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Insecticides and Parasitoids 

Toshiharu Tanaka and Chieka Minakuchi 
Graduate School of Bio-Agricultural Sciences, Nagoya University,  

Japan 

1. Introduction 

More than 1,000,000 of insect species live on the earth with close association to each other. 

The population density of living organisms is regulated by abiotic and biotic factors during 

growth and development processes of each organism within some fluctuation, depressing 

the outbreak of some species. Abiotic factors like Flood or Dry involves in fluctuation of 

population. Biotic-regulation factors like deficiency of foods, predation and parasitism are 

important to depress the outbreak of population. In insects, parasitoids live over 200,000 

species (Askew, 1971). Especially in agro-environment, planting monopolized by single crop 

in a wide area makes suitable condition for multiplication of some pest insect species and 

their outbreaks. Chemical control using pesticides for depression of pest population had 

been considered as one of better choice because of its immediate efficacy when outbreak 

happened. It has already clarified, however, that use of non-selective insecticides makes 

resurgence of insect pests caused by rapid decreasing of natural enemies. Agro-chemicals 

with selective toxicity have recently been developed, but it is not enough to examine their 

effects on natural enemies yet. To obtain agro-crops with secure and low price, we have to 

understand both specificities of natural enemies like parasitoids and of insecticides. Many 

parasitoid species works well to regulate the population density of pest insect in a well-

conditioned cultivated space. Effective utilization of parasitoids and pesticides based on the 

various characteristics on each local region produce low density of pest population 

constantly. Simplified interaction between pest insects and natural enemies had made many 

unfortunate consequence of pest control like case of introduced natural enemies to invasion 

pests. Banker plants (Trap crops) are used for keeping the population of natural enemies 

permanently in constant density when natural enemies are multiplied and released 

artificially. It is developed as useful methods that ‘companion plants’ for supplying the 

foods like nector to natural enemies or ‘refuge’ as hiding place to prevent them from leaving 

and so on. However, devotion only to biological control is not adequate for regulation of 

pest population density corresponding to climate change year after year. When population 

of some pest insect breaks out to high density unexpected, natural enemies including 

parasitoid will lose to control for the population density of the pests. We will be forced to 

use chemical control temporarily. However, exclusive devotion to biological control with no 

pesticides or to chemical control ignoring biotic regulation seems not to produce the good 

results. 

Although pest-control by IPM has been recommended recently, susceptibility of insecticides 

to parasitoids is not examined enough from various viewpoints. It is well known that 

parasitoids are one of important natural enemies to many pest species and are used 
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Table 1-1. Effect of Bt-toxin on parasiotid species. 
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Table 1-2. Effect of Bt-crops on parasitoids. 
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extensively in biological and integrated pest control. More than 810 research papers related 

with insecticide and parasitoid in IPM have been accumulated during this decade from 2000 

to 2010 for examining the impact of insecticides on introduced or native parasitoids and/ or 

predators in laboratory condition or agro-fields, resulting that parasitoids are very high 

susceptibility to non-selective insecticides like pyrethroids, organophosphates, and 

carbamates except Bt toxin.  

Recently Bt-toxin or Bt-transgenic crops have been developed and the susceptibility to 

parasitoids and/ or predators (32 of Bt-toxin spray and 42 of Bt-crops in total 74 research 

papers, Table 1) was examined, resulting small impact on parasitoid and predator or on 

their communities.  

Many reviews have already discussed about the side effect or the risk assessment of 

transgenic plants on non-target insects (Schuler et al. 1999; Groot & Dicke 2002; Dutton et al. 

2003; Lövei & Arpaia 2005; Sisterson & Tabashnik 2005; Wolfenbarger et al., 2008; Lövei et 

al. 2009; Grzywacs et al. 2010; Gurr et al. 2010). However, severe problems have occurred 

also in Bt-transgenic crops that pest insects had gained the resistance to Bt-toxin just like 

development of the insecticide-resistance to many chemical insecticides. Approach like ‘high 

dose/ refuge strategy’ (Chilcut & Tabashnik, 2004) or pyramid by expression of two genes 

have been tried to prolong the effectiveness of Bt-crops (Kumar et al. 2008, Ives et al., 2011). 

Although many chemical insecticides produced until present are toxic to natural enemies, 

we may be able to use them effectively by knowing the risk of chemical insecticides to 

maintain the predator and parasitoid communities sustainably.   

In natural fields including agro-fields, parasitoids grow and develop mostly as eggs or 

larvae in/ on their hosts and a few adult wasps stay with searching the hosts. Examination 

only on adult stage is insufficient for clarifying the susceptibility of parasitoid to 

insecticides. It is one of important points to examine the effect of chemical insecticides on the 

parasitized hosts in the developmental stages from oviposition to adult-emergence for 

evaluating the critical dosage to parasitoids. Effective usage of natural enemies like 

parasitoids in the agro-fields controlled by pesticides causes a decrease in the dosage of 

insecticides and brings agricultural crops with safety for human. Both ecological and 

physiological researches will be required for control of pest-population density. In this 

chapter, first as example, we tested effect of neonicotinoids on parasitoid along with the 

growth and development, for considering the characteristics of parasitoids.   

1.1 Effect of insecticide on parasitoid 
1.1.1 Direct and indirect effects of neonicotinoids on endoparasitoid along with the 
development 
Recently although there are some researches published about the effect of neonicotinoids on 

egg parasitoids, there are a few papers on larval parasitoids (Table 2). These results showed 

variety from harmless to toxic impact.  

However, the different results should be rearranged by difference of nutritional strategy 

between egg and larval parasitoids. Egg parasitoid ingests egg-yolk of the host soon after 

hatch as nutritional resource for growth, resulting become distended larval shape (Takada et 

al., 2000; Jarjees et al., 1998; Hutchison et al., 1990). Egg parasitoids are able to avoid the 

toxic effect of insecticides through the chorion of the host, using a protective role that is 

essential to normal development of the host embryo, and can circumvent the accumulation 

of toxic substance by sucking almost all egg-yolk from host egg at once after hatch. On the 

other hand, larval parasitoids have many chances to be exposed to insecticides during 
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Table 2. Effect of neonicotinoids on parasitoids. 

developmental period (from egg to larval stages) and are dead together with the host when 

it is killed by insecticides, because Neonicotinoid have a strong effect on lepidopteran 

larvae. So in this chapter, to consider how to regulate the use of insecticide like 

neonicotinoid to larval parasitoid, it is necessary to examine the susceptibility of larval 

parasitoid to insecticide along with development. We use oriental armyworm Mythimna 

separata (Walker) as host and its endoparasitoid Cotesia kariyai (Watanabe) as a model 

system. Mythimna separata is a big pest for Poaceae plants and sometime make a big surge of 

population density. However, ecological population of M. separata is regulated with many 

kinds of parasitoids, major 5 species of endoparasitoids, Campoletis chlorideae Uchida, 

Microplitis sp., C. kariyai, C. ruficrus (Haliday), Meteorus pulchricornis (Wesmael), and an 

ectoparasitoid Euplectrus separatae Kamijo, and was normally kept low density under a local 

stable condition. Cotesia kariyai is a major gregarious endoparasitoid to oviposit from 30 to 

over 100 eggs in a M. separata host at once and can parasitize 2nd to 6th (last) host instar 

successfully (Tanaka et al., 1987). 

1.1.2 Parasitoid wasps attack and oviposit the host M. separata treated previously 
with insecticides 
To determine the sub-lethal dose activity of various neonicotinoids to unparasitized control, 

the unparasitized hosts 1, 2, 3 d after last ecdysis (D1L6, D2L6, D3L6, 6th larval stage is last 

instar) were used. Unparasitized hosts reach at the maximum weight 3 d after last ecdysis 

and become wandering stage to prepare pupation at D5L6. D2L6 larvae showed a low 

susceptibility to neonicotinoids, especially Thiamethoxam (Thm) and Dinotefran (Dnt), but 

high susceptibility to pyrethroid Permethrin (Per), organophosphate Fenitrothion (MEP), 

and Pyridalyl (Pyr) was observed, comparing to label rate (Table 3).  
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Table 3. LC50 value (ppm) of various insecticide to unparasitized host Mythimna separata. 

From these results, concentration of each insecticide treatment was determined. These 

values means different susceptibility of M. separata even on the same instar at sub-lethal 

dose, and it is hard to be generalized. 

The emergence rate of parasitoid from host parasitized after insecticide treatment (post-

treatment) informs us if parasitoids oviposit the host larvae treated by insecticides. 

Oviposition was performed within 2 hrs post-treatment of insecticide. Stinging behavior for 

oviposition was assured in every case. For example, Acetamiprid (Act), Thiacloprid (Thc) 

and Pyr treatments produced high larval emergence rate of parasitoid when parasitized 

post-treatment compared to pre-treatment, suggesting that oviposition was not disturbed by 

insecticide treatment (Fig. 1).  

On the other hands, high pupation rate of hosts after Imidacloprid (Imd) treatment shows 

the possibility that parasitoid wasps may hesitate to inject the eggs though they stung the 

hosts. On the other hands, high emergence rate in insecticide treatment post-parasitization 

at sub-lethal dose means that the host or the parasitoid larvae possessed the detoxification 

ability to each insecticide and acquired some degree of tolerance to insecticides. 

 

 

 

Table 4. LC50 value of various neonicotinoids to unparasitized and parasitized hosts 1, 3, 5, 

7 days after parasitization. 
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Parasitization after insecticide treatment

Insecticide treatment after parasitization

 

Fig. 1 Emergence rate of parasitoid larvae from the host treated by various insecticides at 

sub-lethal dose. Neonicotinoid insecticide treatment before parasitization made no impact 

on oviposition ef parasitoid wasp. The parasitoid larvae emerged from the host treated 

successfully when the parasitized hosts were not killed by insecticide treatment. Total 

number ef hosts treated with each insecticide was about 30 [ten for each, 3 replicates}. 

lmidacloprid (lmd), Acetamipriel (Act), Thiamethoxam (Thm), Dinotefuran (Dnt), 

Clothianidin (Git), Thiacloprid (The]. Permethrin (Per), fenitrothion (MEP), Pyridalyl (Pyr). 
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However, Clothianidin (Clt) treatment made low emergence rate of parasitoid causing by 

high mortality of host. Especially no emergence of parasitoid from parasitized hosts was 

observed also after day 3 post-parasitization (Fig. 2). Eggs of C. kariyai hatch and become 1st 

instar at 3.5 days after oviposition, and become 2nd instar on 5-6 days after oviposition. 

Insecticide treatment after parasitization was performed on each developmental point, on 

egg stage (day 1; D1), just before hatch (day 3; D3), on first instar (day 5; D5), on 2nd instar 

of parasitoid (day 7; D7). Parasitized hosts showed high susceptibility (meaning lower LC50 

value) than that of unparasitized control, in treatment on every developmental days (Table 

4), especially Clt treatment affect the larval emergence, meaning that parasitoid larva has no 

tolerance to Clt during larval stages. Further, Clt affect the adult eclosion heavily (Table 5). 

 

 

Fig. 2. Effect of treatment of insecticides along with development of the parasitoid on the 

parasitoid emergence rate sub-lethal dose. Cotesia kariyai hatches at 3.5 days post 

oviposition, 1st instar ecdyses to 2nd instar at 5 to 6 days, finally 3rd instars emerge from the 

host after ecdysis to 10 days after oviposition at 25 + 1°C. Insecticide treatment was 

performed on 1, 3. 5. 7 days after parasitization. Total number of hosts treated with each 

insecticide was about 30 [ten per each, 3 replicates]. lmidalcoprid (lmd). Acetamiprid (Act), 

Thiamethoxam (Thm), Dinotefuran (Dnt). Clothianidin (Clt), Thiacloprid (Thc), Permethrin 

(Per), Fenitrothion (MEP), Pyridalyl (Pyr). 
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Table 5. Adult eclosion rate from cocoon of parasioid emerged from parasitized host treated 

by various insecticides. 

For susceptibility of adult wasp to insecticide, ten female wasps was released in a 15 ml 
grass tube inside coated with active ingredients of various insecticide diluted in various 
concentration for 24 hrs with two replication (Table 6), resulting that parasitoid female 

wasps showed very high susceptibility to all insecticides. Even insecticides diluted than 
commercial label killed almost all wasps (Table 6). 
 

 

Table 6. Susceptibility of parasitoid female wasp to neonicotinoid insecticides. 
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However, about 10 times diluted neonicotinoids like Thm, Clt, and Thc to LC50 value on 

D3L6 parasitized hosts made 80-100% mortality, in contrast to Permethrin diluted 50-100 

times showed similar mortality. These results suggest that the neonicotinoids made slightly 

severe effect on larval parasitoid responsible for strong insecticidal potency to the death of 

lepidopteran hosts although they are less toxic than pyrethroids or organophosphates to 

parasitoid. 

1.2 Parasitoid 
Parasitoids are grouped in two categories as idiobiont and koinobiont based on nutritional 

strategy (Haeselbarth, 1979, Askew & Shaw, 1986). Parasitoids categorized as idiobiont that 

attack egg, pupal adult host stages, and paralyze or kill the hosts by venom preceding 

oviposition, thus develop in non-growing hosts and utilize the host resource existed at the 

time of parasitization for the growth and development. On the other hand, koinobiont can 

exploit the host resource increased after parasitization, because the parasitized hosts 

continue to grow and metamorphose during at least the initial stage of parasitism (Fig. 3). 

These include egg-larval and larval-pupal parasitoids or larval parasitoids that do not 

permanently paralyze their hosts at oviposition (Godfray, 1994).  

1.2.1 Egg parasitoids as idiobiont 
Idiobionts include many ectoparasitoids and egg or pupal endoparasitoids, and their 

venoms have characteristics to paralyse or kill the hosts and contain many kinds of enzymes 

to digestive most of host tissues with many variety (Moreau and Guillot, 2005). Venom of 

idiobionts as larval ectoparasitoids like Bracon spp. shows permanently paralyzing activity 

to the host (Beard, 1978, Quicke, 1997, Weaver et al. 1997). Venom is virulent and toxic 

potency to the host. Pupal ectoparasitoids also have to paralyze and fix the host to avoid 

consumption of food resource by growth of the host after parasitization with venom. On the 

other hands, Nasonia vitripennis as pupal endoparasitoid has non-paralysing venom that 

causes developmental arrest by 13 to 200.5 kDa proteins (Rivers et al., 2006), but venom 

shows PO (Phenol oxidase) activity and may induce apoptosis in host tissues (Abt & Rivers, 

2007). Mellitobia wasp shows different mode of action in developmental arrest to different 

host species (Deyrup et al., 2006). These means that apoptotic tissues induced by venom are 

used for parasitoid development with time lag, with condition that their available resource 

is kept by developmental arrest. Idiobiont venom acts to arrest the host development and to 

ensure the food resource while preventing the unregulated decomposition by bacteria. 

Many kinds of venom in Pimpla hypocondriaca has already been reported and well reviewed 

by Moreau & Guillot (2005). In pupal endoparasitoid Pimpla hypochondriaca, many functional 

proteins in venom have been analysed; 28 k and 30 kDa proteins as serine protease 

(Parkinson et al. 2002a), 22 kDa as pimplin of paralytic peptide (Parkinson et al. 2002b), 39.9 

kDa as reprolysin type metalloprotease (Parkinson et al. 2002c), 74 kDa with antibacterial 

and proteolytic activity (Dani et al., 2003).  

Venom components of egg parasitoids is not clarified although a few case is analyzed; 

Telenomus heliothidis (Strand et al., 1983, 1986, Strand, 1986), Trichogramma pretiosum (Strand, 

1986), T. dendrolimi (Takada et al., 2000), T. australicum (Jarjees & Merritt, 2004). Venoms 

(female-derived factor or acid gland) are injected into the host eggs with parasitoid egg and 

arrest the host development. Jarjees & Merritt (2004) suggested that venom was responsible 

for host die and degeneration of host tissues using sterile female.  
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Egg parasitoid ingests the host contents like yolk at once after hatch for growth and 

development (Takada et al., 2000) and consumes the contents of the host killed or 

decomposed by venom as nutritional resource for growth and development in the host. 

Rapid ingestion of the host yolk absorbed insecticides enhances the possibility of 

disturbance to the growth and development of the parasitoid. The difference of 

susceptibility of egg parasitoids to insecticides may be attributed from direct effect on the 

larval and pupal development and from the difference of food intake speed of the host 

contents, though it is further possibility that the residual insecticides outside of egg-shell 

disturb the emergence from host egg.  

1.2.2 Larval endoparasitoid as koinobiont 
Larval endoparasitoids have many chances to be affected during a long larval period 

indirectly through the host physiological action by insecticide. Koinobionts let the hosts 

survive and exploit nutrient from hosts during development of parasitoid associating with 

invasion in host hemocoel and are demanded both avoidance of host immune response and 

acquisition of nutrition from the host with minimal damage. Severe damage of the host 

during early development may lead to precocious death of the parasitoid. If they give severe 

damage to the hosts to get nutrients from hosts, parasitoids are exposed to risk for death.  

 

 

 

 

 
 

 

Fig. 3. Nutritional strategy of parasitioids. 
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Fig. 4. Development of endoparasitoid and regulation factor of endoparasitoid on 

physiological state of the host. Polydnavirus (PDV) plus venom are injected into the host 

and regulate the physiological condition. Braconid endoparasitoids release their teratocytes 

which derived from the serosal cells of the egg after hatch and regulate the physiological 

condition during later stage. 

Endoparasitoids develop the convenient tools like polydnaviruses (PDVs) plus venom 

and/ or teratocytes to get nutrients without severe damage in evolutional process. 

Mutualistic relationship between PDVs and the endoparasitoids are estimated before about 

70-73 ± 10 million years ago by calibration using fossil data (Whitfield, 2002, Drezen et al., 

2003). Endoparasitoids seem to incorporate a nudivirus-related gene from ancestral 

Nudivirus and enable to produce the particles delivering in the host tissue cells for 

successful parasitism (Bézier et al., 2009a, b). PDV enables to regulate the physiological state 

of the host by penetration into each host tissue heterogeneously, especially in hemocytes 

and fat body. Viral genes expression alters the immune system and development of the host 

(Drezen et al., 2003, Beckage & Gelman, 2004, Kroemer & Webb, 2005, Webb & Strand, 2005, 

Gill et al., 2006, Asgari, 2006, Pennacchio & Strand, 2006, Kim et al., 2007). Hemocytes 

penetrated by PDV may lose ability to recognize and to encapsulate the foreign substances 

like eggs. Peptides or small proteins expressed from genes encoded in PDV play a role in 

physiological suppression of host immune response. Many suppression factors as PDV gene 

products are found.  For example, protein tyrosine phosphatase (PTP) which known to play 

a critical role in the control of cellular events like proliferation, differentiation, and 

metabolism, and are a group of enzymes that remove phosphate groups from 

phosphorylated tyrosine residues on protein, then its expression affects the cellular PTP 

activity of the host (Espagne et al., 2004, Provost et al., 2004, Falabella et al., 2006, 

Gundersen-Rindal & Pedroni 2006, Ibrahim et al., 2007, Pruijssers & Strand, 2007, Ibrahin & 

Kim, 2008, Suderman et al., 2008, Shi et al., 2008), Cystatin which has inhibitory activity to 

cysteine proteases (Serbielle et al., 2008, Espagne et al., 2005), IkB-like (vankyrin) genes play 

a role in suppressing NF-kB activity in immune response (Kroemer & Webb, 2005, Bae 
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&Kim, 2009), and more Cysteine-rich domain products (Strand et al., 1997, Barandoc & Kim, 

2009) and EP-1 like gene (Harwood & Beckage, 1994, Harwood et al., 1994, Kwon & Kim, 

2008) including numerous hypothetical genes (Kroemer & Webb. 2004) may suppress the 

host immune response.  

Venoms seem to change with evolution from ectoparasitoids to endoparasitoids (Whitfield, 

2003), because venom may change from virulent action like killing the hosts to temperate 

action to lose toxic potency (Sclenke et al., 2007). Venoms of endoparasitoids contain many 

proteins in large molecular weight (Leluk et al., 1989) that lose the permanent paralytic 

function and promote of PDV expression in the host cells (Asgari, 2006).  

Teratocytes are released and developed from serosal cell of parasitoid egg and produce 

some kind of regulatory protein along with the development (Fig.4). Endoparasitoids, on 

evolutionary process of having invaded from outside to inside, are required both to depress 

the host immune response specifically mentioned above and to get enough food and 

duration for growth and development at minimum damage to the host. Teratocytes play a 

role for extending larval stage of the host for getting enough nutrient required for their own 

growth and development. In case of Braconidae or Chalcidoidea, teratocytes function as one 

of factors to maintain the larval state (Dahlman et al., 2003). Elongation of larval state in 

parasitized hosts may increase the chance of contact with insecticides under natural 

condition. However, there is no information about detoxifying ability of teratocytes during 

late parasitism.   

On the other hands, braconid endoparasitoids use teratocytes to take nutrients from host for 

avoiding severe damage to the host (Fig. 4). The most endoparasitoids seem to be assumed 

as hemolymph feeders (Thompson et al., 2001, 2002, Kaeslin et al., 2005), but In C. kariyai-M. 

separata association, second instars began to take fat body of host as food with help of 

teratocytes to ensure the big growth during 2nd instar stage (Nakamatsu et al, 2002, Tanaka 

et al. 2006). Cotesia kariyai also fed the host hemolymph as nutrient during first instar. 

Teratocytes attached on the surface and removed the outer membrane like cell matrix of the 

fat body with enzyme digestion locally, resulting that the second parasitoid larvae were 

easy to take the contents of the fat body as food. However, it is essential that the actin 

filaments in the fat body cells were broken previously by function of PDV plus venom 

(Tanaka et al., 2006). Although amount of consumption of the host fat body depend on the 

number of parasitoid larvae in a host, more than 100 parasitoid larvae consume almost all 

fat bodies (Nakamatsu & Tanaka, 2004). It was predicted that the larval endoparasitoids like 

C. kariyai might lower the susceptibility to insecticide during later parasitism by losing the 

fat body of the host. 

1.2.3 Physiological regulation of endoparasitoid to insecticide 
Koinobiont parasitoids that leave the host to continue growing after parasitization similar to 

unparasitized one are protected negatively through physiological action of the hosts from 

direct effect. Physiological milieu of the parasitized host is altered by PDV plus venom 

function from immediately after parasitization. Immune depression made us predict the 

lowering of resistance activity against the foreign substances penetrated into the body 

including xenobiotics and the detoxification ability of the host decreased with progressive 

ingestion of host fat body. However, in Plutella xylostella- Cotesia vestalis (=plutellae), 

Glutathion-s-transferase (GST) was enhanced the activity by PDV plus venom stimulation, 

because GST activity in egg stage was enhanced by oviposition or artificial injection of PDV  
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Fig. 5. Glutathion-s-transferase (GST) activity of the Plutella xylostella enhanced by 

parasitization of Cotesia vestalis (=plutellae). Data from Takeda et al. (2006). GST activity was 

measured with two enzyme substrates, individually (DCNB and CDNB). High GST activity 

of the hosts containing parasitioid larva was observed in later stage of parasitsm. 

plus venom (Takeda et al. 2006). Especially during late stage of parasitization while 

parasitoid larva consumed the host fat body, a low susceptibility to organophosphate 

(diazinon and fenitrothion) was detected. It was clarified that enhancement of CYP and GST 

enzymes of both parasitoid larva in parasitized hosts and the host itself causes the low 

susceptibility to insecticides with high enzyme activity (Fig. 5 from Takeda et al., 2006). 

Cotesia vestalis, solitary endoparasitoid did not consume absolutely and remained the host 

fat body of the host. Further, endoparasitoid larva contributed to the detoxification of the 
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host after treatment of insecticide. Amount of fat body remained in the host after 

parasitization seemed to be determined by two factors, the degree of inhibition to the host 

growth after parasitization and amount of fat body consumed by the parasitoid larva. These 

suggested that the parasitized hosts are able to acquire the resistance to insecticides when 

parasitoids do not consume all the host fat body. The spraying of organophophates may 

make small impact on the surviving of parasitoids under agro-fields though the difference 

in susceptibility of parasitoids is not examined. 

2. Conclusion 

Parasitoids have different nutritional strategy. This difference seems to affect the 

susceptibility to insecticide. Idiobiont like egg parasitoid can utilize the dead host as 

nutritional resource. Normally idiobiont parasitoids kill or paralyze the host and stop the 

development of the host using venom. Many reports inform us a little effect of insecticides 

on the egg parasitoids. If insecticide hard to penetrate inside the host egg, parasitoid wasps 

can emerge from the parasitized eggs except that residual effect on the egg-shell kill the 

wasps at the emergence. On the other hands, koinobiont parasitoids utilize the host that 

continues to grow after parasitization, and are kept under physiological depression, 

especially in immune response by PDV plus venom. These mean the high susceptibility to 

insecticides during larval development. After all, larval parasitoids cannot develop in and 

emerge from hosts killed by insecticide treatment during their development even if the 

parasitoid larvae have resistance against the pesticide chemicals. Sub-lethal dose did not 

make severe effect on emergence rate of parasitoid even when insecticide treatment was 

performed during late parasitism except some neonicotinoids, though the susceptibility of 

the hosts treated with insecticides before parasitization or of the hosts treated with 

insecticides after parasitization along with growth and development was different between 

insecticides. On the other hands, parasitoid wasps had a high susceptibility to insecticides. 

When the insecticide spray in the agro-fields should be performed using place to escape for 

wasps like refuge, companion or banker plants. If transgenic crops will be used with 

methods or techniques that constrain the development of resistance strain, it may be valid 

and useful to depress the pest insect population. The parasitoid larvae were successfully 

emerged from the parasitized hosts at sub-lethal dose anytime during larval development, 

though the emergence rate is low. The parasitoids emerged from the hosts may lead to the 

potential to regulate the population density of pest insect. 
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