
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



4 

The Influence of Biochar Production on 
Herbicide Sorption Characteristics 

S.A. Clay and D.D. Malo 
South Dakota State University, Plant Science Dept. 

Brookings, South Dakota  
USA 

1. Introduction 

Biochar is the by-product of a thermal process conducted under low oxygen or oxygen-free 

conditions (pyrolysis) to convert vegetative biomass to biofuel (Jha et al., 2010). There are a 

wide variety of end-products that can be manufactured depending on processing 

parameters and initial feedstocks (Bridgewater, 2003). The pyrolytic process parameters 

such as temperature, heating rate, and pressure can change the recovery amounts of each 

end-product, energy values of the bio-oils, and the physico-chemical properties of biochar 

(Yaman, 2004).  

Biochars are recalcitrant forms of carbon and, depending on properties, can remain in the 
soil for greater than 1000 years (Skjemstad et al., 2002). The long-term persistence of this 
carbon form is due to slow microbial degradation and chemical oxidation rates (Sanchez et 
al., 2009). In addition, biochar interacts with soil materials such as ions, organic matter, and 
clays that generally increase the persistence of biochar within the soil. However, biochars, 
unlike commercial fertilizers, are not precisely defined materials and vary widely in 
properties depending on organic material source and manufacturing process 
(Karaosmanoglu et al., 2000; McHenry, 2009; Sohi et al., 2010). Increasing pyrolytic 
temperature decreases biochar recovery but increases C concentration of the char compared 
with char recovered at lower temperatures (Daud et al., 2001; Katyal et al., 2003). For 
example, as temperature increased from 3000 to 8000 C, biochar C content increased from 56 
to 93% whereas biochar yield decreased from 67 to 26% (Okimori et al., 2003). Other 
pyrolytic parameters, such as sweep gas flow, can influence biochar particle size with higher 
flows reducing the particle size but increasing heating values (Katyal et al., 2003; Demirbas, 
2004). Biochar also can be influenced by reactor design and other reaction parameters 
including heating rate, residence time, pressure, and catalyst used. Feedstock type, quality, 
and initial physical characteristics of the material (e.g. particle size, shape, and structure) can 
impact the bio-oil yield and properties, as well as the type and amounts of biochar formed 
(Bridgewater et al., 1999).  

Landspreading biochar for a soil amendment is suggested to improve crop production 
efficiency because regardless of the initial manufacturing process, biochars have a high 
charge density and surface area. The use of biochar as a soil amendment is not a new 
concept. Dark earths (terra preta) discovered in the Amazon Basin were found to have 
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received deliberate land applications of charred materials and residues of biomass burning 
by Amer-indian populations before European arrival (Erickson, 2003; Sombroek et al. 2003). 
Pyrogenic C in terra preta is very resistant to microbial decay over centuries due to its 
complex aromatic structure and acts as a significant C sink (Glaser et al., 2001).  

The benefits of biochar application have been hypothesized to include: increasing plant 
available soil water; building soil organic matter; enhancing nutrient cycling; lowering soil 
bulk density; acting as a liming agent if high in pH; and reducing transfer of pesticides and 
nutrients to surface and ground water (Laird, 2008) thereby improving water quality. The 
application of biochar to soil has been reported to have a positive impact on physical 
properties such as soil water retention and aggregation (Piccolo et al., 1996) and may 
decrease erosion potential. Glaser et al. (2002) observed an increase in field water holding 
capacity by 18% in charcoal enriched Anthrosol due to an increase in surface area. Biochar 
application has been shown to improve other soil physical, chemical, and biological 
properties (Glaser et al., 2002; Lehmann and Rondon, 2006) leading to positive impacts on 
plant growth and development. For example, Chidumayo (1994) observed enhanced seed 
germination (30%), shoot height (24%), and biomass production (13%) of seven indigenous 
woody crops with the application of charcoal compared with the crops on undisturbed 
Zambian Alfisols and Ultisols. Kishimoto and Sugiura (1985) also found increases in height 
(26 to 35%) and biomass (2.3 X greater) production of sugi trees (Cryptomeria japonica L.). 
Similar enhancement was observed in yields of annual crops such as maize (Zea mays L.) on 
Nigerian Alfisols and Inceptisols with the application of charcoal (Mbagwu and Piccolo, 
1997) due to an increase of soil pH that resulted in greater micro-nutrient availability and 
decreased deficiencies. However, biochars also have been shown to have an extreme affinity 
for essential plant  nutrients (Sanchez et al., 2009) that can provide a slow release 
mechanism.  

Some biochars that have high pH (e.g. >9.5) can provide liming capacity and increase the 
soil pH (Sanchez et al., 1983; Mbagwu and Piccolo, 1997). For example, application of coal 
ash at the rate of 110 Mg ha-1 increased the pH of an eroded Palouse soil from 6.0 to 6.8 (Cox 
et al., 2001). Exchangeable bases also were observed to increase in sandy and loamy soils 
with the additions of hardwood and conifer charcoals (Tryon, 1948). Application of charcoal 
to highly weathered soils with low-ion retention capacities increased the cation exchange 
capacity (CEC) by 50% compared to unamended soil (Mbagwu and Piccolo, 1997). 
Oguntunde et al. (2004) reported a significant increase in soil pH, base saturation, electrical 
conductivity (EC), exchangeable Ca, Mg, K, Na, and available P in charcoal kiln sites and 
reported an increase in grain and biomass yield of maize of 91% and 44% respectively, with 
a coal char application. Leaching of NH4+ from an unfertilized Ferralsol was reduced with 
the application of charcoal due to its high C content, although the retention properties of 
chars may differ for other ionic species (e.g. K, Ca, Mg) if the char already contains high 
concentrations of the ion of interest (Lehmann et al., 2002). Because of biochar’s diverse 
properties and potential for high reactivity in soils, a ‘one-recommendation-fits-all 
situations’ mentality for the use as of biochar as a soil amendment needs to be avoided. To 
date, the greatest positive impacts of biochar have been primarily observed on degraded 
soils and those with low fertility whereas applications on highly productive soils have been 
reported to have low or minimal impacts (Woolf et al., 2010).  

Agrichemicals such as pesticides, growth regulating chemicals, and nutrients are applied to 
crops to control pests and increase yield potential. Depending on the type and amount of 
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biochar applied, the changes in soil properties associated with the application (e.g. soil pH, 
EC) as well as the physio-chemical properties of the char itself, may impact the use, rates, 
efficacious properties, and fates of agrichemicals used in agronomic management. The 
environmental fate (e.g. leachability, rate of decomposition, etc.) and efficacy of soil applied 
pesticides are influenced strongly by their reaction and retention with soil particles and 
organic matter (Brown et al., 1995). Agrichemical molecules can be removed from soil 
solution through attraction or attachment to the surfaces of organic materials and soil 
particles (adsorption) or movement into the matrix (like water into a sponge) (absorption). 
Often, experiments cannot distinguish between these processes so that the general term 
sorption is used.  

Sorption is controlled by properties of the chemical of interest including the water solubility, 

pH, dissociation constant (pKa), octanol/water partition coefficient, and other factors 

(Weber, 1995) and can be used to help describe the fate of an herbicide in the environment 

(Wauchope et al., 2002). The sorption of the chemical also is affected by soil properties 

including water, organic matter, clay, sand, and oxide contents, and soil pH (Koskinen and 

Clay, 1997; Laird and Koskinen, 2008). Soils high in sand generally sorb much less chemical 

than loamy or clay type soils. Agricultural practices that involve modifying soil organic 

matter content often increase chemical retention. Indeed, studies have shown that adding 

biochar to soil can result in greater sorption of pesticides (Cao et al., 2009; Spokas et al., 2009; 

Yu et al., 2009). The distribution of chemical between a solution and solid phase gives an 

indication of the amount of chemical available in solution and is defined using a sorption 

coefficient (Kd) where: 

 d

mass of herbicide sorbed per g of solid
K

amount of chemical remaining in solution at equilibrium
  (1) 

Large Kd values (typically over 100) indicate that a high amount of the chemical originally in 

solution is sorbed to the solid interface, with low amounts of chemical remaining in 

solution. Sorption of a chemical from the liquid phase of soil may result in the chemical 

being: 1) less available to plants, so there may be less uptake; 2) less available to soil 

organisms, thereby increasing the chemical’s residence time and slowing degradation; and 

3) less available to leach with water percolating through the soil, which could result in 

improved groundwater quality.  

The biochar source-processing combination provides a rich diversity of biochars to evaluate 

for soil amendment use (Lehmann et al., 2009). The potential of a specific biochar for a 

specific use will depend on the physical and chemical properties of the biochar, as well as 

soil characteristics. The challenge of amending soil with biochar is to identify the benefits 

that biochar can provide (e.g. fertility, increased water holding capacity) (Lehmann, 2007) 

and balance these against any negative effects that the char may have. Site-specific 

application recommendations of specific biochars require an examination of the products of 

different production and processing scenarios. Much of the biochar research has been based 

on slow pyrolysis with a goal to optimize biochar properties for a specific goal such as 

improved soil fertility, greenhouse gas mitigation, or heating value. Little work has been 

done with biochar produced from fast pyrolysis processes and even less with biochar 

produced from microwave pyrolysis reactors. 
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Feedstock is a key factor governing the status of physio-chemical properties of biochar. All 
types of materials including, but not limited to, palm shells, rapeseed (Brassica rapa) stems, 
sunflower (Helianthus annuus), and wood have been used or are being proposed as potential 
feedstock sources for use in the biofuel industry. In the Midwestern U.S., maize stover and 
switchgrass (Panicum virgatum) biomass are feedstocks that bioenergy companies are 
exploring for use.  

2. Biochar influence on herbicide sorption to soil 

This study examined atrazine and 2,4-D sorption to several biochars that were the result of 

microwave pyrolysis using varying temperatures and processing times of maize and 

switchgrass biomass. In addition, sorption characteristics of these two chemicals to soil 

amended with these biochars at two application rates were determined.  

2.1 Materials and methods 

2.1.1 Biochar and soil 

Biochar was produced from maize stover (stalks and other residues remaining after maize 

grain harvest) and switchgrass biomass collected from fields near Brookings, South Dakota, 

USA (44.31, -96.67). Briefly, the material was dried at room temperature and pulverized 

mechanically using a Thomas-Wiley laboratory mill (Model No. 3375-E15, Thomas 

Scientific, USA) to pass through a 4 mm screen. The ground materials were processed by 

microwave pyrolysis using the SDSU Ag and Biosystem Eng. Dept. microwave system 

(specific processing methods reported in Lei et al., 2009). Processing temperatures ranged 

from 5300 to 6700 C and microwave residence times ranged from 8 to 24 minutes with seven 

maize and nine switchgrass biochars produced (Table 1 and Figures 1 and 2). The energy 

output, product types, particle size distribution, and elemental analysis of the biochar 

recovered from maize stover using these processing conditions are reported in Lei et al. 

(2009).  

For this study, the maize biochars were used alone or mixed with the A horizon soil of a 

Brandt silty clay loam (Fine-silty, mixed, superactive, frigid Calcic Hapludoll, [Soil Survey 

Staff, 2011])  soil at 1 or 10% (w/w) to examine their effect on solution pH, EC, and atrazine 

and 2,4-D Kds (sorption coefficients) for each biochar and biochar/soil combination. For 

switchgrass biochars, the 1 or 10% amendments to soil were used for pH and EC 

measurements, however, for herbicide sorption studies only biochar alone or soil mixed 

with 10% biochar were used, due to limited biochar supply. To maximize homogeneity, each 

soil/biochar combination was individually mixed by adding air-dry soil and biochar to each 

individual tube.  

2.1.2 Solution characteristics 

Biochars, soil, and soil with biochar amendments were analyzed for pH using a 0.01 M 

CaCl2 slurry (1:1 w/v) and a standardized pH electrode. The solution pH was recorded after 

the reading had stabilized. Electrical conductivity (EC) was determined on a slurry that was 

mixed 1:1 (v/w) with 0.01 M CaCl2 and biochar, soil, or soil amended with biochar. The 

slurry was shaken for 0.5 hr and EC measured using a commercially available EC electrode.  
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2.1.3 Herbicide sorption  

Atrazine solution was diluted to a final concentration of 13 µM in 0.01 CaCl2 using technical 
grade atrazine. This solution was spiked with about 0.4 kBq of uniformly-ring-labeled [14C] 
atrazine (specific activity of 1000 MBq mmol-1 with > 99% purity; Sigma Chemical Co., St. 
Louis, MO). The 2,4-D solution was made in a similar manner, with technical grade 2,4-D 
added to 0.01 M CaCl2 to have a final concentration of 13 µM. This solution was spiked with 
uniformly-ring-labeled [14C]-2,4-D (specific activity of 1000 MBq mmol-1 with > 99% purity; 
Sigma Chemical Co., St. Louis, MO).  

A 4-mL aliquot of herbicide solution was added to 2 g soil or soil amended with 1 or 10% 
biochar (final slurry solution 2:1 v/w) in glass centrifuge tubes sealed with a Teflon-lined 
cap. A 5-mL aliquot of herbicide solution was added to 0.5 g biochar when biochar was used 
as the sorbent, with the final solution/biochar ratio of was 10:1 v/w, due to the highly 
sorbent characteristics of the biochar.  

After solution addition, the mixtures were shaken or vortexed to form a slurry. Tubes 
containing the slurries were shaken for 24 hr, centrifuged, and a 250-µL aliquot of 
supernatant removed. The amount of 14C remaining in the supernatant solution was 
determined by liquid scintillation (Packard Model 1600TR) counting after the addition of 
scintillation cocktail. The amount of radioactivity sorbed was determined by comparing the 
counts in the supernatant samples with counts recorded from the original soil-free blank 
solution samples. The sorption coefficients (Kd) of the samples were then calculated as  
L kg-1, correcting for the differences in volume added g-1 of material. 

2.1.4 Statistical analysis 

Experimental treatments were run in triplicate and studies were repeated in time. Results 
were combined for the studies due to similarity of means and homogeneity of variance 
between studies. Means presented were averaged over all treatment replicates and 
statistically separated by least significant difference calculation at P< 0.05.  

2.2 Results 

2.2.1 Biochar pH and EC values  

The biochars produced in this study ranged in pH from acidic (4.06) to alkaline (9.88), and 

were dependent on feedstock, pyrolysis temperatures, and processing times (Table 1). 

Differences were observed among maize and switchgrass feedstocks. For maize stover, three 

of the microwave pyrolysis reactions at high temperatures (>650ºC), regardless of 

processing time, resulted in biochars that were very alkaline (pH>9). Two processes at lower 

temperatures (530ºC  and a processing time of 16 min or 550ºC with a processing time of 10 

min) resulted in biochars with pH <5. The 22 min processing time at 550ºC resulted in a 

biochar with a more neutral (7.6) pH. For switchgrass, four processes resulted in biochars 

that were acidic (pH < 4.6) and the biochars were more acidic than biochars from maize at 

the same time and temperature. The acidic biochars were formed from processes that had 

low temperatures (<600ºC) or shorter times at 600ºC (8 min), or 10 min at 6500C. The most 

alkaline switchgrass biochar was the result of processing at 670ºC for 16 min. This biochar 

had a pH of ~9.1, which was lower than the alkaline maize biochars that ranged in pH from 
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Maize (Zea mays) 

Pyrolysis 
parameters 

 

pH 
 

EC 

Temp time Biochar
soil + 

1% 
biochar 

soil + 
10% 

biochar 
 

Biochar
soil + 

1% biochar 
soil + 

10% biochar 

°C min mS cm-1 

530 16  4.59 6.39 5.85- 0.3 2.4 1.4 
550 10  4.77 6.38 6.04- 2.3 1.8 2.2 

22  7.60 6.47 6.61+ 1.9 1.8 1.8 
600 8  5.68 6.44 6.44 2.1 1.8 2.0 
650 10  9.88 6.46 6.75+ 2.0 1.9 1.9 

22  9.43 6.43 6.76+ 2.0 1.8 1.9 
670 16  9.65 6.43 6.73+ 1.1 1.9 1.9 

 

 
Switchgrass (Panicum virgatum) 

530 16 5.32 6.17 6.70 0.3 1.80 1.67 
550 10  4.12 6.49 5.67- 2.1 2.13 1.97 

22  4.06 6.49 5.71- 1.5 1.87 2.13 
600 8  4.15 6.60 5.90- 1.9 1.80 1.83 

16  6.47 6.45 6.76+ 1.7 1.30 1.33 
24  5.60 6.61 6.44 1.8 1.67 1.87 

650 10  4.57 6.44 6.11- 2.0 2.07 2.20 
22  8.28 6.48 6.80+ 2.9 1.97 2.37+ 

670 16  9.10 6.48 6.85+ 2.5 1.67 1.90 

 

Table 1. The influence of seven maize stover and nine switchgrass biochars produced with 
microwave pyrolosis with different processing times and temperature conditions on 100% 
biochar and soils amended with 1% or 10% (w/w) biochar. The soil used for this study was 
the A horizon of a Brandt silty clay loam (Fine-silty, mixed, superactive, frigid Calcic 
Hapludoll, [Soil Survey Staff, 2011]) from Aurora, SD (44.31, -96.67) with an unamended pH 
in a 1:1 solution of 0.01 M CaCl2 of about 6.40 and an EC value of 1.63 mS cm-1. A ‘-‘ sign 
indicates significantly lower value and  a ‘+’ sign indicates significantly higher value 
compared with unamended soil.  

~9.4 to 9.9. The pH of these biochars can be compared with other biochar data. A wood 

ash/biochar that was the by-product of a commercial ethanol plant (Chippewa Valley 

Ethanol Company, Benson, MN) was obtained and used for comparison purposes. The 

wood ash had a pH of over 11. In comparison, broiler litter biochar obtained from pyrolysis 

reactions at either 350 or 700ºC was found to have a fairly uniform acidic pH (5.5) (Uchimiya 

et al., 2010). These data indicate that the pH of different types of biochar are dependent on 

processing time, temperature, and initial feedstock material.  
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           530ºC/16 min            550ºC/10 min              550ºC/22 min            600ºC/8 min 

         
                            650ºC/10 min             650ºC/22 min            670ºC/16 min 

Fig. 1. Examples of biochars formed after exposure of maize (Zea mays) stover feedstocks to 
microwave pyrolosis at varying temperatures and times (see Lei et al., 2009).  

 

 

   530ºC/16 min       550ºC/10 min       550ºC/22 min        9600ºC/8 min        600ºC/16 min   

 

          

           600ºC/24 min            650ºC/10 min             650ºC/22 min            670ºC/16 min 

Fig. 2. Examples of biochars formed after exposure of switchgrass (Panicum virgatum) 
feedstocks to microwave pyrolosis at varying temperatures and times. 

Electrical conductivity provides an indication of the amount of neutral soluble salts in the 
material or its salinity. High soil salinity often impedes the growth of most agricultural 
plants. Adding amendments that increase soil salinity, even though other beneficial 
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properties such as water holding capacity would increase, would be counterproductive. 
Saline soils are recognized worldwide (Food and Agriculture Organization, FAO) as soils 
with an EC reading of >4 mS cm-1 (Richards, 1954; Abrol et al., 1988). In the U.S., the Soil 
Science Society of America (SSSA) uses a value of >2 mS cm-1 boundary for the saline 
classification. Woodchip biochar had an EC value of 3.6 mS cm-1. Biochar produced from 
maize stover had EC values ranging from 1.1 to 2.3 mS cm-1 with five out of the seven >1.9 
mS cm-1. The switchgrass biochars had EC values ranging from 1.5 to 2.9 mS cm-1 with the 
highest EC when materials were processed at 650º C for 22 min.  

2.2.2 Influence on biochar amendment on soil pH and EC properties 

The Brandt soil chosen for this study was a silty clay loam with a pH of 6.4. Due to the 
inherent soil properties and buffering capacity of this soil, it was expected that even high 
applications of the most acidic or alkaline biochar would have minimal impact on soil pH. 
When 1% maize or switchgrass biochars were added to soil, pH changes were minimal 
(generally <3%) (Table 1). When soils were amended with 10% biochar, pH was influenced 
to a greater extent. The slurry pH decreased from 4 to 8% when low pH biochars were 
added and increased  a maximum of 9% when high pH biochars were added.  

Soil EC was 1.63 mS cm-1, well below the salinity values for saline soil. Adding either maize 
or switchgrass biochar to soil at 1% increased soil salinity, but with the exception of one 
switchgrass sample, did not increase the salinity to >2 mS cm-1. Amending soil with 10% 
with the maize biochar that had the greatest EC value (2.3 mS cm-1) was the only maize 
biochar that increased soil salinity above 2 mS cm-1. Adding switchgrass biochar at 10% had 
greater impact than maize stover biochar and increased EC values an average of 11% when 
compared with ECs of unamended soil. Three switchgrass biochars increased EC values 
from 23 to 36% (Table 1) with final soil slurry EC values above 2 mS cm-1, the SSSA value for 
saline soil classification. However, even with a 10% amendment, all final EC values were 
well below the FAO saline soil value of 4 mS cm-1. If significant amounts of these biochars 
were applied frequently to the same field, managers must be cognizant of the potential for 
changes to EC values. Saline soil remediation can be expensive and often requires long-term 
management interventions, rather than short-term programs. 

2.2.3 Atrazine sorption to biochar and soils amended with biochar 

Atrazine is a chemical in the triazine family and has a slightly positive charge in soil 

solutions (Laird and Koskinen, 2008). The positive charge on the molecule, when in 

solutions above its pKa, causes the molecule to be sorbed to materials that have a negative 

charge. Atrazine sorption to soil is considered moderate with Kd values ranging from 1 to 5 

(Koskinen and Clay, 1997). The value is dependent on many soil properties including pH, 

organic matter, and clay content (Koskinen and Clay, 1997). In this study, atrazine sorption 

to biochar ranged from 7 to 92 L kg-1 (Figure 3). The sorption was dependent on feedstock 

type and processing method. These values ranged from 200 to 2300% greater than sorption 

to soil.  

In general, the biochars from maize had much more variability in Kd values than switchgrass 
biochar (Figure 3). Three of the seven maize biochars had Kds less than 20 L kg-1 whereas the 
other four had values of 55 L kg-1 or greater. In general, the switchgrass biochars had lower  
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Pyrolysis parameters for producing corn biochar
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Fig. 3 A and B. Atrazine sorption (Kd) values to biochar from maize (Zea mays) stover (A) 
and switchgrass (Panicum virgatum) (B) produced by microwave pyrolysis at various 
processing times and temperatures. Kd values of sorption for the A horizon of a Brandt silty 
clay loam (Fine-silty, fmixed, superactive, frigid Calcic Hapludoll, [Soil Survey Staff, 2011]) 
soil when amended with 1 or 10% maize biochar or 1% switchgrass biochar. Kd sorption 
value of atrazine to unamended soil averaged about 3.86 L kg-1. A “–“ sign indicates lower 
sorption at P <  0.05 and a “+” sign indicates greater sorption at P< 0.05 than unamended 
soil.  
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Kd values for atrazine than maize, with only two of the nine samples having sorption values 

>18 L kg-1. Correlation analysis was conducted to examine pH of biochar vs Kd but these 

parameters were poorly to moderately correlated for maize (r = 0.4) and not correlated for 

switchgrass.  

Amending soil with maize biochar at 1% increased the Kd with three biochars and decreased 

the Kd for one biochar. The maximum increase was 66% more sorbed than unamended soil. 

The 10% additions decreased the amount sorbed by soil in two samples by about 43%. This 

was surprising as one of the biochars alone had double the Kd of soil (Kd = 7 L kg-1) and a 

pH of 4.5 and the other had very high sorption (Kd = 82 L kg-1) value and pH of 7.6. It is 

unclear what properties of this biochar would result in lower atrazine sorption. The soil 

amended with three maize biochars used at 10% amendment had nearly 3 times as much 

atrazine sorbed  (Kds ranging from 8.7 to 11.0 L kg-1) when compared with soil alone. Two 

switchgrass biochars with the highest atrazine sorption also increased atrazine sorption 

when added as a 10% soil amendment, and raised the Kds nearly 4-fold, with a Kd of about 

15 L kg-1. Other switchgrass biochars had no or only a slight influence on atrazine sorption.  

2.2.4 2,4-D sorption to biochar and soils amended with biochar  

Unlike atrazine which has a positive charge in most soils, 2,4-D with a pKa of 2.8 is a weak 

acid in most soil solutions (Wauchope et al., 1992). This chemical was chosen as a model 

compound to explore the effect of biochar on these types of compounds. The negative 

charge on the 2,4-D, as well as other chemicals in this auxin-type chemistry, often results in 

low or no sorption to soil (Clay et al., 1988). If these types of chemicals have a long residence 

time in soil (e.g. picloram), there is a high potential for leaching, although, because 2,4-D 

often is reported to have a ½ life of 10 d or less, leaching of this chemical is not usually 

considered a problem.  

The Kd sorption value of 2,4-D to unamended Brandt soil was about 1 L kg-1, a four-fold 

lower sorption than atrazine to this soil. All biochar samples had much greater sorption 

coefficients than soil alone (Figure 4), with switchgrass biochars generally sorbing more 2,4-

D than maize biochars. The Kd values for all biochars, regardless of feedstock type ranged 

from about 3 to >80 L kg-1 and was much greater than soil. Kd values for soil amended with 

1% maize biochars were similar to Kd of unamended soil (Figure 4). Amending soil with 10% 

biochar (either maize or switchgrass) resulted in a few treatment combinations that had 

increased sorption compared to soil. Maize biochar resulting from processing stover at 

600ºC for 8 min increased 2,4-D sorption 3.3 times over unamended soils, whereas maize 

biochar formed from processing at 650ºC for 22 min increased 2,4-D sorption by 4.5 times. 

Switchgrass biochar added at 10% to soil had little impact on 2,4-D sorption with two 

exceptions. The first was the biochar formed when processed at 550ºC for 10 min where a 

9.4- fold sorption increase was measured and the second when switchgrass was processed at 

650ºC for 22 min where a 15-fold sorption increase was measured. These two switchgrass 

biochars also dramatically increased atrazine sorption. The char produced at the higher 

temperature did influence soil EC values at 10% addition (Table 1), however, it is not known 

what the exact properties of these biochars or their interactions with soil/solution resulted 

in these increased sorption amounts. 
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Pyrolysis parameters for producing corn biochar
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Fig. 4 A and B. 2,4-D sorption (Kd) values to biochar from maize (Zea mays)stover and 
switchgrass (Panicum virgatum) produced by microwave pyrolysis at various processing 
times and temperatures; Kd values of sorption for the A horizon of  a Brandt silty clay loam 
(Fine-silty, mixed, superactive, frigid Calcic Hapludoll, [Soil Survey Staff, 2011]) soil when 
amended with 1 or 10% maize biochar or 10% switchgrass biochar. Kd sorption value of 
unamended soil averaged about 1.0 L kg-1. A “+” sign indicates greater sorption at P< 0.05 
than unamended soil.  
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3. Conclusion 

Biochars, the by-products of pyrolitic conversion processes of vegetative biomass to gas, bio-
oil, or other fuels, are proposed soil amendments for many diverse purposes. Biomass 
feedstocks and production processes vary depending on the desired end-products. This 
study measured the influence of several microwave pyrolitic conversion processes, which 
varied temperature and residence time, on pH and EC characteristics of the resulting 
biochars produced from maize stover and switchgrass. These biochars were used to amend 
a silty clay loam soil and examined the solution pH, EC, and sorption properties of a weakly 
cationic herbicide, atrazine, and an anionic herbicide, 2,4-D.  

The microwave pyrolysis parameters of processing time and temperature of maize stover 
and switchgrass produced biochars that had a range of characteristics, with enough 
variation that they should not be thought of as a single entity with uniform properties. Short 
processing times (<10 min) of either feedstock at high (650ºC) or low (550ºC) temperature 
resulted in biochar with a pH < 4.5. Biochars produced with processing times >15 min at 
high temperature resulted in materials with pHs >8. Processing at intermediate 
temperatures and times resulted in char pHs ranging from 5.6 to 6.5. Adding 1% char to soil 
did not impact soil pH (6.4) whereas adding 10% biochar decreased soil pH a maximum of 
12% when low pH biochars were used or increased soil pH up to 7% when high pH biochars 
were applied. “Native” soil EC was 1.63 mS/cm. Soils amended with 1% or 10% biochar 
ranged from -20% lower up to 39% higher EC values depending on biochar type and 
amount added. The biochars used in this study would be considered ‘fresh’, and not aged or 
post-process treated.  Aging biochar or treating with steam or oxygen has been reported to 
dramatically change pH and other properties.  Studies on these materials would need to be 
conducted to determine if results are similar to those reported for this study. 

In a 2010 literature review, Kookana (2010) stated that there were limited published studies 
on the effect of biochars on pesticide efficacy and fate in soil, although in the few studies 
where sorption is reported, the sorption coefficients could be as high as >2000 times those of 
soil. Results from our study confirmed that when biochars were used as a single sorption 
material very high sorption amounts could be observed for both a cationic and an anionic 
compound. Herbicide sorption Kd to all biochars alone was very high compared with soil 
but varied among biochar types. Soil amended with 1% maize stover biochar had herbicide 
sorption values similar to unamended soil. However, adding 10% biochar amendment 
increased both atrazine and 2,4-D sorption coefficients by many-fold. A neutral herbicide, 
alachlor, has also been shown to have increased sorption in soils amended with woodchip 
biochar addition (Spokas et al., 2009). If biochars are applied to production fields, biochars 
may reduce atrazine preemergence weed control due to decreased availability to emerging 
seedlings. Kookana (2010) also discussed the possibility of longer residence time of 
pesticides due to reduced bioavailability, which may influence further the impact of a 
pesticide on ecotoxicology and potential accumulation. Indeed, Jones et al. (2011) reported 
biochar addition suppressed simazine biodegradation due to limiting availability to soil 
microbes through increased sorption, although leaching potential was reduced 
simultaneously.  

The results of this study along with other reports have implications on best use of biochar in 

agricultural fields. If biochar has no or little effect on pesticide sorption, efficacy, or EC 

values, then the material may be suitable for general application in agricultural fields and 
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highly desirable if it can be used to increase water holding capacity or as a nutrient source. 

Biochars, if high in sorption capacity, may be applied strategically and could accomplish 

important roles in ecosystem health and environmental quality. Biochar, added in filter 

strips and waterways, eroded landscapes, or other areas where increased sorption is 

desired, may aid in cleaning water running off fields by sorbing undesirable contaminants. 

Increased sorption may also slow or stop herbicides from leaching, so highly sorbent 

biochar types may be desired over shallow aquifers or in areas low in native organic matter 

(Wang et al., 2010). Herbicide bioavailability in some cases may be reduced, protecting 

sensitive plants.  

Conversely, the effect of spreading biochars across entire fields may have negative results 
and be undesirable. One consequence may be that the materials increase soil EC values to 
saline levels. In addition, if the biochar reduces the efficacy of soil-applied herbicides or 
other pesticides this may have negative impacts. Reduced pesticide efficacy would require 
higher herbicide application rates to be as effective as lower rates. This would have 
monetary implications for growers and field managers by increasing management costs. 
Increased sorption, in some cases, also may increase the recalcitrance of pesticides leading to 
longer residence times in the environment. The occurrence of greater recalcitrance may be 
desirable if bioactivity was still acceptable and longer activity of the pesticide was desired to 
control the pest of interest. However, longer residence time may lead to other long-term 
environmental problems, such as greater leaching potential or carry-over problems into the 
following season.  

Prior to any regular field applications of any biochar, the biochar properties must be 
examined to determine the suitability of the material for the long-term management of a 
particular site. The reasons for the application should be defined clearly and the outcomes 
closely monitored to determine if expectations and results are synonymous.  
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