to this reason, the results of PRO0.8-1.0 are closer to L-RDP_max. 
As a consequence of this characteristic, PRO0.8-1.0 and L-RDP_max have significantly better 
dimensionality reduction as compared to other PRO algorithms (see DR in Table 2). 

With lower value of  
Dataset

p   than  Datasetr  in Table 2, we see that Masood targets 

improving the precision (reducing) rather than the reliability. Thus, as noted in columns (k-
m) of Fig. 4, Masood fails in representing the nature of the curves effectively. On the other 

hand, for Carmona-Poyato, the value of  Datasetr  is lower than  
Dataset

p   in Table 2. 

However, due to the small length of the digital curves here and the fact that Carmona fits 
the polygonal approximation depending upon the length of the curve, in these figures with 
very small digital curves, it tends to fit the curves very closely (see columns (e,f,i,n,o) of Fig. 
4), thus demonstrating better precision as well as reliability as compared to Masood. On the 
other hand for these images, L-RDP_max gives a performance in between Masood and 
Carmona-Poyato. This indicates that L-RDP_max avoids both under-fitting and over fitting. 

5.2 Example of large closed curve 

In this section, we consider an example of digital closed curve which is significantly large 
and contains 458 pixels. The digital curve is derived by scanning the image of dog from 
Figure 14 of [Masood, 2008] at 300 dpi, followed with blurring using Adobe Photoshop with 
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a brush size of 2 pixels. Then the polygonal approximation obtained using various methods 
are presented in Fig. 5. As in section 5.1, the performance of L-RDP_max, L-RDP1.5, and 
PRO0.8 are similar. For this curve, the performance of Carmano-Poyato is also similar to L-
RDP_max. Not only the number of vertices in the polygonal approximation for these cases 
are similar, the location of the vertices are also similar. L-RDP0.5 and PRO0.2 over fit the 
curve with numerous points. The quantitative performances are listed in Table 2.  

5.3 Large datasets used in real applications 

We consider 7 datasets used in object detection algorithms for the purpose of training. These 
datasets, namely afright [McCarter & Storkey, 2003], Caltech101 [Fei-Fei, et al., 2007], Caltech 
256 [Griffin, et al.], Pascal 2007 [Everingham, et al., 2007], Pascal, 2008 [Everingham, et al., 
2008], Pascal 2009 [Everingham, et al., 2009], and Pascal 2010[Everingham, et al., 2010], 
contain a total of 97178 images, with the smallest image being only 80 pixels wide and the 

largest image being 748 pixels wide. The values of  
Dataset

p  ,  
Datasetr  and DR for all the 

datasets and algorithms are plotted in Fig. 6, Fig. 7, and Fig. 8 respectively. Even over such 
wide range of images, L-RDP and PRO algorithms give consistent performances, as seen in 
Fig. 6, Fig. 7, and Fig. 8. Further, all L-RDP and PRO algorithms give better performance in 
terms of precision and reliability, as seen in Fig. 6 and Fig. 7. As a final note, L-RDP_max 
gives better DR than both Masood and Carmona-Poyato, as seen in Fig. 8. 

 

Fig. 4. The polygonal approximations obtained using various methods for images in Fig. 2. 
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Dataset of the 16 images in Fig. 2 Digital curve in section 5.2 

 
Dataset

p   
Datasetr DR  

Dataset
p   

Datasetr DR 
Time 

(seconds) 

L-RDP_max 0.2751 0.2198 0.1286 0.3954 0.3189 0.1114 0.3059 

L-RDP0.5 0.1108 0.0931 0.2233 0.0897 0.0964 0.2642 0.8533 

L-RDP1 0.2295 0.1884 0.1356 0.2829 0.2397 0.1332 0.3498 

L-RDP1.5 0.2751 0.2198 0.1286 0.4133 0.3508 0.1048 0.2571 

L-RDP2 0.3650 0.2899 0.1174 0.5298 0.4341 0.0917 0.2225 

PRO0.2 0.0032 0.0030 0.3933 0.0055 0.0062 0.4672 1.6157 

PRO0.4 0.1486 0.1227 0.2008 0.1629 0.1607 0.1769 0.5004 

PRO0.6 0.1974 0.1700 0.1405 0.2748 0.2467 0.1288 0.3330 

PRO0.8 0.2563 0.2086 0.1307 0.4066 0.3483 0.1048 0.2613 

PRO1.0 0.3185 0.2471 0.1228 0.5626 0.4635 0.0873 0.2100 

Masood 0.2970 0.3144 0.1845 0.1203 0.1155 0.2249 26.1754 

Carmona-
Poyato 

0.1306 0.1110 0.2436 0.3349 0.3152 0.1157 0.6324 

Table 2. Performance metrics for the dataset of the 16 images in Fig. 2 and the digital curve 
in section 5.2. 

 

Fig. 5. Example of a large curve, shape of a dog. The length of the digital curve is N=458. 
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Fig. 6. Precision measure  
Dataset

p   for various datasets obtained by different algorithms. 

 

 

 

Fig. 7. Reliability measure  
Datasetr  for various datasets obtained by different algorithms. 
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Fig. 8. Average dimensionality reduction  for various datasets obtained by different 
algorithms. 

6. Conclusion 

Polygonal approximation of digital curves is an important step in many image processing 

applications. It is important that the fitted polygons are significantly smaller than the 

original curves, less sensitive to the digitization effect in the digital curves, and good 

representations of the curvature related properties of the digital curves. Thus, we need 

methods to deal with the digitization and consider both local and global properties of the fit. 

First, we show that the maximum deviation of a digital curve obtained from a line segment 

has a definite upper bound. We show that this definite upper bound can be incorporated in 

a polygonal approximation method like L-RDP for making it parameter independent. 

Various results are shown to demonstrate the effectiveness of the parameter independent L-

RDP method against digitization, dimensionality reduction, and retaining good global and 

local properties of the digital curve. In the future, we are hopeful that this error bound shall 

be incorporated in various recent and more sophisticated polygonal approximation and give 

a good performance boost to them, while making them free from heuristic choice of control 

parameters. 

Second, we show that global and local properties of the fit are in contradiction with each 

other in general. We propose precision measure for measuring the local quality of fit and 

reliability measure for measuring the global quality of fit. Using them we show that better 

local fits are achieved by considering small edges of the polygons, while better global fit is 
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achieved by making the edges of the polygon as long as possible. Further, we show that 

most contemporary measure of quality of fit are either directly related to precision or 

correspond to the local nature of fit. Since these measures are used in most contemporary 

algorithms, most of them concentrate on improving the local quality of the fit only. 

However, as demonstrated by the upper bound of the maximum deviation due to 

digitization, it may not be worth to reduce the precision below a certain level, since it is 

difficult to predict if the actual deviation is below the error bound due to digitization, some 

form of noise, or due to the nature of the curve. In our knowledge, only Carmona-Poyato 

includes reliability (though indirectly) in its algorithm [Carmona-Poyato, et al., 2010].  

We also propose line fitting algorithm that specifically optimize the curves for increasing 

both precision and reliability simultaneously.  We hope that these measures are paid 

attention to by the research community and better algorithms for polygonal fitting are 

developed, which provide good local as well as global fit. In the future, it shall be useful to 

further improve the design of the precision and reliability measures such that they are more 

representative of the quality of fit. Such improvements in design will also influence the 

quality of polygonal approximation achieved by the polygonal approximation methods. 
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