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1. Introduction 

Imatinib mesylate (Glivec®; Novartis, Basel, Switzerland), a protein kinase inhibitor of the 

BCR–ABL fusion protein, has demonstrated significant clinical efficacy in the treatment of 

Philadelphia (Ph) chromosome-positive chronic myeloid leukemia (CML). Imatinib 

mesylate (hereinafter shortly referred to as imatinib) produces durable responses and 

prolonged survival; therefore, it has become the standard of care for this disease (Goldman 

2007; O'Brien, et al. 2003a). Notwithstanding the positive effects of imatinib, nearly 20% of 

the patients who take imatinib fail to achieve a complete cytogenetic response (CCyR); 

others may develop intolerable side effects or drug resistance overtime. Factors that might 

be associated with suboptimal responses and failure to treatment include (i) biological 

factors, such as the baseline presence or later emergence of BCR–ABL mutations or other 

genetic variants (Gorre, et al. 2001; Radich, et al. 2006), or organic cation transporter-1 

(OCT1)-mediated drug influx (White, et al. 2010); (ii) clinical features, such as the disease 

status of the patients or the Sokal risk score at baseline (Crossman and O'Brien 2004); (iii) 

pharmacokinetic (PK) factors, such as PK-related interindividual variation affecting imatinib 

metabolism and drug–drug interactions (Cortes, et al. 2009; Peng, et al. 2004b); and (iv) the 

patient’s compliance with therapy (Marin, et al. 2010). 

In this chapter, we review the factors that affect imatinib pharmacokinetics, including the 

daily dose of imatinib, polymorphisms of imatinib-associated drug transporters, and the 

currently available methods for quantitative determination of imatinib. Moreover, we 

discuss the clinical significance of therapeutic drug monitoring (TDM) of imatinib. 

2. Relationship between daily dose of imatinib and clinical response 

The standard daily dose of imatinib—established by the International Randomized Study of 
Interferon and STI571 (IRIS)—is 400 mg for patients with chronic phase CML (Druker, et al. 
2006; Hochhaus, et al. 2009). However, several studies have suggested that the 
administration of doses higher than 400 mg improves the response in some patients. Indeed, 
a better response was observed in accelerated and blast phases of CML with a dose of 600 
mg/day (Talpaz, et al. 2002). In another study of 107 Japanese patients with chronic phase 
CML, patients given higher average daily doses of imatinib (more than 350 mg) not only 
achieved higher CCyR rate at 12 and 30 months but also had longer CCyR duration than 
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those given lower average daily doses (Nagai, et al. 2010). Collectively, these results suggest 
a clear dose-response relationship between daily dose of imatinib and treatment results. 

3. Clinical significance of trough imatinib plasma concentrations 

The imatinib plasma trough concentration (C0) appears to affect the clinical response of 
patients (Table 1) (Ishikawa, et al. 2010; Larson, et al. 2008; Picard, et al. 2007; Singh, et al. 
2009; Takahashi, et al. 2010b; Forrest, et al. 2009; Sakai, et al. 2009). Picard et al. reported that 
a steady-state imatinib C0 measured after at least 12 months of treatment with a standard 
imatinib dose correlated with both cytogenetic and molecular responses (Picard, et al. 2007). 
Takahashi et al. have reported that in multiple analyses, the major molecular response 
(MMR) is significantly associated with the age of patients and imatinib C0, whereas CCyR is 
associated only with daily dose (Takahashi, et al. 2010b). In addition, Picard et al. suggested 
that the threshold for the imatinib C0 should be set above 1002 ng/mL, as this level was 
significantly associated with an MMR based on a concentration-dependent receiver-
operating characteristic curve analysis with best sensitivity (77%) and specificity (71%) 
(Picard, et al. 2007). According to this threshold C0 of imatinib, clinical responses were 
evaluated in several reports (Table 2). Takahashi et al. and Marin et al. reported that patients 
with imatinib C0 less than 1000 ng/mL have a significantly lower success rate in achieving 
improved MMR (P = 0.012 and 0.02, respectively) but not CCyR (Marin, et al. 2010; 
Takahashi, et al. 2010b). Thus, the efficacy threshold C0 of imatinib should be set above 1000 
ng/mL for CML patients. 
 

Reference N Response 

Responders Nonresponders 
 

N 
Mean C0 
(ng/mL)1 

N
Mean C0 
(ng/mL)1 

P value 

Larson et al. 351 CCyR 297 1,009 ± 544 54 812 ± 409 0.01 

Takahashi  
et al. 

254
CCyR 218 1,057 ± 585 36 835 ± 524 0.033 

MMR 166 1,107 ± 594 88 873 ± 528 0.002 

Picard et al. 68 
CCyR 56 1,123 ± 617 12 694 ± 556 0.03 

MMR 34 1,452 ± 649 34 869 ± 427 0.001 

Singh et al. 40 
Clinical 

response 
20 2,340 ± 520 20 690 ± 150 0.002 

Ishikawa et al. 60 MMR 38 1,093 (median) 22 853 (median) 0.002 

Sakai et al. 33 Optimal 25 1,242 8 736 0.0087 

Forrest et al. 78 
CCyR 53 1,010 ± 469 24 1,175 ± 656 0.29 

MMR 51 1,067 ± 473 27 1,063 ± 643 0.74 

1All values, except those belonging to the studies by Ishikawa et al. and Sakai et al., are presented as the 
mean ± standard error. 
Abbreviations: C0, plasma trough concentration; CCyR, complete cytogenetic response; MMR, major 
molecular response 

Table 1. Correlation of imatinib pharmacokinetics with clinical response 
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Reference N Response 
C0 (ng/mL)

N ≤1,000 N >1,000 P value 

Marin et al. 84 
CCR

43 
23.3%

41 
44.4% 0.14 

MMR 60.1% 83.2% 0.02 

Takahashi et al. 254 
CCyR

146 
83.6%

108 
88.9% 0.276 

MMR 58.9% 74.1% 0.012 
Picard et al. 68 MMR 32 25.0% 36 72.2% 0.03 
Ishikawa et al. 60 MMR 29 48.3% 31 77.4% 0.019 

Table 2. Clinical response and target plasma trough concentration (C0) 

4. Reported methods for the quantitative determination of imatinib 

Table 3 summarizes the available methods, including the internal standard used, for the 
quantitative determination of imatinib (Bakhtiar, et al. 2002; Chahbouni, et al. 2009; Davies, 
 
Reference Analyte(s) IS Method

Miura  
et al. (2011) 

Imatinib IS: Dasatinib HPLC–UV (265 nm) 

Roth  
et al. (2010) 

Imatinib IS: None HPLC–UV–Diode Array (265 
nm)

Davies  
et al. (2010) 

Imatinib, N-
desmethylimatinib, 
Nilotinib

IS: Clozapine HPLC–UV (260 nm) 

Chahbouni 
et al. (2009) 

Imatinib (Erlotinib, 
Gefitinib)

IS: D8-Imatinib LC–MS/MS

De Francia  
et al. (2009) 

Imatinib (Dasatinib, 
Nilotinib)

IS: Quinoxaline HPLC–MS

Rochat et al. 
(2008) 

Imatinib IS: D8-Imatinib LC–MS/MS

Oostendorp 
et al. (2007) 

Imatinib, N-
desmethylimatinib

IS: 4-
Hydroxybenzophenone

HPLC–UV (265 nm) 

Titier  
et al. (2005) 

Imatinib IS: D8-Imatinib LC–MS/MS

Widmer  
et al. (2004) 

Imatinib IS: Clozapine HPLC–UV–Diode Array (261 
nm)

Velpandian 
et al. (2004) 

Imatinib IS: None HPLC–UV (265 nm) 

Schleyer  
et al. (2004) 

Imatinib, N-
desmethylimatinib

IS: None HPLC–UV (260 nm) 

Parise  
et al. (2003) 

Imatinib, N-
desmethylimatinib

IS: D8-Imatinib LC–MS

Bakhtiar  
et al. (2002) 

Imatinib, N-
desmethylimatinib

IS: D8-Imatinib LC–MS/MS

Abbreviations: IS, internal standard; LC–MS, liquid chromatography with mass spectrometry; LC–
MS/MS, liquid chromatography with tandem mass spectrometry; HPLC–UV, high-performance liquid 
chromatography with ultraviolet detector 

Table 3. Analytical methods for the quantitation of imatinib in human plasma 
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et al. 2010; De Francia, et al. 2009; Miura, et al. 2011; Oostendorp, et al. 2007; Parise, et al. 
2003; Rochat, et al. 2008; Roth, et al. 2010; Schleyer, et al. 2004; Titier, et al. 2005; Velpandian, 
et al. 2004; Widmer, et al. 2004). High-performance liquid chromatography (HPLC) with 
ultraviolet (UV) detection, liquid chromatography with mass spectrometry (LC–MS), and 
liquid chromatography with tandem mass spectrometry (LC–MS/MS) have been used in 
clinical studies to measure the plasma concentration of imatinib. HPLC–UV is less expensive 
than LC–MS or LC–MS/MS detection and requires equipment that is widely available in 
hospital laboratories. As such, a validated HPLC–UV assay provides the most practical 
platform to measure imatinib plasma concentration in actual clinical practice. 

5. Interpatient variability of trough imatinib plasma concentration 

Despite the linear relationship between imatinib C0 and its daily dose, substantial 

interpatient variability is observed (Takahashi, et al. 2010b). Even among patients taking the 

same 400 mg/day dose, the imatinib C0 ranges widely (140–3910 ng/mL) (Table 4) (Forrest, 

et al. 2009; Ishikawa, et al. 2010; Larson, et al. 2008; Marin, et al. 2010; Picard, et al. 2007; 

Takahashi, et al. 2010b). Factors that could underlie this interpatient variability include body 

size, age, gender, liver function, renal function, interaction with other medications given 

concomitantly, adherence to medication regimens, and polymorphisms of enzymes or 

transporters related to imatinib pharmacokinetics and/or pharmacodynamics. 

 

Reference  N 
C0 (ng/mL) 

Mean Minimum Maximum 

Larson et al.  351 979 153 3,910 
Picard et al.  68 1,058 181 2,947 
Marin et al.  84 900 400 1,600 
Forrest et al.  70 1,065 203 2,910 
Takahashi et al.  190 1,392 140 2,457 
Ishikawa et al.  46 1,005 (median) 450 1,875 

Table 4. Steady-state plasma trough concentration (C0) range at 400 mg of imatinib daily 

6. Pharmacokinetics of imatinib 

Imatinib is rapidly and completely absorbed because of an oral bioavailability of 98.3% 

(Peng, et al. 2004a). Moreover, it is extensively metabolized, with up to 80% of the 

administered dose recovered in feces as metabolites or unchanged drug (Gschwind, et al. 

2005). The mean plasma half-life of imatinib is 13.5–18.2 h (Gschwind, et al. 2005; le Coutre, 

et al. 2004; Peng, et al. 2004b; Wang, et al. 2009). The cytochrome P450 (CYP) system is 

involved in the oxidative metabolism of imatinib, the major reaction being catalyzed by 

CYP3A4/5 (O'Brien, et al. 2003b; Peng, et al. 2005; van Erp, et al. 2007). Indeed, the main 

metabolite of imatinib, the N-desmethyl derivative CGP74588, is primarily formed in the 

liver by cytochrome CYP3A4, whereas a number of other enzymes such as CYP1A2, 

CYP2D6, CYP2C9, and CYP2C19 are involved in the formation of minor metabolites 

(O'Brien, et al. 2003b; van Erp, et al. 2007). CGP74588 represents approximately 20% of the 

parent drug plasma level in patients, and it has similar biological activity but a longer 

terminal half-life (85–95 h) than imatinib, as measured after discontinuation of therapy 
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Transporter Polymorphism N Effects on PK Effects on clinical 
response 

Reference 

P-glycoprotein 3435 T 82 CL/F = - Gardner et al. 
(ABCB1) 3435 T 90 C0 =  MMR = Dulucq et al. 
 3435 T 34 CL/F ↓ - Yamakawa et al. 
 3435 T 67 C0 =  MMR =  Takahashi et al. 
 3435 T 22 CL/F ↑ - Gurney et al. 
 3435 T 229 - OS ↓ Kim et al. 
 3435 T 52 - Resistance ↑ Ni et al. 
 3435 T 46 - MMR, CMR ↓ Deenik et al. 
 3435 CC 65 - Failure ↑ Maffoli et al. 
  1236 T 90 C0 =  MMR ↑ Dulucq et al. 
 1236 T 34 CL/F = - Yamakawa et al. 
 1236 T 67 C0 =  MMR =  Takahashi et al. 
 1236 T 22 CL/F ↑ - Gurney et al. 
 1236 T 229 - CCyR, MMR = Kim et al. 
 1236 T 52 - Resistance ↑ Ni et al. 
 1236 T 46 - MMR, CMR ↓ Deenik et al. 
  2677 T/A 90 C0 =  MMR ↑ Dulucq et al. 
 2677 T/A 34 CL/F = - Yamakawa et al. 
 2677 T/A 67 C0 =  MMR =  Takahashi et al. 
 2677 T/A 22 CL/F ↑ - Gurney et al. 
 2677 T/A 229 - CCyR, MMR = Kim et al. 
 2677 A 52 - CCyR ↑ Ni et al. 
 2677 T 46 - CMR ↓ Deenik et al. 
  TTT haplotype 90 C0 ↑ MMR ↑ Dulucq et al. 
  TTT haplotype 22 CL/F ↑ - Gurney et al. 

BCRP 421 A 82 CL/F = - Gardner et al. 
(ABCG2) 421 A 34 CL/F = - Yamakawa et al. 
 421 A 67 C0 ↑ MMR =  Takahashi et al. 
 421 A 46 CL/F ↓ - Petain et al. 
  421 A 229 - MMR, CMR ↑ Kim et al. 

OCT1 480 G 229 - Loss of response Kim et al. 
(SLC22A1) 480 G 67 C0 =  MMR =  Takahashi et al. 

 1022 T 67 C0 =  MMR =  Takahashi et al. 
 1022 T 34 CL/F = - Yamakawa et al. 

  1222 G 67 C0 =  MMR ↑ Takahashi et al. 

Abbreviations: C0, plasma trough concentration; CCyR, complete cytogenetic response; CL/F, clearance; 
CMR, complete molecular response; MMR, major molecular response; PK, pharmacokinetics 

Table 5. Transporter polymorphism and effects on pharmacokinetics and the clinical 
response 

(Gschwind, et al. 2005; le Coutre, et al. 2004). Imatinib is a substrate for P-glycoprotein, 

which is encoded by the ABCB1 gene, and breast cancer-resistance protein (BCRP), which is 

encoded by the ABCG2 gene (Burger and Nooter 2004; Burger, et al. 2004; Dohse, et al. 2010; 

Ozvegy-Laczka, et al. 2004). P-Glycoprotein is a membrane efflux transporter normally 
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expressed in the small intestine, biliary canalicular front of hepatocytes, and renal 

proximal tubules (Thiebaut, et al. 1987). BCRP is widely expressed in the small intestine, 

liver, and placenta (Hirano, et al. 2005; Zhang, et al. 2006). Imatinib and its metabolites are 

excreted predominantly via the biliary–fecal route by these ATP-binding cassette (ABC) 

efflux transporters, P-glycoprotein and BCRP. Imatinib is also a substrate of the uptake 

transporter OCT1, which is encoded by SLC22A1 (Choi and Song 2008; White, et al. 2006). 

Because OCT1 is a highly expressed solute carrier in the basolateral membrane of 

hepatocytes, it facilitates the hepatocellular accumulation of imatinib before metabolism 

and biliary secretion. Further, it may play an important role in governing drug disposition 

and hepatotoxicity (Zhang, et al. 1998a; Zhang, et al. 1997; Zhang, et al. 1998b). One of the 

factors affecting interpatient variability could be polymorphism of drug transporters. 

However, the involvement of multiple transporters in imatinib pharmacokinetics hampers 

the investigation of imatinib transport mechanisms. Moreover, the level of drug 

transporter expression likely correlates with the intracellular imatinib concentration, 

because primary CML cells express the transporters on the cell surface (Burger, et al. 2005; 

White, et al. 2006). 

7. Impact of pharmacogenetic variation of drug transporters 

Pharmacogenetic research has focused on the interaction of imatinib with enzymes such as 

CYP3A4/5 and transporters such as P-glycoprotein, BCRP, and OCT1 (Table 5) (Deenik, et 

al. 2010; Dulucq and Krajinovic 2010; Gardner, et al. 2006; Kim, et al. 2009; Maffioli, et al. 

2010; Ni, et al. 2011; Petain, et al. 2008; Takahashi, et al. 2010a; Yamakawa, et al. 2011). 

7.1 CYP3A4/5 

CYP3A4/5 expression is strongly correlated with a single-nucleotide polymorphism (SNP) 

in the gene (Hustert, et al. 2001; Rodriguez-Antona, et al. 2005). Nonetheless, CYP3A4*1B (-

392A>G) and CYP3A5*3 (6986A>G) had no significant influence on the plasma 

concentration of imatinib (Gardner, et al. 2006; Gurney, et al. 2007; Takahashi, et al. 2010a). 

A drug interaction occurs upon coadministration of imatinib and rifampicin or St. John's 

wort’s CYP3A inducers, resulting in a decrease in the plasma concentration of imatinib 

(Bolton, et al. 2004; Smith, et al. 2004). In contrast, ketoconazole, a potent CYP3A4 inhibitor, 

significantly increased the Cmax and AUC0–24 of imatinib (Dutreix, et al. 2004). However, the 

effects of CYP3A4 and CYP3A5 polymorphisms are less likely to be clinically significant in 

imatinib exposure. 

7.2 P-Glycoprotein (ABCB1) 

Gurney et al. (sample size = 22) reported that oral clearance of imatinib in patients receiving 

600 mg of imatinib daily was significantly lower in those with the ABCB1 1236C/C, 

2677G/G or 3435C/C genotypes than in those with the corresponding ABCB1 1236T/T, 

2677T/T or 3435T/T genotypes (Gurney, et al. 2007). However, Gardner et al. (sample size = 

82) reported that the ABCB1 3435C>T polymorphism had no significant effect on oral 

clearance of imatinib (Gardner, et al. 2006). In another study, Takahashi et al. (sample size = 

62) reported that 1236C>T, 2677G>T/A, and 3435C>T polymorphisms had no significant 

effect on dose-adjusted imatinib C0 (Takahashi, et al. 2010a). Although other studies have 
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reported the relationship between ABCB1 polymorphisms and imatinib pharmacokinetics, 

or between ABCB1 polymorphisms and clinical response, the results are still controversial 

(Table 5). However, the 3435T polymorphism, which is associated with low expression of P-

glycoprotein, tends to correlate with poor clinical response. This finding suggests that P-

glycoprotein is involved in imatinib pharmacokinetics to a greater extent than the 

intracellular imatinib concentration in primary CML cells. 

7.3 BCRP (ABCG2) 

Five studies have reported the ABCG2 421 polymorphism and imatinib pharmacokinetics or 
clinical response. Takahashi et al. (sample size = 62) reported that the dose-adjusted 
imatinib C0 was significantly lower in Japanese patients with ABCG2 421C/C than in 
patients with C/A+A/A genotypes (Takahashi, et al. 2010a). In agreement, Petain et al. 
(sample size = 46) reported that imatinib clearance in patients carrying the ABCG2 421C/A 
genotype was significantly lower than in those with the 421C/C genotype (Petain, et al. 
2008). Moreover, ABCG2 421A/A has a significant effect on achieving MMR/CCyR (sample 
size = 229) (Kim, et al. 2009). Because the 421C>A SNP of the ABCG2 gene is associated with 
a higher imatinib exposure than is the wild-type genotype, CML patients with this SNP 
might more efficiently achieve molecular responses much more than their wild-type 
counterparts. 

7.4 OCT1 (SLC22A1) 

SLC22A1 (OCT1) expression levels likely correlate with the intracellular imatinib 

concentration, as primary CML cells expressing high levels of OCT1 have a greater drug 

uptake than those exhibiting more modest OCT1 expression (Thomas, et al. 2004; Wang, et 

al. 2008; White, et al. 2006). On the other hand, Kim et al. reported that the SLC22A1 480G/G 

genotype correlated with high rate of loss of response or treatment failure to imatinib 

therapy (Kim, et al. 2009). However, no association between dose-adjusted imatinib C0 and 

SLC22A1156T>C, 480G>C, 1022C>T, or 1222A>G polymorphisms has been observed 

(Takahashi, et al. 2010a). The SLC22A1 polymorphisms analyzed to date are therefore not 

important for imatinib exposure. OCT1 may contribute to the cellular uptake of imatinib 

rather than to imatinib exposure. 

8. Pharmacokinetics of second-generation BCR-ABL inhibitors  

Second-generation inhibitors, including nilotinib, dasatinib, and bosutinib, have been 
developed to counter imatinib resistances associated with BCR-ABL mutations, BCR-ABL 
gene amplification, increased efflux via ABC pump activation, or decreased influx via OCT1 
activation. Nilotinib is a close structural analogue of imatinib with greater binding affinity 
and selectivity for the BCR-ABL kinase than imatinib. Dasatinib and bosutinib are dual 
ABL-SRC kinase inhibitors. All these second-generation inhibitors have been evaluated in 
clinical trials (Kantarjian, et al. 2010; Keller, et al. 2009; Saglio, et al. 2010), and nilotinib and 
dasatinib have already been approved in many countries for the treatment of patients with 
CML.  
In pharmacokinetics studies with dasatinib (Christopher, et al. 2008), nilotinib (Tanaka, et al. 
2010), or bosutinib (Abbas, et al. 2011), exposures (Cmax and AUC) were shown to be linear 
and the dose proportional. Cmax was observed at 0.5, 3, and 6 h after single oral 
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administration of each inhibitor, and a mean terminal elimination half-life (t 1/2) was <4, 17, 
and 32–39 h, respectively. Absorption was rapid for dasatinib and relatively slow for 
nilotinib and bosutinib. Similarly to imatinib, they are metabolized primarily by CYP3A4. 
However, unlike imatinib, nilotinib and dasatinib are not substrates for OCT1 transporter 
(Clark, et al. 2008; Giannoudis, et al. 2008; Hiwase, et al. 2008). Nilotinib and dasatinib are 
high-affinity substrates of BCRP and also interact with P-glycoprotein (Hiwase, et al. 2008). 
However, neither P-glycoprotein nor BCRP induce resistance to bosutinib (Hegedus, et al. 
2009). 
 There are no published data on the relationship between drug plasma concentration and 

outcome or adverse events, and no clinically relevant data to suggest that dose changes are 

necessary based on sex, age, or pharmacokinetic differences that depend on the 

pharmacogenetic variation of drug transporters for second-generation inhibitors. 

9. Therapeutic drug monitoring of imatinib for CML patients 

Patients are more likely to achieve higher response rates with a satisfactory level of response 

if the 1,000 ng/mL drug plasma threshold considered as an adequate imatinib C0 is achieved 

and maintained. Because the interpatient variation of imatinib levels is influenced by 

multiple factors, including genetic polymorphisms or coadministered drugs, a routine 

therapeutic drug monitoring (TDM) service for CML patients taking imatinib might be 

useful. According to the European Leukemia Net (ELN) recommendations (Baccarani, et al. 

2009), the clinical response for CML patients receiving imatinib therapy should be evaluated 

at 3, 6, 12, and 18 months. In addition to BCR–ABL mutation analysis for CML patients, 

TDM could be also useful when making decisions related to imatinib therapy for patients 

not achieving CCyR or MMR at the above time points. If the target C0 is not reached and no 

intolerance is found, dose escalation of imatinib is recommended. On the other hand, if the 

target is achieved but the patients lack a sufficient clinical response, imatinib could be 

withdrawn and replaced by a second-line tyrosine kinase inhibitor. Moreover, among the 

above-mentioned drug transporters, BCRP seems to most strongly influence imatinib 

exposure. We have reported that the daily dose of imatinib for patients with ABCG2 421C/C 

and 421C/A or 421A/A should be 400 mg and 300 mg, respectively, to attain the 1000 

ng/mL drug plasma threshold (Takahashi and Miura 2011). If the ABCG2 421C>A 

polymorphism is detected before initiating therapy, dosing decisions may be improved to 

achieve optimal imatinib exposure immediately after intake. Further study is necessary to 

prospectively confirm the benefit of TDM of imatinib in the treatment and management of 

CML patients. 
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