
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

4

Designing Distributed, Component-Based
Systems for Industrial Robotic Applications

Michele Amoretti1, Stefano Caselli1, Monica Reggiani2

1University of Parma
Italy

2University of Verona
Italy

1. Introduction

The design of industrial robotic applications is dramatically changing as the result of rapid

developments in underlying technologies and novel user requirements. Communication and

computing technologies provide new standards and higher levels of performance. Meanwhile,

novel and more capable robotic platforms and sensors have become available. In industrial

automation, this technology push has opened up new application areas, while raising the

expectations casted upon robotic systems in terms of overall performance and functionality.

In next generation robotic applications, robots will turn from traditional preprogrammed,

stationary systems into machines capable of modifying their behaviour based on the interaction

with the environment and other robots. Changes are also induced by user requirements

demanding higher efficiency, functionality and performance in the control of industrial plants.

In a modern manufacturing scenario, interaction with customers and suppliers must

increasingly occur remotely and on-line, e.g. for just-in-time manufacturing, remote

maintenance, and quality monitoring. For a number of reasons, transparent and widespread

access to run-time production data and internal control variables of robotic systems must be

provided. This requirement highlights the distinct transition beyond the conventional idea of

isolated robotic workcell. As an added element of complexity, integration between different

technologies in the shop floor and in the design and production management departments is

required to achieve the full potential of computer-integrated manufacturing.

The growth in complexity in industrial robotic applications demands higher levels of

abstraction. A first step toward the improvement of software quality and cost reduction has

been the increasing adoption of object-oriented reuse techniques, based on components and

frameworks. The next step is to gain a comparable acceptance of reusability and

transparency concepts as far as the distributed nature of industrial automation systems is

concerned. Indeed, industrial automation applications fall naturally into distributed

architectures, since they require the ability to connect multiple robotic and sensory devices,

which must be controlled in a coordinated manner. As discussed in this chapter,

communication middlewares are the key technology to achieve these goals.

Source: Industrial Robotics: Programming, Simulation and Applicationl, ISBN 3-86611-286-6, pp. 702, ARS/plV, Germany, December 2006, Edited by: Low Kin Huat

O
pe

n
A

cc
es

s
D

at
ab

as
e

w
w

w
.i-

te
ch

on
lin

e.
co

m

62 Industrial Robotics - Programming, Simulation and Applications

The exploitation of standard components and distributed systems technology as key

interconnection infrastructure can help to alleviate many of the complexity issues associated

with the requirements of flexibility, fast implementation, maintainability, and portability.

However, requirements arising in industrial automation provide additional challenges to

application developers, beyond those faced when middleware technology is deployed in

standard Internet applications. Control of manufacturing lines and data acquisition systems

requires reliable and high-performance architectures operating in real-time. Resorting to custom

protocols to satisfy such requirements in the context of complex systems is no longer viable. The

need to reconfigure systems quickly and frequently for competitiveness leads to the

development of heterogeneous systems built by integrating a mix of new and legacy

equipment, with a variety of hardware, operating systems, and programming language to be

taken into account. Another challenge confronting developers is the very size and complexity of

industrial systems that often prevent a full understanding of the overall system and libraries,

making hard for developers to predict the side-effects of future changes.
The purpose of this chapter is to describe how mainstream and advanced features of an
object-oriented middleware can be exploited to meet the requirements of novel industrial
robotic applications. We identify CORBA as the middleware best suited for such
applications. More specifically, we review a number of CORBA services and show how
Real-Time CORBA extensions and asynchronous method invocation meet performance and
functional requirements. CORBA services for concurrency control and large-scale data
distribution provide an effective infrastructure to meet common requirements arising in the
control of distributed devices. Limitations in currently available implementations of the
CORBA standards (e.g. for fault-tolerance and security) are also discussed.
The remaining of the chapter is organized as follows. Section 2 describes the fundamental
requirements to be faced in the development of distributed industrial applications. Section 3
provides a brief overview of the two most prominent actors of the distributed middleware
scenario, Web Services and CORBA. Section 4 illustrates and evaluates the most advanced
CORBA features and other CORBA services relevant to distributed industrial robotic
applications. Section 5 presents a sample CORBA-based application including a robotic
manipulator platform and several sensor devices. Finally, Section 6 concludes the chapter,
discussing its main results.

2. Requirements of Distributed Industrial Robotic Applications

Developing a suitable system architecture meeting requirements for distributed industrial

robotic applications is a difficult and time-consuming task. In many cases, the expensive

development of a new application can be avoided relying on previous experience or, even

better, on a common framework from which specific architectures are instantiated.

Stemming from the features characterizing novel distributed robotic applications, we

identify the following set of requirements for the system architecture.

The system must ensure interoperability and location transparency. In modern industrial

plants many embedded processors and servers are networked together requiring their

software to handle communications and interoperability issues while ensuring reliability

and performance. To achieve portability, the active software components of the architecture

(or peers) should be light-weight and runnable on several platforms (from desktop

workstations to embedded systems), without increasing applications complexity. Support

Designing Distributed, Component-Based Systems for Industrial Robotic Applications 63

for different robot programming methods (on-line, off-line, hybrid) should be provided,

along with transparency (i.e., all accessible applications should appear as if they were local).
Moreover, modern industrial systems need to be reconfigurable, able to produce different
parts, depending on which machines are used and in which order. Control software and
physical resources, like sensor and robot controllers, need to be easily
connected/disconnected to the systems. Hence, support for multiple clients is required to
system devices, along with suitable authentication and concurrency protocols to ensure
safe access according to prescribed policies and priorities. Control actions, in fact, may
require or be entrusted with different access levels: from simple sensor monitoring, to robot
control, to system supervision.
Servers should ensure real-time operation to allow implementation of the appropriate
control laws with guaranteed operation. Moreover, they should accept and manage
requests preserving their ordering, and exhibit differentiated reactions depending on their
urgency. An industrial robotic system should also provide the guarantee of correct
execution priorities of application tasks at the server. Consistent, end-to-end propagation of
priority semantics is especially difficult when heterogeneous peers, with different operating
systems and programming languages, must be accommodated.
Control of several devices and sensors in a networked environment requires concurrency in
server operations and a multithreaded server structure. This capability enables execution of
parallel independent or coordinated actions in the target workcell, improves the response
time, and simplifies CPU sharing among computational and communication services.
Portable thread synchronization mechanisms should therefore be available to achieve
reliable and efficient concurrency in servers.
The system should allow asynchronous (non-blocking) client requests to servers
controlling networked devices. This feature is not always required for simple applications
consisting of a limited number of distributed requests, possibly operated in stop-and-go
mode. However, it becomes necessary for advanced scenarios where multiple concurrent
activities can be invoked at the server. Examples of such tasks are coordinated operation of
multiple arms or concurrent sensing and manipulation.
In industrial applications, the timely availability of adequate sensory data is required for
plant control, production monitoring, remote maintenance, data logging, and post-
production analysis. Efficient and scalable data distribution techniques must be available
to return sensory information to a dynamic and possibly large set of data consumers.
Finally, while early approaches to distributed robotic systems were based on development
of in-house solutions, new industrial applications take advantage of the availability of
standard infrastructures and technologies. In this way, the total cost of ownership and
management of the architecture controlling the robotic system can be reduced thanks to the
adoption of component-off-the-shelf (COTS) and component-based design. Approaches
promoting software reuse, such as developing a common framework and exploiting COTS,
have the potential of drastically reducing maintenance and integration costs.

3. Distributed Middlewares

A distributed middleware is a connectivity software designed for the interaction of software
components in complex, distributed applications. During the 90’s, this technology has
greatly evolved to provide interoperability and application portability in client/server
architectures. A distributed middleware, however, has emerged as an enabling technology

64 Industrial Robotics - Programming, Simulation and Applications

also for distributed industrial robotic applications, requiring the ability to interconnect
multiple and possible heterogeneous platforms while ensuring location transparency and
extensibility. Among the most prominent actors in the distributed middleware arena are
Web Services and CORBA technologies.

3.1 Web Services

Service-oriented computing [Bichier et al., 2006] defines an architectural style whose goal is
to achieve loose coupling among interacting software entities. In this context, Web Services
[W3C, 2004][Motahari Nezad et al., 2006] provide a standard, simple and lightweight
mechanisms for exchanging structured and typed information between services in a
decentralized and distributed environment. The main goal of Web Services is to allow
machine-to-machine interaction, whereas traditional Web applications are human-to-
human oriented. Relevant specifications and standards for Web Services include eXtensible
Markup Language (XML), Simple Object Access Protocol (SOAP), the communication protocol,
Web Service Description Language (WSDL), a machine-processable format to describe service
interfaces, and Universal Description, Discovery and Integration (UDDI), centralized or
distributed repositories listing service interfaces. We refer to the cited literature for the full
development of these concepts.
A Web Service contract describes provided functionalities in term of messages. By focusing solely
on messages, the Web Service model is completely language, platform, and object model-
agnostic. As long as the contract that explains service capabilities and message sequences and
protocols it expects is honoured, the implementations of Web Services and service consumers can
vary independently without affecting the application at the other end of the conversation.
The use of Web Services is rapidly expanding driven by the need for application-to-application
communication and interoperability. The question thus is whether Web Services are the right
middleware for robotics as well. In our view, while the generality and reuse capabilities of Web
Services are appealing for robotic applications as well, they fail to provide the performance
guarantees for end-to-end system operation required in robotic applications.

3.2 CORBA and Other DOC Middlewares

Several Distributed Object Computing (DOC) middleware standards are available, notably

the Common Object Request Broker Architecture (CORBA) [OMG A, 2004] promoted by the

Object Management Group (OMG), and Microsoft’s Distributed Component Object Model

(DCOM). The distributed objects concept is an important paradigm, because it is relatively

easy to hide distribution aspects behind an object’s interface. Furthermore, since an object

can be virtually anything, it is also a powerful paradigm for building systems.

DCOM’s major design goal appears to be providing improved functionality while staying

compatible with previous versions incorporated in the early Windows systems.

Unfortunately, DCOM has proven exceedingly complex, especially considering its

proprietary nature. Today, DCOM has been largely superseded by its successor .NET, which

however remains a proprietary solution mainly restricted to Microsoft operating systems.

When language, vendor, and operating system independence is a goal, CORBA is a mature

solution that provides similar mechanisms for transparently accessing remote distributed

objects while overcoming the interoperability problems of .NET. CORBA is the result of an

effort to provide a standard middleware platform to allow applications from many different

software manufacturers to interoperate. Implementing a distributed architecture with

Designing Distributed, Component-Based Systems for Industrial Robotic Applications 65

CORBA allows smooth integration of heterogeneous software components. To ensure

portability, reusability, and interoperability, CORBA architecture is based on the Object

Request Broker (ORB), a fundamental component that behaves as a system bus, connecting

objects operating in an arbitrary configuration (Figure 1).
To achieve language independence, CORBA requires developers to express how clients will
make a request to a service using a standard and neutral language: the OMG Interface
Definition Language (IDL). After the interface is defined, an IDL compiler automatically
generates client stubs and server skeletons according to the chosen language and operating
system. Client stub implementation produces a thin layer of software that isolates the client
from the Object Request Broker, allowing distributed applications to be developed
transparently from object locations. The Object Request Broker is in charge of translating
client requests into language-independent requests using the Generic Inter-ORB Protocol
(GIOP), of communicating with the Server through the Internet Inter-ORB Protocol (IIOP),
and of translating again the request in the language chosen at the server side.

Fig. 1. CORBA ORB architecture.

Together with the Object Request Broker, the architecture proposed by OMG introduces
several CORBA Services, providing capabilities that are needed by other objects in a
distributed system. We refer to the cited literature [OMG A, 2004] for additional information
on general features of the CORBA Standard. The most advanced CORBA implementation, in
terms of compliancy, is The ACE ORB (TAO) [Schmidt et al., 1998]. TAO implements all the
QoS-oriented parts of the specification. For example, the Real-time CORBA 1.0 [OMG C,
2002] standard supports statically scheduled Distributed Real-time and Embedded (DRE)
systems (such as avionics mission computers and industrial process controllers) in which
task eligibility can be mapped to a fixed set of priorities. Starting from version 1.5, TAO
supports the Real-time CORBA 1.2 specification [OMG D, 2003] which addresses limitations
with the fixed-priority mechanisms by introducing two new concepts in Real-time CORBA:
distributable threads, that are used to map end-to-end QoS requirements to distributed
computations across the endsystems they traverse, and a scheduling service architecture, that
allows applications to enforce task eligibility.

66 Industrial Robotics - Programming, Simulation and Applications

3.3 Choosing CORBA in Industrial Robotic Applications

The decoupling and interoperability features offered by the message-oriented approach
characterizing Web Services are of course interesting for the industrial robotics scenario,
where mobile robots and server applications often run on different platforms. However,
XML processing is too “heavy” to meet the real-time constraints arising in industrial robotic
applications. Several researchers have experimented with performance improvements to
Web Services, such as faster parsers [Bayardo et al., 2004], data compression [Liefke, 2000],
protocol optimizations [Chiu et al, 2002], or binary encodings [Tian et al., 2004], but the
outcome generally depends on the structure of the data used and the application itself.
Today, CORBA is in wide use as a well-proven architecture for building and deploying
significant enterprise-scale heterogeneous systems, as well as DRE systems. In these sectors
CORBA is growing because it can harness the increasing number of operating systems,
networks, and protocols supporting real-time scheduling into an integrated solution that
provides end-to-end QoS guarantees to distributed object applications. Research over the past
several years has identified key architectural patterns and performance optimizations required to
build high-performance, real-time ORBs. This effort resulted in the development of prototype
real-time ORB endsystems that can deliver end-to-end QoS guarantees to applications [Gill et al.,
2004], [Schantz et al., 2006], [Zhang et al., 2005], [DiPippo et al., 2003].
CORBA’s most advanced and recent features (Real-Time CORBA, AMI) provide
functionalities almost essential in application domains sharing critical concerns such as
industrial automation, avionics, and telecommunications. Based on the features discussed in
the next section, CORBA seems the logical choice for building complex distributed robotic
applications, thereby satisfying the interoperability, transparency, COTS availability,
component-based design, and software reusability requirements previously highlighted.

4. CORBA Features for Distributed Robotic Applications

This section discusses CORBA features introduced with version 2.4 of the Standard, along
with other CORBA Services relevant to distributed robotic systems. Real-Time CORBA 1.0,
Messaging and several consolidated services are evaluated by means of simple benchmarks
designed to assess their suitability for distributed robotic applications. Real-Time CORBA
1.2 is not considered here because of its draft status.

4.1 Concurrency Among Clients

A requirement of advanced distributed robotic systems is to manage input from all

controlling devices while generating a single and coherent control sequence for each robot

server, allowing collaborative and coordinated operation [Chong et al., 2000].

As a basic functionality, server applications must ensure atomicity of calls to library

functions devoted to the interaction with the robot controller, regardless of the server

thread-safety. Potential conflicts arising from multiple clients can be avoided forcing an

exclusive access to library functions through the RTCORBA_Mutex construct, implementing

the mutual exclusion lock. The server side is solely responsible for the implementation of

this functionality, since Mutexes are introduced in the servant code.

In addition to ensuring single command consistency and atomicity, concurrent access control at

session level must be implemented to guarantee full robot control without undesired

interferences from other operators. Implementation of a coordination scheme allowing multiple

Designing Distributed, Component-Based Systems for Industrial Robotic Applications 67

clients to control a single robot through a coherent and logically safe pattern of interaction can

be obtained exploiting the CORBA Concurrency Control Service [OMG, 2000]. This service

allows several clients to coordinate their concurrent accesses to a shared resource so that the

resource consistent state is not compromised. Of course, it is up to the developer to define

resources and identify situations where concurrent accesses to resources conflict.
For these purposes, the Concurrency Service provides the lock as the basic coordination
mechanism. Each shared resource should be associated with a lock, and a client must get the
appropriate lock to access a shared resource. Several lock modes are defined, allowing
different conflict resolution policies among concurrent clients. We show how the CORBA
Concurrency Service can be exploited by means of an example. This pattern can be adapted
to several situations involving conflicting reading and writing access rights to one or more
devices across the distributed system.
In a scenario where several clients compete to control a single robot and/or access data from
multiple sensors, exclusive control of the robot must be granted only to one client in a given
interval of time, while simultaneous read of sensor data should be allowed to other
consumers as well. For each robot, a Robot and a RobotStatus objects are created. The
RobotStatus class maintains information about a robotic device, whereas the Robot class
controls movements and sets parameters. Then, for each Robot object, a lock object is created
and registered in the Naming Service.
As shown in Figure 2 (scenario 1), the client invoking commands on the Robot object holds
an exclusive lock ensuring exclusive control. Indeed, as the exclusive lock conflicts with any
other lock, a client requesting a lock on the same resource will be suspended waiting its
release. Clients invoking methods on the RobotStatus object, instead, are not required to
hold locks as the class has only ‘‘accessor’’ methods.

Fig. 2. Two scenarios of concurrent access to a single robot device from several clients.

To preserve generality and cover a wider domain of applications [Chong et al, 2000], an
alternative scenario can be outlined, where a group of clients wants to control a single robot

68 Industrial Robotics - Programming, Simulation and Applications

in a collaborative way (e.g., in a telerobotic application, a ‘‘primary’’ operator with some
‘‘backup’’ operators), while preventing further clients from obtaining exclusive control of
the robot. In this scenario (Figure 2, scenario 2), a collaborating client holds a shared lock.
Since the shared lock conflicts only with exclusive locks, it allows sharing of robot control
with other clients holding shared locks, whereas clients requesting exclusive control through
an exclusive lock are suspended in the exclusive access queue.
An experimental evaluation of the access control mechanisms outlined above for multiple
concurrent clients is reported in Section 5.

4.2 Server-side Concurrency and Real-Time Guarantees

Control of several robots and sensors teleoperated from multiple remote clients requires one

or more multithreaded servers allowing concurrency among actions. Moreover, servers

should be able to discriminate among services, granting privilege to critical tasks

(emergency stop, reading of safety sensors), and should avoid priority inversion (low-

priority tasks blocking high-priority ones).

With the Real-Time CORBA specification, OMG released a set of standard CORBA APIs for

multithreading, thereby avoiding the use of proprietary ORB features to program multithreaded

real-time systems. The core mechanism of RT CORBA is the Thread Pool, enabling pre-allocation

of Server resources. With the Thread Pool mechanism, a group of threads is statically created by

CORBA in the server at start-up time. These threads are always ready to be bound to requested

methods. To achieve predictability, a maximum number of dynamic threads is available. These

threads are created only once static threads are exhausted. The Thread Pool avoids the overhead

of thread creation/destruction at run-time and helps in guaranteeing performance by constraining

the maximum number of threads in each host.

Under the extreme condition where its whole set of threads has been bound to low-level

requests, a server could miss the deadlines of high-priority actions, a situation clearly

unacceptable in an industrial robotic system. To avoid depletion of threads by low-priority

requests, a Thread Pool can be further partitioned in Lanes of different priority. This

partitioning sets the maximum concurrency degree of the server and the amount of work

that can be done at a certain priority. Partitioning in Lanes and related parameters cannot be

modified at run-time; the only freedom is reserved to higher priority methods which can

‘‘borrow’’ threads from lower level Lanes once their Lane is exhausted.

Servers in distributed robotic applications should also provide clients with the guarantee of

correct execution priorities of application tasks. However, heterogeneity of nodes, in

distributed applications, precludes the use of a common priority scale. In early CORBA

versions and other middleware approaches, this problem forced users to concern about low-

level details of threads on different OSes. Real-Time CORBA has solved the problem by

providing a priority mapping mechanism converting CORBA priority levels, assigned to

CORBA operations, to OS native priority levels (and vice versa).

Critical distributed robotic applications also require task execution at the right priority on

the Server side. RT CORBA defines two invocation models: SERVER_DECLARED, in which

objects are created with assigned execution priority, and CLIENT_PROPAGATED, in which

the Client establishes the priority of the methods it invokes, and this priority is honoured by

the Server. Thanks to the Thread Pool and Priority features, a server based on RT CORBA

can thus guarantee real-time execution of critical computations and achieve coherent, end-

to-end priority semantics.

Designing Distributed, Component-Based Systems for Industrial Robotic Applications 69

Another client mechanism enabling to take advantage of available concurrency in the server has
been introduced in the CORBA 2.3 Messaging Specification. Standard service requests in CORBA
systems rely on the Synchronous Method Invocation (SMI) model, that blocks the client until the
server notifies the end of the requested activity. Non-blocking invocations with earlier CORBA
versions either relied on methods not guaranteeing the delivery of the request or on techniques
requiring significant programming efforts and known to be error prone [Arulanthu et al., 2000].
The Asynchronous Method Invocation (AMI) model [OMG A, 2004] provides a more
efficient way to perform non-blocking invocations with either a Polling or a Callback
approach. The AMI interface allows a CORBA-based system to efficiently activate multiple
concurrent actions at a remote teleoperated site. Moreover, as AMI and SMI share the same
object interface, clients can choose between synchronous or asynchronous calls, whereas
server implementation is not affected.
The AMI interface, however, cannot guarantee that a set of parallel actions will be actually
executed at the ‘‘same’’ time. When a server receives non blocking requests from a client, it
dispatches them to the Thread Pool according to their priorities and they are started as soon as
possible. Due to the communication delays of the distributed system, requests will reach the server
at different and unpredictable times. Synchronized parallel action execution is thus unlikely. This
behaviour is not satisfactory for many robotic applications, where a set of parallel actions must
often begin at the ‘‘same’’ time and coordination of their execution is required to ensure logical
correctness or safety. This problem can be solved by implementing a waiting rendezvous strategy
[Douglass, 1999] based on the available CORBA mechanisms. We have developed an
implementation where an instruction termed cobegin(n) prefixes the invocation of parallel actions
in a server, acting as a barrier for the next n method invocations, whose execution, therefore, does
not start until all calls have reached the server. Without cobegin(n), the server schedules actions
invoked by AMI requests as soon as they arrive.

4.2.1 Experimental Evaluation

In the experiment reported in this section, a server application controls a manipulator and the
sensors which are directly related to the manipulator. The Thread Pool is set up to include three
Lanes (low, medium, and high priority). Low and medium priority Lanes supply threads for the
execution of requested actions. The high-priority Lane supplies threads for emergency actions, so
as to guarantee their immediate dispatch. The scheduling algorithm is a Priority Level Round
Robin (SCHED_RR), which is available in any POSIX-compliant operating system.

Fig. 3. Precedence graph of a concurrent task, consisting of an initial action start(), followed
by four concurrent actions with different priority.

70 Industrial Robotics - Programming, Simulation and Applications

Experiments involving simulated workload have been carried out to evaluate the
correctness and robustness of the server, which has been tested with a variety of sets of
concurrent actions, with different priority levels and synchronization requirements. We
have also experimented the effectiveness of cobegin(n) in avoiding priority inversion in the
execution of parallel actions. One of the experiments is described in Figure 3, showing
precedence relations, duration and priority of each method call. The correct outcome of this
experiment requires that the four concurrent methods be executed according to their
priority. Figure 4 compares two experimental executions of the task. Without cobegin(n)
(top diagram), the medium priority action (ID 4), whose request is the first reaching the
server, is executed before the high priority action (ID 1). With cobegin(n) (bottom diagram),
the priority of threads is always guaranteed and no priority inversion occurs.

4.3 Data Distribution

A data distribution subsystem for networked robot applications should be able to efficiently
exchange significant amount of data from the sensors located at the remote site (suppliers) to the
operators controlling/monitoring the remote environment (consumers). Moreover, it should be
able to cope with the heterogeneity of consumers, its performance should scale with the number of
connections, and it should minimize the load on both sides avoiding polling operations.
These requirements cannot be fulfilled by the classical Remote Procedure Call (RPC)
mechanism that is, instead, suitable for transmission of control commands. Indeed, polling
operations, required by RPCs, introduce well known saturation effects on both the network,
due to the useless flow of requests and responses, and the supplier, unable to answer to a
large number of simultaneous consumer requests.

Fig.. 4. Experimental results of concurrent actions without (top) and with (bottom) cobegin(n).

Solutions currently available in CORBA for transmission of time-critical streaming data are
still quite limited. A standard for Audio/Video Streaming [OMG B, 2000] is included among
CORBA specifications, but it only defines common interfaces for negotiation of the
connection among distributed applications, lacking details on its use and control. Due to the
weakness of this standard, most existing CORBA implementation do not take advantage of
the CORBA Audio/Video Streaming specification to handle multimedia streams. It should
be mentioned that OMG has recently defined a new specification to facilitate the exchange
of continuous data in the CORBA Component Model [OMG, 2005].

Designing Distributed, Component-Based Systems for Industrial Robotic Applications 71

A data distribution technique alternative to Audio/Video Streaming, less efficient but more
portable, adopts a Publisher/Subscriber communication model [Buschmann et al., 1996].
Whenever the Publisher (sensor) changes state, it sends a notification to all its Subscribers.
Subscribers in turn retrieve the changed data at their discretion. OMG introduced two variants of
the Publisher/Subscriber communication model in the CORBA standard, namely the Event and
Notification Services, that strongly decouple Publisher and Subscribers by means of an ‘‘Event
Channel.’’ Exploitation of these services for data distribution is investigated next.
Event Service. The CORBA Event Service [OMG B, 2004] allows suppliers and consumers to
exchange data without requiring the peers to know each other explicitly. The general idea of
the Event Service is to decouple Suppliers and Consumers using an Event Channel that acts
as a proxy consumer for the real suppliers and as a proxy supplier towards the real consumers.
Therefore, the supplier can perform a non blocking send of sensory data in the Event
Channel, while the interested consumers can connect to that channel to get the ‘‘event’’
(Figure 5). This implementation also allows a transparent implementation of the broadcast
of sensory data to multiple consumers. The CORBA standard proposes four different
models interleaving active and passive roles of suppliers and consumers. We discarded
models with active consumers as they can produce blocking communications when new
data are not available at sensor proxy. For distributed robotic applications, the most
appropriate model seems to be the Canonical Push Model, where an active supplier pushes
an event towards passive consumers registered with the Event Channel.
Despite the benefits introduced by an Event Channel, experimenting with this Service highlights
several issues. Firstly, to avoid compile-time knowledge of the actual type of the ‘‘event,’’ sensor
data must be communicated as an OMG IDL “any type” data type. The communication is
therefore type-unsafe and consumers are charged with the duty of converting between the “any
type” and the data type they need. Secondly, the Event Service specification lacks event filtering
features: everything is conveyed through the Event Channel, that in turn sends everything to any
connected consumer. Therefore, the load of a missing property is laid on consumers, that are
forced to filter the whole data set looking for the ones they really need. Moreover, the flow of
unrequested data can again introduce the problem of network saturation. Finally, the Event
Service specification does not consider QoS properties related to priority, reliability, and ordering.
Attempting to ensure these properties in an application results in proprietary solutions that
prevent ORB interoperability.

Fig. 5. CORBA Event Service architecture.

72 Industrial Robotics - Programming, Simulation and Applications

Notification Service. A second solution investigated for the data distribution subsystem is
based on the CORBA Notification Service [OMG C, 2004], which has been introduced in the
CORBA Standard to overcome the limitations of the CORBA Event Service.

The Notification Service is essentially a superset of the Event Service; most

components of the Event Service architecture (Figure 5) have been enhanced in the

Notification Service. Notable improvements with respect to the Event Service include

filtering and QoS management. In the Notification Service each client subscribes to the

precise set of events it is interested in receiving through the use of filter objects,

encapsulating one or more constraints. Two filter types are defined: a forwarding filter,

that decides whether the event can continue toward the next component, and a

mapping filter, that defines event priority and lifetime. Moreover, QoS properties for

reliability, priority, ordering, and timeliness can be associated to a channel, to a proxy,

or to a single event.

4.3.1 Experimental Evaluation

The communication models described in the previous section have been evaluated in a

CORBA-based robotic application requiring to distribute sensory data to a number of

clients. The experiments reported in the following assess the relative performance in

terms of latency and scalability of the two proposed data distribution mechanisms. All

experiments reported in this section follow the Push Model: a supplier generates data

and sends them to the Event Channel, when available, or directly to Consumer

processes. A single supplier and one or more consumers, all requiring the same

sensory data, are considered. Two hosts have been used, one for the supplier, and one

for the consumer(s). The experiments have been performed with the Event Channel

located either on the machine which hosts the supplier (low workload), or on the other

machine (high workload). The main features of the exploited machines are listed in

Table I. The hosts are connected via Fast Ethernet switches, with different bitrates.

Unless stated otherwise, the network had no significant traffic, nor was any other

processing taking place on these hosts.

Host
name

Hardware configuration Operating system Network
connection

Trovatore Intel P4 2.4 GHz, 512 MB RAM Gentoo 1.6.14 1Gbps

Malcom AMD Athlon 64 3500+, 1 GB RAM Gentoo 1.6.13 1Gbps

Tromba Intel P4 2.0GHz, 512 MB RAM Kubuntu 5.10 100 Mbps

Table I. Features of the machines hosting the data distribution tests.

In the first set of experiments, the supplier is hosted by Trovatore and pushes 20000 packets

(64 Bytes per packet). Minimum, average, and standard deviation (jitter) values of

interarrival times are evaluated. Consumer activity is limited to the update of the latency

value so far. We measured the average time interval between two successive 64 Byte packet

receptions (interarrival time) increasing the number of Consumers from 1 to 150 (hosted by

Malcom). Event and Notification Services results are compared with those of a Distributed

Callback implementation based on the Observer patter [Gamma et al., 1995], i.e., a pattern

where new sensor data, when ready, are sent by the supplier application to all consumers

previously registered as Observers (see Figure 6).

Designing Distributed, Component-Based Systems for Industrial Robotic Applications 73

Fig. 6. The Distributed Callback mechanism.

Figure 7 shows the results for five solutions: Distributed Callback, Event Service with
channel on Malcom with the consumers (A) , Event Service with channel on Trovatore with
the supplier (B), Notification Service with channel on Malcom (A), Notification service with
channel on Trovatore (B). With less than 10 consumers, the five solutions are equivalent.
With more than 10 clients, ES(A) and NS(A) perform better than Distributed Callback, ES(B),
and NS(B). That is, the Event and Notification Services show better performance if they are
located on the same machine which hosts the consumers, because this setting reduces
network congestion since the only remote connection is the one between the supplier and
the event channel, while the connections between the channel and the consumers are local to
the machine which hosts them. Focusing on this solution, for more than 100 consumers the
Notification Service seems to be more efficient than the Event Service.
The second set of experiments investigates synchronization among consumers on the
reception of data packets. Figure 8 shows the average interarrival time for two consumers
when they are on the same machine (Malcom, Test 1), and when one of them is on a
machine slower than the one hosting the other consumer (Tromba and Malcom, Test 2). In
TAO default configuration, the Event Service pairs together the two consumers, forcing the
packet reception rate to the one permitted by the slower one (compare Test 1 ES with Test 2
ES). The same result is obtained with the Notification Service in the default single-threaded
configuration (compare Test 1 NS with Test 2 NS). Not surprisingly, if the Notification
Service is configured to deploy a thread at each proxy supplier, the overall performance is
improved, and Test 2 gives better results than Test 1 (label MT stands for MultiThreaded).

Fig. 7. Interarrival times resulting from different data distribution architectures.

74 Industrial Robotics - Programming, Simulation and Applications

Fig. 8. Interarrival times resulting by three different Publisher/Subscriber models. Test 1
involves two consumers with similar characteristics; in Test 2 one of the consumers (dashed
bar) runs on a slower machine.

To summarize, for robot servers performing several complex tasks (e.g., sensor data

acquisition and distribution, motion planning, actuator control) and dealing with a large

number of attached clients, the Event Channel (offered by the Event and Notification

Services) represents an effective tool to maintain the overall workload under control. When

consumers have different QoS needs and at the expense of a slight overhead, the

Notification Service is the most appropriate solution, thanks to its configurability options

not available in Distributed Callback and Event Service implementations.

5. A CORBA-based Telerobotic System

In the previous section, CORBA services relevant to distributed robotic applications have

been introduced and evaluated using “microbenchmarks”, i.e. test suites conceived for the

specific service under investigation. The aim of this section is to describe and assess a

complete telerobotic application which encompasses many features typical of distributed

industrial robotic applications. The telerobotic application has been developed exploiting a

framework which integrates various CORBA services.

5.1 The Application

The telerobotic system is illustrated in Figure 9. The remote site includes an Unimation PUMA

560, a six d.o.f. arm whose controller is interfaced to a Pentium-based workstation running the

RCCL/RCI robot programming and controlling environment. Mounted on the arm is a parallel

gripper, pneumatically actuated with a maximum opening of 80 mm; the gripper is provided with

a binary sensor able to detect its closure. The system features additional sensoriality, including a

stereo vision system in front of the robot workspace. Clients are connected to the remote robot

either with a local (Ethernet LAN) or a geographical network.

To allow the clients to interact with the remote environment, program and monitor the task,

each client is provided with a set of applications. Using a graphical user interface (GUI) the

Designing Distributed, Component-Based Systems for Industrial Robotic Applications 75

operator can dynamically configure its environment, adding new sensoriality and moving

available hardware. The inset graph in Figure 10 shows the GUI with windows displaying

sensory information received from the stereo camera.
An advanced client station also supports the control of the robot using an 18-sensor
CyberTouch (a virtual reality glove with tactile feedback form Immersion Corp, Inc.) and a
six degree of freedom Polhemus tracker (Figure 10).

Fig. 9. The experimental testbed for a CORBA-based telerobotic application.

5.2 Performance Analysis

The experimental results in this section refer to a peg-in-hole manipulation task, and to a
concurrent task requiring four clients to perform a stacking manipulation task. While
performing the tasks, the system returned to connected users the visual information
generated by a camera shooting the workspace.
The first test was performed both over an Ethernet LAN (with average latency of 0.1
ms), and over a WAN (with average latency of 100 ms). The performance observed in
the second case was mainly influenced by the time delay and frame rate of the visual
information received from the camera using the CORBA-based data distribution
mechanisms integrated in the application. To improve the visual feedback, a data
channel based on RTP on top of a UDP/IP connection was set up outside the CORBA
infrastructure. While this setting requires that client and server agree on the use of
non-CORBA communication, it is currently the only solution for efficient streaming of
video images over the Internet, since current CORBA support for video streaming is
too limited. The drawback of this solution was of course the lower quality of the image
due to the lossy compression.

76 Industrial Robotics - Programming, Simulation and Applications

Fig. 10. An example of the client setup, and a snapshot of the GUI with a window displaying
sensory information received from the remote site.

Figure 11 shows the Z trajectory of the gripper during two teleoperated peg-in-hole tasks.
The solid line shows the gripper height during a task performed in the Ethernet LAN
environment. The dashed line shows the same data obtained with the same operator
remotely connected to the servers on a high-speed DSL link. In both cases, the GUI was used
and proved very useful to ensure effective interaction with the remote system. It can be
observed that the task duration was essentially the same for both experiments, even though
in the case of teleoperation over LAN the operator was allowed to send more motion
commands (65 against 44 of the other case) thanks to the better response time of the system,
i.e. motion commands (uplink) and sensor data (downlink) were delivered more quickly.

Fig. 11. Z trajectory of the gripper during the peg-in-hole task performed over an Ethernet
LAN (continuous line), and over a WAN (dashed line).

Designing Distributed, Component-Based Systems for Industrial Robotic Applications 77

Fig. 12. Trajectory of the gripper in the peg-in-hole experiment (over an Ethernet LAN).

In the second test four clients participated to the execution of a stacking manipulation
task (Figure 13). Clients were connected to the robotic server through a Fast Ethernet
switch with negligible latency. The main goal of the experiment was to investigate the
reliability of the mechanisms for concurrency control and access arbitration among
clients described in Section 4.1.

Fig. 13. A stacking experiment with the Puma 560 manipulator. The images are taken from
the left eye of the stereo camera.

Figure 14 traces the main environmental values during a task segment. The first row shows
the evolution of the distance between the robotic gripper and the table (Z), sampled at 1 Hz,
during the execution of the manipulation task. Management of concurrent client access is
described by the next four rows of Figure 14.
Each client can be in one of four states: exclusive control, collaborative control, waiting for
control, observing. Waiting slots are experienced by clients asking for control when the
robot is already controlled in an incompatible mode by other client(s). The bottom row of
Figure 14 shows the total number of clients currently connected to the system including slot
time when they are connected as ‘‘observer.’’

78 Industrial Robotics - Programming, Simulation and Applications

Fig. 14. Tracing of a teleoperation experiment involving four clients that concurrently access
the robot arm.

Several task sessions demonstrated the reliability of the CORBA concurrency control
mechanisms in providing safe arbitration to critical resources. Tasks similar to the one
described were executed, and the presence of multiple clients controlling the robot never
prevented their successful completion.

6. Conclusion

The viability and cost effectiveness of new distributed industrial robotic applications can be
widely enhanced exploiting COTS-based software components. However, systems
implementing those applications must face demanding challenges: they should be dynamically
reconfigurable and highly scalable to deal with a potentially large number of peers, they should
provide real-time features, guaranteed performance and efficient concurrency mechanisms,
both locally and in a distributed environment. The CORBA middleware, especially with its
recent extensions, has proven well suited for the needs of many distributed robotic systems. In
this paper, we have summarized our experience resulting from the development of distributed
robotic applications based on Real-Time CORBA.
Results show that exploitation of CORBA brings a number of remarkable advantages in the
distributed robotic domain, enabling portable, highly reconfigurable applications with support for
concurrency and real-time features. Furthermore, CORBA standard services for naming
resolution, data distribution and concurrency control avoid the need for ad hoc solutions, which are
often error prone, require significant development effort, and prevent portability.
Of course, providing transparency and high level services in CORBA is not without cost.
Nevertheless, the recent scaling of network and Internet infrastructures to higher levels of
performance and QoS guarantees has made less relevant the overhead introduced by
CORBA. Drawbacks encountered in our experience stem from the incompleteness in the
implementation of the CORBA standard suite. None of the available CORBA ORBs offers a

Designing Distributed, Component-Based Systems for Industrial Robotic Applications 79

full implementation of the CORBA standard, i.e., covering aspects such as dynamic
scheduling, fault-tolerance, fully compliant CORBA services. Furthermore, some extensions
of the standard would be useful, e.g., higher-level synchronization mechanisms (condition
variables, barriers) and more effective and useable services for streaming and continuous
media management. These deficiencies, however, are widely acknowledged by OMG and in
the CORBA standard community, and for some of them solutions are in the making.

7. Acknowledgements

The research described in this chapter has been supported by LARER (Laboratorio di
Automazione of Regione Emilia-Romagna, Italy).

8. References

Arulanthu, A.; O’Ryan, C.; Schmidt, D. C.; Kircher, M. & Parsons, J. (2000). The Design and
performance of a Scalable ORB Architecture for CORBA Asynchronous Messaging.
Proceedings of the ACM/IFIP Middleware 2000 Conference, pp. 208-230, ISBN 3-
540-67352-0, New York, NY, USA, April 2000, Springer (Lecture Notes on
Computer Science)

Bayardo, R.J.; Gruhl, D.; Josifovski, V. & Myllymaki, J. (2004). An Evaluation of Binary XML
Encoding Optimizations for Fast Stream Based XML Processing. Proceedings of 13th

In’l Conf. World Wide Web, pp. 345-354, ISBN 1581139128, New York, NY, USA, May
2004, ACM Press

Bichier, M. & Lin, K.-J. (2006). Service-Oriented Computing. IEEE Computer, Vol. 39, No. 3,
pp. 99-101, ISSN 0018-9162

Buschmann, F.; Meunier, R.; Rohnert, H.; Sommerlad, P. & Stal, M. (1996). Pattern-Oriented
Software Architecture, Volume 1: A System of Patterns. Wiley and Sons, ISBN
0471958697, New York

Chiu, K.; Govindaraju, M. & Bramley, R. (2002). Investigating the Limits of SOAP
Performance for Scientific Computing. Proceedings of 11th IEEE In’l Symp. High-
Performance Distributed Computing, pp. 246-254, ISBN 0-7695-1686-6, Edimburgh,
Scotland, July 2002, IEEE CS Press

Chong, N.; Kotoku, T.; Ohba, K.; Komoriya, K.; Matsuhira, N. & Tanie, K. (2000). Remote
Coordinated Controls in Multiple Telerobot Cooperation. Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA 2000), pp. 3138-3143, ISBN
0-7803-5889-9, San Francisco, CA, USA, April 2000, IEEE Press.

DiPippo, L.; Fay-Wolfe, V.; Zhang, J.; Murphy, M. & Gupta, P. (2003). Patterns in Distributed
Real-Time Scheduling, Proceedings of the 10th Conference on Pattern Language of
Programs 2003, Monticello, IL, USA, September 2003.

Douglass, B. (1999). Doing Hard Time: Developing Real-time Systems with UML, Objects,
Frameworks, and Patterns. Addison-Wesley, ISBN 0201498375, Reading, MA

Gamma, E.; Helm, R.; Johnson, R. & Vlissides, J. (1995). Design Patterns – Elements of Reusable
Object-Oriented Software. Addison-Wesley, ISBN 0201633612, Reading, MA

Gill, C.; Schmidt, D. C.; Krishnamurthy, Y.; Pyarali, I.; Mgeta, L.; Zhang, Y. & Torri, S. (2004).
Enhancing Adaptivity Standard Dynamic Scheduling Middleware, The Journal of
the Brazilian Computer Society (JCBS) special issue on Adaptive Software Systems, Vol.
10, No. 1, pp. 19-30, ISSN 0104-6500

80 Industrial Robotics - Programming, Simulation and Applications

Liefke, H. & Suciu, D. (2000). XMill: An Efficient Compressor for XML Data. Proceedings of
ACM SIGMOD Conference on Management of Data, pp. 153-164, ISBN 1-58113-218-2,
Dallas, TX, USA, June 2000, ACM Press

Motahari Nezad, H. R.; Benatallah, B.; Casati, F. & Toumani, F. (2006). Web Services
Interoperability Specifications. IEEE Computer, Vol. 39, No. 5, pp. 24-32, ISSN
0018-9162

OMG A (2000). Concurrency Service Specification, Version 1.0,
 http://www.omg.org/technology/documents/formal/concurrency_service.htm
OMG B (2000). Audio/Video Streams, Version 1.0,
 http://www.omg.org/technology/documents/formal/audio.htm
OMG (2002). Real-time CORBA 1.0 Specification,

http://www.omg.org/docs/formal/02-08-02.pdf
OMG (2003). Review draft of the 1.2 revision to the Real-time CORBA Specification (OMG

document realtime/o3-08-01), previously designated Real-time CORBA 2.0,
http://www.omg.org/docs/ptc/01-08-34.pdf

OMG A (2004). CORBA/IIOP 3.0.3 Specification,
http://www.omg.org/docs/formal/04-03-01.pdf

OMG B (2004). Event Service Specification, Version 1.2,
 http://www.omg.org/technology/documents/formal/event_service.htm
OMG C (2004). Notification Service Specification, Version 1.1,

http://www.omg.org/technology/documents/formal/notification_service.htm
OMG (2005). Streams for CCM Specification, http://www.omg.org/docs/ptc/05-07-01.pdf
Schantz, R.E.; Schmidt, D.C.; Loyall, J. P. & Rodrigues, C. (2006). Controlling Quality-of-

Service in Distributed Real-time and Embedded Systems via Adaptive
Middleware. To appear in The Wiley Software Practice and Experience Journal special
issue on Experiences with Auto-adaptive and Reconfigurable Systems, ISSN 0038-0644

Schmidt, D. C.; Levine, D. & Mungee, S. (1998). The Design and Performance of the TAO
Real-Time Object Request Broker. Elsevier Computer Communications Journal, special
issue on Building Quality of Service into Distributed Systems, Vol. 21, No. 4, pp. 294-
324, ISSN 0140-3664

Tian, M.; Voigt, T.; Naumowicz, T.; Ritter, H. & Schiller, J. (2004). Performance
Considerations for Mobile Web Services. Elsevier Computer Communications Journal,
Vol. 27, No. 11, July 2004, pp. 1097-1105, ISSN 0140-3664

W3C (2004). Web Services Architecture, Working Group Note.
Zhang, J.; DiPippo, L.; Fay-Wolfe, V.; Bryan, K. & Murphy, M. (2005). A Real-Time

Distributed Scheduling Service For Middleware Systems. Proceedings of the 10th
International Workshop on Object-Oriented, Real-Time, Dependable Systems, pp. 59-65,
ISBN 0-7695-2347-1, Sedona, AZ, February 2005

Industrial Robotics: Programming, Simulation and Applications

Edited by Low Kin Huat

ISBN 3-86611-286-6

Hard cover, 702 pages

Publisher Pro Literatur Verlag, Germany / ARS, Austria

Published online 01, December, 2006

Published in print edition December, 2006

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book covers a wide range of topics relating to advanced industrial robotics, sensors and automation

technologies. Although being highly technical and complex in nature, the papers presented in this book

represent some of the latest cutting edge technologies and advancements in industrial robotics technology.

This book covers topics such as networking, properties of manipulators, forward and inverse robot arm

kinematics, motion path-planning, machine vision and many other practical topics too numerous to list here.

The authors and editor of this book wish to inspire people, especially young ones, to get involved with robotic

and mechatronic engineering technology and to develop new and exciting practical applications, perhaps using

the ideas and concepts presented herein.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Michele Amoretti, Stefano Caselli and Monica Reggiani (2006). Designing Distributed, Component-Based

Systems for Industrial Robotic Applications, Industrial Robotics: Programming, Simulation and Applications,

Low Kin Huat (Ed.), ISBN: 3-86611-286-6, InTech, Available from:

http://www.intechopen.com/books/industrial_robotics_programming_simulation_and_applications/designing_di

stributed__component-based_systems_for_industrial_robotic_applications

© 2006 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the

Creative Commons Attribution-NonCommercial-ShareAlike-3.0 License, which permits use,

distribution and reproduction for non-commercial purposes, provided the original is properly cited

and derivative works building on this content are distributed under the same license.

