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1. Introduction 

Chlorophenoxy herbicides are widely used in agriculture and forestry, for the control of 
broad-leaved weeds in pastures, cereal crops, as well as along public rights of way. 
Structurally, these herbicides consist of a simple aliphatic carboxylic acid moiety attached to 
a chlorine-substituted aromatic ring via an ether linkage. One of the most commonly used 
herbicides of this type is 2,4-dichlorophenoxyacetic acid (2,4-D) (Fig. 1). In congruence with 
the similitude between its molecular structure and that of the plant hormone indole-acetic 
acid, 2,4-D acts as a plant growth regulator that can interfere with normal hormonal action 
and plant growth (Munro et al., 1992). 

 

Fig. 1. Structure of the 2,4-Dichlorophenoxyacetic Acid. 

2.4-D was synthesized for the first time in 1941 and commercially marketed in the United 
States (U.S.) in 1944 (IARC, 1986) and worldwide since 1950 (Munro et al. 1992). The 
widespread use of 2,4-D as a domestic herbicide and as a component of Orange Agent 
encouraged the study of its toxicity. 

Human exposure to chlorophenoxy herbicides may occur through inhalation, skin contact or 
ingestion. The predominant route for occupational exposure to 2,4-D has been the 
absorption of spills or aerosol droplets through the skin. 

Several studies have shown that doses of 50, 70 or 100 mg/kg body weight  (bw)/day of 2,4-
D produce a wide range of toxic effects on the embryo and on the reproductive and neural 
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systems in animal (mostly rat) and human models (Rosso et al., 2000; Barnekow et al., 2001; 
Charles et al., 2001). Doses of 50 mg/kg bw/day of 2,4-D have been reported to increase 
ventral prostate weight in rats. Treatment of human prostate cancer cell cultures with 10 nM 
2,4-D enhanced the androgenic activity of dihydroxytestosterone (DHT) on cell proliferation 
and transactivation (Kim et al., 2005). In cultured chinese-hamster ovary cells, 2.0 to 10.0 
µg/ml 2,4-D were reported to produce DNA damage and sister chromatid exchange 
(Gonzalez et al., 2005). Importantly, although the 2,4-D toxicity in low doses is controversial, 
the U.S. Environmental Protection Agency (U.S. EPA, 2006) established a LD50 of 639 
mg/kg based on rat studies.  

There could be particular situations in which the susceptibility of a population exposed to 
environmental pollutants can be dangerously enhanced. This may be the case for many rural 
populations subjected to some specific nutritional deficiencies, as often observed in 
developing countries. Such situation may be worthy of attention during the development 
stage, especially concerning the endocrine and nervous systems. 

It has been recently found that 2,4-D administered to lactating rats can pass to suckling 
pups, an can also inhibit the suckling-induced hormone release in the mother. Thus, 
gestational and lactational periods –including the neonatal and prepubertal stages– seem to 
be particularly favorable for the induction of 2,4-D effects in rodents (Stürtz et al., 2000; 
2006). 

2. Adverse effects on developing nervous system 

In human studies, prenatal exposure to 2,4-D was associated with mental retardation of the 
children (Casey, 1984). Comparable animal experiments in chicken and rats showed that 
prenatal exposure altered some behavioral patterns of the offspring (Sanders & Rogers, 
1981; Sjoden & Soderberg, 1972). 

In the rat, one critical period for normal maturation during growth seems to be that 

corresponding to the perinatal development of the brain—‘‘the brain growth spurt’’—

spanning the first 3 or 4 weeks of life (Diaz & Samson, 1980). Therefore, exposure of rats to 

pesticides during the first weeks of life would have adverse effects on growth and behavior, 

as well as on the locomotor activity, as affected by anatomical changes. Noteworthy, the age 

at exposure is an important factor (Kolb & Wishaw, 1989).  

This selective susceptibility of the developing nervous system may be due to several 

toxicokinetic factors and a partial lack of a blood–brain barrier (BBB) in the fetus. In humans, 

the BBB is not fully developed until the middle of the first year of life (Rodier, 1995). 

Gupta et al. (1999) have shown that different classes of pesticides are able to change the 

permeability characteristics of the BBB in rats when administered during some susceptible 

periods of the BBB development, and that this effect may persist after exposure for variable 

periods. An altered BBB may render the nervous system more vulnerable to other toxics that 

would not be able to pass the BBB otherwise. 

Therefore, although the developing nervous system has some capacity to adapt to or 
compensate for early perturbations, many chemical agents have been shown more toxic on 
the developing than on the adult nervous system (Tilson, 1998). 
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In the last two decades many different alterations have been reported in neonatal rats 
exposed to 2,4-D through breast milk, at a dose producing no overt signs of toxicity in dams. 
Alterations in astroglial cytoarchitecture and neuronal function (Brusco et al., 1997) as well 
as neuro-behavioral changes were observed in pups and adult rats after an early exposition 
to the herbicide (Bortolozzi et al., 1999, 2001). Other reported effects in neonate rats were a 
deficit in myelin lipid deposition (Konjuh et al., 2008) and changes in the ganglioside pattern 
in some brain regions (Rosso et al., 2000).  

2.1 Metals and monoamines levels 

Studies in well-fed or undernourished rat offsprings showed that the mechanisms for the 
induction of the above effects would include some changes in brain monoaminergic system 
(Ferri et al., 2000) and in iron (Fe), copper (Cu) and zinc (Zn) brain levels (Ferri et al.,  
2003). 

Importantly, the  combination  of neonatal undernourishment plus mothers’ exposure at 2,4-

D low dose (70 mg/kg bw) induced a higher modification of the measured parameters than 

those induced by undernourishment or 2,4-D exposure alone. The data showed a different 

pup’s brain areas susceptibility to the 2,4-D effects and an increased vulnerability to the 

herbicide, including an increased mortality at a higher dose (100 mg/kg bw), a feature 

which was not observed in well-nourished animals. 

In addition, the results suggest that malnutrition or exposure to 2,4-D exert their effects 

independently (Tables 1 & 2) (Ferri et al., 2003)  and the fact that the alterations observed are 

very different according to the area involved, reinforces the idea of a selective susceptibility 

for each brain region. 

2.2 Oxidative stress 

Different studies suggest some functional relationships between the oxidative status of the 

Central Nervous System (CNS) and the protecting level of catecholamines (Kumiko et al., 

2001) and metals, like Fe and Cu, the major generators of reactive oxygen species –ROS- in 

Alzheimer's disease (Huang et al., 1999), related with a decreased glutathione (GSH) content 

(Dringer, 2000) and also involved in Fenton’s and Haber Weiss’ redox reactions . (Halliwell 

& Gutteridge, 1998; Milton, 2004). Other data have shown that 2,4-D affects the redox chain, 

thus altering cell energetic metabolism and redox balance (Palmeira et al., 1994; Sulik et al., 

1998; Bukowska et al., 2003; Duchnowicz et al., 2002). 

In rat pups, exposure to 2,4-D through breast milk induced a number of changes in different 

brain areas, such as disparate changes in the activity of some protective enzymes, an 

increase in reactive oxygen species (ROS) levels, and a depletion of reduced glutathione 

(GSH) content (Tables 3, 4 & 5, respectively) (Ferri et al., 2007). 

Therefore, as long as a high oxygen consumption by the CNS increases its sensitivity to 

oxidative stress (Emerit et al., 2004), the observed changes in the levels of metal ions and 

neurotransmitters, particularly catecholamines, as well as the oxidative status imbalance, 

would point out oxidative stress as one possible mechanism of adverse 2,4-D effects on the 

CNS. 
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AREA Treatment NE DA DOPAC HVA TRP 5-HT 5-HIAA 

PFc DMSO 0.93  0.04 3.20  0.44 0.97  0.09 0.28   0.03 20.71   0.61 1.07  0.13 1.08  0.07 
 2,4-D 1.10  0.06* 2.01  0.30* 0.90  0.17 0.25  0.03 11.26  0.51** 1.48  0.09* 1.03 0.05 
  (20%) (37%)   (46%) (38%)  
Str DMSO 4.24  0.42 20.79  1.61 9.37  0.48 3.19  0.12 27.46  1.61 2.98  0.31 2.84  0.29 
 2,4-D 2.36  0.44* 17.03  3.31 6.96  0.69** 2.05  0.32** 28.06  1.76 1.85  0.25* 2.81  0.42 
  (44%)  (26%) (36%)  (38%)  
Hipp DMSO 0.91  0.12 0.70  0.09 0.44  0.07 0.30  0.04 5.55  0.35 0.74  0.09 1.63  0.11 
 2,4-D 1.67  0.24* 0.92  0.09* 0.58  0.06* 0.50  0.05* 3.68  0.20** 1.10  0.13* 1.75  0.10 
  (83%) (31%%) (31%) (66%) (34%) (49%)  
Hyp DMSO 9.05  1.19 1.58  0.35 1.46  0.21 1.08  0.20 3.81  0.26 1.52  0.13 3.09  0.59 
 2,4-D 13.57  1.44* 1.80  0.33 1.03  0.17 1.14  0.18 2.96  0.35 2.08  0.31 2.68  0.26 

  (50%)
MB DMSO 3.16   0.57 1.54  0.31 0.65  0.14 0.36  0.06 31.88  1.21 2.79  0.21 3.54  0.40 
 2,4-D 3.96  0.17 1.96  0.17 0.78  0.12 0.24  0.02 23.34  0.97** 4.14  0.19** 4.78  0.37* 
      (27%) (48%) (35%) 
Cereb DMSO 1.58  0.12 0.17  0.06 0.31  0.01 0.09  0.01 7.39  0.55 0.46  0.03 0.48  0.03 

 2,4-D 2.44  0.08** 0.21  0.04 0.29  0.01 0.13  0.01 4.86  0.21** 0.43  0.04 0.43  0.02 
  (54%)    (34%)   

Monoamine content is expressed as pMol/mg of tissue. Values indicate means ± SEM. Values between 

brackets are % of increase () or decrease (), respectively, with respect to each DMSO control value.*p 
< 0.05; **p < 0.01; n= 6/group; 100 mg 2,4-D/kg cw of mother. PFc (Pre frontal cortex), Str (Striatum), 
Hipp (Hippocampus), Hyp (Hypothalamus), MB (Midbarin), Cereb (Cerebellum), NE 
(Norepinephrine), DA (Dopamine), DOPAC (3,4-Dihydroxyphenylacetic acid), HVA (Homovanillic  
Acid),  TRP (Tryptophan),  5-HT (Serotonin) and 5-5-HIAA (Hydroxyindoleacetic acid); other 
abbreviations as indicated in the text. 

Table 1. Monoamine levels in different brain areas of 25-day-old, 2,4-D-expossed pups. 

 
Metal Treatment PFc Str Cereb Hipp MB Hyp 

Fe DMSO 19.58 ± 2.36 17.07 ± 0.90 16.43 ± 1.27 14.23 ± 0.73 18.79 ± 2.03 19.48 ± 2.25 
 2,4-D 70 mg/kg 24.48 ± 1.83* 

(25.05 %) 
16.65 ± 2.65 17.53 ± 0.86 12.86 ± 1.20 15.54 ± 0.55 20.95 ± 1.76 

 2,4-D 100 mg/kg 29.48 ± 2.19*
(50.56 %) 

15.75 ± 2.65 20.26 ± 0.68*
(23.31%) 

13.98 ± 1.80 14.95 ± 0.35 21.31 ± 2.68 

Zn DMSO 
 

12.51 ± 1.20 34.10 ± 2.40 24.40 ± 1.90 25.40 ± 2.10 32.65 ± 1.10 29.80 ± 3.40 

 2,4-D 70 mg/kg 14.64 ± 2.20 28.63 ± 2.40*
(16.04 %) 

21.50 ± 0.85 27.89 ± 1.60*
(9.80%) 

29.55 ± 1.74 27.11 ± 2.56 

 2,4-D 100 mg/kg 17.93 ± 2.00*
(43.32%) 

13.10 ± 2.00**
(61.58%) 

24.40 ± 0.70 34.30 ± 3.50*
(35.04%)

24.35 ± 1.54** 
(25.42%) 

26.37 ± 3.20 

Cu DMSO 
 

1.85 ± 0.08 2.25 ± 0.11 1.88 ± 0.07 1.84 ± 0.02 2.21 ± 0.19 1.95 ± 0.08 

 2,4-D 70 mg/kg
 

1.97 ± 0.18 2.17 ± 0.13 2.00 ± 0.10 2.01 ± 0.20 2.16 ± 0.21 1.91 ± 0.16 

 2,4-D 100 mg/kg
 

2.31 ± 0.21*
(  24.86%) 

2.38 ± 0.21 2.20 ± 0.08**
(17.02%) 

2.23 ± 0.17*
(21.19%) 

2.14 ± 0.20 1.91 ± 0.15 

Metal contents are expressed as micrograms per gram of wet tissue. Values indicate means ± SEM. 

Values between brackets are % of increase () or decrease (), respectively, with respect to each DMSO 
control value. *p < 0.05 with reference to DMSO control values. **p <0 .01 with reference to DMSO 
control values; n= 6/group. 100 mg 2,4-D/kg cw of mother. PFc (Pre frontal cortex, Str (Striatum), Cereb 
(Cerebellum), Hipp (Hippocampus), MB (Midbarin), Hyp (Hypothalamus), and other abbreviations as 
in the text. 

Table 2. Effects of 2,4-D on iron, zinc and copper levels in different brain areas of well-
nourished pups. 
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Enzime Treatment Brain PFc Str Cereb Hipp MB Hyp 

Cu,Zn- 
SOD 

DMSO 2330  119 1950  200 2460  150 2730  330 2330  200 1950  120 2320  160 
2,4-D 2400  93 2450  310* 2540  220 2610  240 2980  320* 2140  90 2400  120 

   ( 25.6%)   ( 27.9%)   

Mn- 
SOD 

DMSO 250  110 250  80 310  120 320  130 270  90 240  120 370  140 
2,4-D 284  135 150  70 280  100 280  90 390  60 290  110 350  110 

         

CAT 
DMSO 2556  150 2950  250 2740  200 2300  130 2580  160 2360  200 2740  150 
2,4-D 1978  133* 2200  200* 2250  150* 2530  170 2690  210 1850  120* 2810  210 

  ( 22.5%) ( 25.4%) ( 17.9%)   ( 21.6%)  

Se- 
GPx 

DMSO 31.52  1.24 30.00  1.43 28.19  2.10 25.62  9.10 29.05  1.14 31.93  1.06 28.89  1.85 
2,4-D 26.76  1.14* 24.19  1.90* 22.29  2.86* 29.52  2.10* 32.29  1.00* 27.57  1.03* 27.97  1.56 

  ( 15.10%) (  19.4%) ( 20.9%) ( 15.2%) ( 11.1%) ( 13.6%)  
noSe- 
GPx 

DMSO 17.71  0.69 20.80  1.08 18.55  0.62 18.18  0.98 20.94  0.69 22.65  0.77 15.81  0.69 
2,4-D 20.32  0.94* 18.99  0.99 15.65  0.46* 17.95  1.05 19.90  0.87 19.35  0.82* 17.01  0.71 

  ( 14.7%)  ( 15.6%)   ( 14.6%)  

Enzyme activities are expresed as miliUnits per miligram of protein. Values indicate means ± SEM. 

Values between brackets are % of increase () or decrease (), respectively, with respect to each DMSO 
control value. *p < 0.05, n= 6/group. 100 mg 2,4-D/kg cw of mother. PFc (Pre frontal cortex, Str 
(Striatum), Hipp (Hippocampus), Hyp (Hypothalamus), MB (Midbarin), Cereb (Cerebellum), Cu,Zn-
SOD (Copper,Zinc superoxide dismutase), Mn-SOS (Manganese superoxide dismutase), CAT (catalase), 
Se-GPx (selenium-glutathione peroxidase), noSe-GPx (non selenium-glutathione peroxidase),and other 
abbreviations as in the text 

Table 3. Protective Enzymes Activities in brain areas of 25-old-day pups lactationally 
exposed to 2,4-D. 

 

 Brain PFc Str Cereb Hipp MB Hyp 

DMSO 45.12.5 17.80.7 22.60.8 24.00.9 18.01.0 20.3 1.0 22.61.2 

2,4-D 
38.01.4* 

( 15.7%) 

20.60.5* 

( 15.7%) 

25.10.7* 

( 11.1%) 
23.71.1 18.11.1 

23.80.7* 

( 17.2%) 
21.11.3 

ROS levels are expresed as IF per mg of protein. Values indicate means ± SEM. Values between brackets 

are % of increase () or decrease (), respectively, with respect to each DMSO control value.; *p < 0.05, 
n= 6/group. 100 mg 2,4-D/kg cw of mother. PFc (Pre frontal cortex, Str (Striatum), Hipp 
(Hippocampus), Hyp (Hypothalamus), MB (Midbarin), Cereb (Cerebellum), other abbreviations as in 
the text. 

Table 4. ROS levels in brain areas of 25-old-day pups lactationally exposed to 2,4-D. 

 

 Brain PFc Str Cereb Hipp MB Hyp 

DMSO 1.220.40 1.230.29 1.310.24 0.790,19 0.880.19 1.060.12 1.070.41 

2,4-D 1.250.38 1.290.20 
0.820.18* 

( 37.4%) 
0.800.22 0.940.24 

0.700.15* 

( 34.0%) 
1.080.30 

GSH levels are expresed as microgram per miligram of protein. Values indicate means ± SEM. Values 

between brackets are % of increase () or decrease (), respectively, with respect to each DMSO control 
value. *p < 0.05, n= 6/group. 100 mg 2,4-D/kg bw of mother. PFc (Pre frontal cortex, Str (Striatum), 
Hipp (Hippocampus), Hyp (Hypothalamus), MB (Midbarin), Cereb (Cerebellum), other abbreviations 
as in the text. 

Table 5. GSH levels in brain areas of 25-old-day pups lactationally exposed to 2,4-D. 
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3. Prostate, ovary and breast 

The endocrine system of many vertebrate embryos  seems to be particularly susceptible to a 
variety of substances or either natural or anthropogenic origin, including pesticides (Crews 
et al., 2000). However, there are few studies on developmental toxicology that focus on the 
2,4-D’s effects on hormone-sensitive organs such as the prostate, ovary and breast. 

Free radicals are associated with oxidative stress and are also thought to play some 
significant roles in reproduction. Induction of oxidative stress by many environmental 
contaminants—such as pesticides—has also been pointed out during the last decade as a 
possible mechanism of some toxic effects on the reproductive system (Bagchi et al., 1992; 
Abdollahi et al., 2004). It is already known that reproductive cells and tissues will remain 
stable only when antioxidant and oxidant status are in balance (Lee et al., 2010). ROS levels 
are a double-edged sword, as long as they not only serve as key signal molecules in 
physiological processes, but also have a role in pathological processes involving the female 
reproductive tract (Agarwal et al., 2005).  

On the other hand, there are diverse environmental chemical contaminants which can be 
potentially harmful to the mammary gland in association with estrogens. Oxidative 
catabolism of both estrogen and those compounds, a mechanism mediated by the same 
enzymes, generates reactive free radicals that can cause oxidative damage. Xenobiotic 
chemicals may exert their pathological effects through generation of reactive free radicals 
(Mukherjee et al., 2006).  

There is growing evidence that free radicals can exert a wide spectrum of deleterious effects 

on the reproductive system and asocciated glands (Saradha et al., 2008). Thus, Pochettino et 

al. (2010) investigated the effect of 2,4-D on oxidative stress and antioxidative system and on 

some hormone-sensitive organs such as ventral prostate, ovaries and breasts, exposed to the 

herbicide during the pre- and the postnatal period, as described next (Pochettino et al., 

2010).  

3.1 Prostate 

In rat ventral prostate, 2,4-D caused oxidative stress during the whole development, 

through a significant increase in lipid peroxides, hydroxyl radical levels and protein 

oxidation. Morevover, the antioxidant enzyme activity was increased at any age, as shown 

for Glutathione S-transferase (GST), catalase (CAT) and selenium-glutathione peroxidase 

(Se-GPx), with the exception of Se-GPx administered at the 90th postnatal day (PND 90). 

Nevertheless, at PND 90 a reduced activity of Glutathione Reductase (GR) was detected 

(Table 6).  

GST is relevant to detoxification of endogenous compounds and xenobiotic substances such 

as environmental pollutants, drugs, and natural toxins (Pietsch et al., 2001; Padros et al., 

2003; Cazenave et al., 2006). Several studies have demonstrated that enhanced GST activity 

by ROS in the testis could represent an adaptative response to oxidative stress, probably 

targeted to achieve a detoxification of peroxide-containing metabolites (Kaur et al., 2006). 

As far as the testis is intimately related to the prostate, this interpretation looks coherent 

with the observed ROS-induced increase in GST activity in the prostate.  
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  PND 45 PND 60 PND 90 

Hydroxyl 
radical 

Control 3.25±0.34 2.97±0.39 1.09±0.13 

2,4-D 8.75±0.61* (169%) 6.53±0.09* (119%) 2.03±0.18* (85%) 

Carbonyl 
groups 

Control 3.54±0.12 10.66±1.07 7.02±0.88 

2,4-D 4.84±0.11* (37%) 15.01±1.32* (47%) 12.42±1.11* (77%) 

Total 
Thiols 

Control 491±12 642±86 341±24 

2,4-D 520±14 748±14 333±8 

MDA 
Control 29.09±0.32 27.74±3.74 38.27± 2.14 

2,4-D 41.91±3.05* (44%) 42.69±3.13* (54%) 47.48 ± 2.54* (24%) 

GST 
Control 8.93±0.67 10.53±2.53 13.37±2.09 

2,4-D 19.07±2,45* (113%) 15.95±1.04* (45) 18.14±0.26* (36) 

CAT 
Control 10.93±1,20 5.44±0.21 5.99±0.21 

2,4-D 14.74±1.26* (35%) 11.44±0.34* (110%) 7.77±0.39* (28%) 

Se-GPx 
Control 312±18 518±57 562±32 

2,4-D 436±33*  (36) 880±41* (70%) 530±13 

GR 
Control 10.05±0.86 33.01±2.52 31.09±4.36 

2,4-D 10.47±1.78 37.75±3.48 10.57±0.05* (72%) 

Hydroxy radical are expresed as 2,3 dihydroxybenzoic acid/salicilc acid rario; carbonyl groups and 
total thiols are expresed as micromol per miligram of protein; MDA is expresed as nanomol per 
microgram of protein. GST, CAT and GR activities are expresed as Units per miligram of protein; and 
Se-GPx is expresed as miliUnits per miligram of protein. Each value is the mean ± SEM. Values between 

brackets are % of increase () or decrease (); *p < 0.05, n= 6/group. 70 mg 2,4-D/kg cw of mother. 
Abbreviations as in the text. 

Table 6. Oxidative parameters in ventral prostate. 

Therefore, the 2,4-D-induced increase in all ROS level, lipid peroxidation and protein 
oxidation may have caused some critical oxidative stress in ventral prostate. Nevertheless, 
the increased activity of some antioxidant enzymes in the prostate could have not been 
strong enough as to counteract the oxidative stress produced by the herbicide at different 
stages of rat development. Moreover, it is not a general rule that increase in oxidative 
species stimulates antioxidant activity (Celik & Tuluce, 2007). 

3.2 Ovary 

The complex ovarian structure varies widely during differentiation. Free radicals play 
important regulating roles during the ovarian follicular cycle, possibly through inhibition of 
steroid production (Behrman et al., 2001). There is also a delicate balance between ROS and 
antioxidant enzymes in the ovarian tissues (Agarwal et al., 2005). Non-physiological effects 
of free radicals include premature ovarian follicular atresia via cell apoptosis. Many 
pesticides— e.g. the xenoestrogen pesticide methoxychlor — can induce oxidative stress and 
apoptosis in the ovary (Gupta et al., 2006). Moreover, clinical studies have reported 
increased levels of reactive oxygen species associated to a decreased female fertility 
(Agarwal et al., 2006). 
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 PND 45 PND 60 PND 90 

Hydroxyl 
radical 

Control 3.65±0.26 1.89 ± 0.22 1.09 ± 0.13 

2,4-D 8.75±0.89 1.98 ± 0.13 4.35 ± 0.53* (93%) 

Carbonyl 
groups 

Control 14.77±2.75 5.74 ± 0.13 6.22 ± 0.94 

2,4-D 23.71±0.47* (60%) 8.80±0.72* (55%) 5.64±0.73 

Total 
Thiols 

Control 1462±162 672±24 519±38 

2,4-D 1360±176 676±39 537±22 

MDA 
Control 87.71±14.02 34.12±2.24 34.68±1.31 

2,4-D 192.5±17.8* (119%) 42.49±1.35* (24%) 39.39±0.89* (14%) 

GST 
Control 38.51±0.41 10.59±0.81 10.99±0.18 

2,4-D 25.15±1.37 (34.6%) 7.97±0.54* (24.7) 9.91±0.57 

CAT 
Control 42.89±3.14 27.86±1.08 16.08± 0.42 

2,4-D 43.41±0.67 15.34±0.43* (44.9%) 16.38±0.71 

Se-GPx 
Control 691±97 411±48 514±29 

2,4-D 1622±117* (135) 549±24* (33%) 593±23* (15%) 

GR 
Control 14.48±3.44 17.15±1.67 28.64±2.31 

2,4-D 12.67±2.61 16.88±1.45 19.62±1.75* (31%) 

The parameters are expresed as in Table 7. Each value is the mean ± SEM. Values between brackets are 

% of increase () or decrease (); *p < 0.05, n= 6/group. 70 mg 2,4-D/kg cw of mother. Abbreviations as 
in the text. 

Table 7. Oxidative parameters in ovary. 

On analyzing the 2,4-D toxic effects on the ovary, Pochettino et al. (2010) found an increase in 
lipid peroxide (LPO) evidenced by augmented levels of malondialdehyde (MDA) and 
decrease antioxidant enzyme activity. These effects differed with age, while an increase in Se-
GPx activity was exceptionally observed at all ages (Table 7). These effects could reflect the 
natural diversity of rat ovarian cell types at different ages. Another explanation would be the 
well-known, protecting effect of estrogens against apoptosis and oxidative stress in a variety of 
tissues and cells (Spyridopoulos et al., 1997; Tomkinson et al., 1997; Garcia-Segura et al., 1998; 
Pelzer et al., 2000).  Estrogens increase all ovarian weight, follicular growth, and the mitotic 
index of granulose cells, and also control granulosa cell apoptosis (Richards, et al., 1980; 
Bendell & Dorrington, 1991) and have exerted varied antioxidant effects (Chatterjee & 
Chatterjee 2009). Further studies are needed to analyze the time-course of the effects observed. 

3.3 Breast 

Pocchetino et al. (2010) observed that 2,4-D increased MDA levels at all ages (Table 8). It is 
known that MDA reflects the extent of oxidant status and is considered a good marker of 
oxidative stress (Wen et al., 2006). Both, singlet oxygen and hydroyl radicals have a high 
potential to initiate free-radical chain reactions in lipid peroxidation (Celik & Tuluce, 2007). 
As the hydroyl radical level was unchanged in that study, 2,4-D could have stimulated LPO 
by increasing singlet oxygen levels. In addition, 2,4-D inhibited the activity of anti-oxidative 
enzymes such as CAT, Se-GPx, GR and GST (Table 9).  
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  PND 45 PND 60 PND 90 

Hydroxyl 
radical 

Control 2.61±0.11 3.04±0.11 4.31±0.45 

2,4-D 2.65±0.44 3.49±0.52 4.49 ± 0.11 

Carbonyl 
groups 

Control 19.25±0.82 28.57±3.86 59.38±10.69 

2,4-D 21.34±5.47 23.31±5.49 57.37±14.89 

Total 
Thiols 

Control 942±5 1072±77 3551±757 

2,4-D 951±25 667±46* (62%) 1560±226* (56%) 

MDA 
Control 52.62±1.57 71.07±4.68 158.41±2.59 

2,4-D 70.65±7.48* (34%) 139.2±17.94* (96%) 217.8±18.95* (37%) 

GST 
Control 17.18±0.59 19.41±1.51 72.81±7.41 

2,4-D 10.41±1.91* (40%) 13.54±0.92*(30%) 32.35±5.98* (55%) 

CAT 
Control 59.38±3.03 137.62±10.73 358.21±36.31 

2,4-D 62.55±1.57 81.27 ± 2.55* (41%) 122.11±17.42* (66%) 

Se-GPx 
Control 538±44 1430±31 5596±1015 

2,4-D 198±19* (63%) 695±15* (51%) 2257±474* (60%) 

GR 
Control 15.94±0.91 90.75±5.51 228.81±14.31 

2,4-D 7.39±1.54* (53.6%) 60.02±9.05* (34%) 76.02±10.95* (67%) 

The parameters are expresed as in Table 7. Each value is the mean ± SEM. Values between brackets are 

% of increase () or decrease (); *p < 0.05, n= 6/group. 70 mg 2,4-D/kg cw of mother. Abbreviations as 
in the text. 

Table 8. Oxidative parameters in breast 

Therefore, the decreased activity of anti-oxidative enzymes may decrease the protection 
against oxidants (Amstad et al., 1991).  

In that regard, Dimitrova et al. (1994) suggested that the superoxide radicals, either by 
themselves or after transformation to H2O2, stimulate cysteine oxidation and inhibit the 
activity of the enzymes. Furthermore, Regoli & Principato (1995) demonstrated that the flux 
of superoxide radicals inhibits CAT activity. Consequently, the decreased CAT activity 
might have reflected a flux of superoxide radicals promoted by 2,4-D. Moreover, GR also 
plays an important role in cellular antioxidant protection, catalyzing the reduction of 
glutathione disulfide (GSSG) to GSH (Kim et al., 2010).  

Thus, the decrease in thiol groups could reflect GSH depletion in the breast. Therefore, 2,4-D 
produced oxidative imbalance, mainly during puberty and adulthood, probably because the 
gland is more sensitive to xenobiotics at these stages of development. 

4. In vitro studies 

It has been observed that 2.4-D concentrations of 1 to 2 mM impaired neurite outgrowth, 
disrupted the cytoskeleton, and disorganized the Golgi apparatus in cultured cerebellar 
granule cells (CGC) (Rosso et al., 2000). Futhermore, Kaioumuva et al. (2001b) have 
demonstrated that the dimethylamonium salt of 2,4-D (DMA 2,4-D) at 0.1 to 5 mM induces 
apoptosis in a dose- and time-dependent pattern in peripheral blood lymphocytes of healthy 
individuals and in Jurkat cells. Whereas, Tuschl & Schwab (2003) showed that 4 to 16 mM 
2,4-D induces cytotoxic effects and apoptosis in HepG2 cells.   
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In rat CGC, either 1 or 2 mM 2,4-D induced similar increases of cellular death. The herbicide 
decreased significantly mean neuronal survival (46.4%) after 48 h, while no affect was 
observed after 24 h of treatment (Bongiovanni et al., 2007, 2011) (Fig. 2).  

 

Fig. 2. Effect of 2,4-D on rat cerebellar granule cell viability. Cell cultures were incubated for 
24 or 48 h in presence or ausence of 1 mM 2,4-D. Values are means ± SEM; * indicates          
p< 0.001 vs. control group; n= 10/group. 

Bongiovanni et al. (2007, 2010) studied oxidative stress as a possible mechanism of toxicity 
aiming to elucidate the mechanism of death induction by 2,4-D. Oxidative stress parameters 
were altered: ROS level and Se-GPx activity increased whereas CAT activity decreased at 
both treatment times (24 and 48 h). GSH content was reduced only after 48 h of 2,4-D 
treatment. However, neither Mn-SOD nor Cu,Zn-SOD activities nor reactive nitrogen 
species (RNS)  levels were affected (Tables 9 & 10). Interestingly, although the oxidative 
parameters evaluated were modified at the two time-limits studied, the cell viability only 
decreased at 48 h of treatment. This finding could be explained by a time dependency of this 
latter alteration. 

 

Parameters 
 24 h  48 h 

 Control 1 mM 2,4-D  Control 1 mM 2,4-D 

ROS  1.03 ± 0.25 
2.30 ± 0,22* 

( 123%) 

 
 

2.28 ± 0.35 
4.13 ± 0.32* 

( 81%) 

RNS  7.45 ± 1.13 8.23 ± 1.85  4.82 ± 0.27 6.05 ±  0.47 

GSH  2.408 ± 0.09 2.225 ± 0.09  1.508 ± 0.061 
1.125 ± 0.031* 

( 25%) 

Parameters are expresed as micrograms per miligram of protein. Values between brackets are % of 

increase () or decrease (); *p < 0.001, n= 10/group. Abbreviations are indicated in the text. 

Table 9. ROS, RNA and GSH levels (means  ± SEM) in rat cerebellar granule cell in culture 
for 24 or 48 h in presence or ausence of 1 mM 2,4-D.  

* 
Control 

1 mM 2,4-D 
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Enzimes 
24 h  48 h 

Control 1 mM 2,4-D  Control 1 mM 2,4-D 

CAT 30.97 ± 1.26 
15.80 ± 1.23* 

( 49%) 

 
 

15.82 ± 1.59 
6.52 ± 0.83* 

( 59%) 

(Zn,Cu) SOD 10.43 ± 1.23 10.56 ± 1.45  8,49 ± 1,20 7.05 ±  1.65 

(Mn) SOD 4.45 ± 0,88 5.97 ± 1.90  2,86 ± 1,90 1.98 ± 1.00 

Se-GPx 9.71 ± 1.20 
39.75 ± 2.90* 

( 309%) 
 12.73 ± 1.75 

33.73 ± 4.31* 

(165%) 

Parameters are expresed as Units per miligram of protein. Values between brackets are % of increase () 

or decrease (); *p < 0.001, n= 10/group. Abbreviations are indicated in the text. 

 

Table 10. CAT, SODs and GPx activities (means ± SEM) in rat cerebellar granule cells in 
culture for 24 or 48 h in presence or ausence of 1 mM 2,4-D.  

On using a PC-12 cell model, other authors have been previously shown that a depletion of 

mitochondrial and cytoplasmatic GSH results in increased ROS levels, disruption of the 

mitochondial transmembrane potential, rapid loss of mitochondial function, decrease in the 

ATP concentration, and eventually a higher cell death rate (Nieminen et al., 1995; Wüllner et 

al., 1999).  

Therefore, the alteration in oxidative parameters suggest that the possible mechanisms of 

chlorophenoxy herbicide toxicity could involve dose-dependent cell membrane damage, 

uncoupling of oxidative phosphorylation, acetylcoenzyme disruption (Bradberry et al., 

2000), and an indirect disruption of mitochondrial transmembrane potential which may lead 

to caspase inactivation (Kaioumova et al., 2001a). Mitochondrial structural modifications 

and increased permeability of the pores were also reported in association with a ROS 

increase (Belizário et al., 2007). In contrast, other studies suggest that 2,4-D cytotoxic effects 

are exerted by apoptosis induction via a direct effect on mitochondria (Tuschl & Schwab, 

2003).  

In this regard, Bongiovanni et al. (2011), in agreement with De Moliner et al. (2002), 

demonstrated that 2,4-D induces apoptosis and necrosis in CGC. While De Moliner et al. 

(2002) showed that 2,4-D-induced apoptosis is associated with and increase in caspase-3 

activity preceded by cytochrome-c release from mitochondria, the quantification of 

ultrastructural changes showed that 1 mM 2,4-D stimulated neuronal death. As much as 

49% of necrotic cells and 20% of apoptotic cells were observed, while only 31% of CGC 

presented normal growth with respect control group (p<0.001; Fig. 3 compared with Fig. 4) 

(Bongiovanni et al., 2011). 
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Fig. 3. Electron photomicrographies showing cerebellar granular neurons cultured in a 
control medium (NaCl 0.9%) for 48 h. a–b. Cell morphology is preserved (nucleus with laxe 
chromatin, dense chromatin patch close to the nucleus envelope, scarce cytoplasm, and the 
presence of neurites). Bars correspond to 1 µm in (a) and 160 nm in (b); c. Cells show 
preserved ultrastructural characteristics (Golgi apparatus, polyribosomes and mitochondrial 
characteristics of normal granular cerebellar cells). Bars correspond to 320 nm in (c). C 
cytoplasm, CC dense chromatin, G Golgi apparatus, LC laxe chromatin, M mitochondria, N 
nucleus, NM nuclear membrane, P polyribosome, PM plasmatic membrane. 

 

 

Fig. 4. Electron photomicrographies showing the ultrastructural cytoplasmatic 
characteristics of cerebellar granular cells after 2,4-D addition to the medium for 48 h. a–b. 
An apoptotic cell (nuclear fragmentation and very dense chromatinic accumulus), a necrotic 
cell (cytoplasm very scarce, no nucleus), and cells with scarce cytoplasm and small nucleus 
are shown, allowing comparison with the control group (Cf Figs. 3a, b). Bars correspond to 1 
µm. c. A cell with cytoplasmatic protutions, vacuoles, disorganization of the cytoplasmatic 
reticulum, distended cisterns of the Golgi apparatus, and mitochondrial swelling. Bars 
correspond to 400 nm. AC apoptotic cell, NC necrotic cell, V vacuole, and other abreviations 
in Fig. 3. 
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In these studies, melatonin and amphetamine were used as phamacological tools aiming to 
improve the analysis of oxidative stress as a mechanism of toxicity, by assessing whether 
these compounds could be effective in preventing the toxic effect of 2,4-D in the redox 
balance of CGC in vitro (Bongiovanni et al., 2007, 2011).  

A remarkable body of evidence indicates that melatonin exerts antioxidative protection in 
cell culture and in vivo systems (Pandi-Perumal et al., 2006). Regarding to 2,4-D toxicity, the 
oxidative stress induced by 1 mM 2,4-D was counteracted by the concomitant addition of 0.1 
or 0.5 mM melatonin in CGC cultures (Bongiovanni et al., 2007).  

On the other hand, amphetamine has constistently been reported to accelerate the recovery 

of several functions in animals and humans with brain injury (Goldstein, 2000; Martinsson 

& Eksborg, 2004). Amphetamine was also shown to stimulate both the dendritic growth in 

the ventral tegmental area (Mueller et al., 2006) and the neurotrophic and neuroplastic 

responses after brain damage (Moroz et al., 2004; Adkins & Jones 2005). However, few data 

are available regarding any possible protective effect of amphetamine. In this regard, 

Bongiovanni et al., (2011) demonstrated that 1 or 10 µM amphetamine reverted the 2,4-D-

induced apoptosis and oxidative stress in CGC. Nevertheless, amphetamine alone induced 

no significant changes with respect to the control culture. Noteworthy, at 1 μM AMPH plus 

2,4-D, 39% of the cells were normal; 53% were necrotic, and 8% showed apoptosis. At 10 μM 

AMPH plus 2,4-D, 57% of the cells were normal, 43% were necrotic, and no apoptotic cells 

were observed by electron microscopy (Fig. 4 compared with Fig. 5). 

 

Fig.5. Electron photomicrographies showing the ultrastructural cytoplasmatic characteristics 
of cerebellar granular cells after 2,4-D and 10 µM AMPH addition to the medium for 48 h. a–
b. Cells present more conserved morphology (nucleus and cytoplasm) than those treated 
with 2,4-D alone (Cf Figs. 4a, b). Bars correspond to 1 µm. c. The cell shows mitochondria 
and Golgi cisterns more preserved than those of the cells treated with 2,4-D alone (Cf Fig. 
4c). Bars correspond to 600 nm. AC apoptotic cell, NC necrotic cell, V vacuole and other 
abreviations in Fig. 3. 

The collected evidence would indicate a protective effect of melatonin and amphetamine 
against 2,4-D-induced cell death, possibly due to an inhibition of the oxidative mechanisms, 
as judged by the close relationship between ROS and apotosis induction (Carmody & 
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Cooter, 2001). While apoptosis and necrosis present some early features that may be 
common to both, mithocondrial disorders could be irreversibly compromised in necrotic, 
but not in apoptotic neurons (Nicotera & Leist, 1997). This could explain why amphetamine 
decrease apoptosis but not necrosis in 2,4-D-treated cells.  

In summary, 2,4-D would induce necrosis and apoptosis, the latter being possibly mediated 
by an oxidative imbalance.  

5. Concluding remarks 

A great body of evidence suggests that exposure to 2,4-D or to its ester or salt formulations 
is associated with a wide range of adverse effects in human and different animal species 
(Berkley & Magee, 1963; Bortolozzi et al, 2001, 2003; Ferri et al., 2003, 2007; Konjuh et al., 
2008; Stürtz et al., 2010).  

Oxidative stress may affect the cells as a result of imbalance between the (physiological) 
production of potentially toxic ROS and some (physiological) scavenging activities (Park et 
al., 1999). Xenobiotics that interact with one or several complexes of the mitochondrial 
electron transport system, impairing the normal electron flow, may enhance ROS 
generation, leading to an imbalance between prooxidant species and cellular antioxidants 
(Jurado et al., 2011). 

This review has analyzed the oxidative stress as a possible mechanism of toxicity by the 
herbicide 2,4-D. The collected evidence confirms that 2,4-D is an environmental pollutant 
that induces oxidative stress and could determine important deleterious changes in the 
development of the neural and reproductive systems in the studied models (Ferri et al., 
2007; Bongiovanni et al., 2007, 2011; Pocchettino et al., 2010).  

While the reported results showed that 2,4-D induces both necrosis and apoptosis, the 
evidence suggests that apoptosis would be mediated by or associated to an oxidative 
imbalance (Bongiovanni et al., 2011). Then, the oxidative stress would produce cytochrome-
c release from mitochondria and a consequent activation of caspase-3 in the affected cells 
(De Molliner et al., 2002). However, as mitochondria contribute to both apoptosis and 
necrosis, intracellular ATP and GSH could determine cell death by one or both of these 
mechanisms (Leist et al., 1997; Yutaka et al., 1997; Qian et al., 1999; Nieminen, 2003; 
Bongaerts, 2008). Therefore, the 2,4-D cytotoxic actions may involve some permissive effect 
on either necrosis or apoptosis induction. 

Finally, the experimental evidence reported that 2.4-D can not only affect the nervous 
system or other hormone-sensitive organs, but also exert a very important, deleterious effect 
on embryonic and fetal development.  
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