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1. Introduction 

Drought is one of the inherent abiotic constraints that affect agricultural productivity 
worldwide. It is estimated that drought stress can potentially reduce nearly 20% of crop 
yield around the World (Bouman et al., 2005; Scheiermeier, 2008). Global climatic changes 
such as dry spell, heat waves and uneven precipitation patterns limit water availability for 
farming (Bates et al., 2008). However, water is needed at every phase of plant growth from 
seed germination to plant maturation (Athar & Ashraf, 2005; Chaves et al., 2003) and any 
degree of imbalance in the uptake would pose a serious threat to agriculture by adversely 
affecting the growth and grain yield (Wang et al., 2001). Further, water deficit stress could 
occur at any time of growing seasons; however severity of stress effect on productivity 
depends on distribution of rainfall. 
Rice is the staple food for almost half of the world population. Rice farming is considered 

as one of the world's most sustainable and productive cropping system, as it is adapted to 

wide range of environment ranging from tropical low lands to mountains and from deep 

water swamp to uplands. In general, rice crop is semi aquatic and can thrive well in 

waterlogged soil and hence its production system relies on ample water supply. Based on 

the availability of water, rice can be grown in different ecological conditions such as low 

land rainfed, low land irrigated, deep water and upland. In global scenario, irrigated rice 

is considered as productive farming system and has accounted for 55% of total harvested 

area with a contribution of 75% of total productivity. Further, annual productivity of 

irrigated rice is estimated to be 5% more than that of rainfed rice (Fairhurt & Dobermann, 

2002). Meanwhile, resource for irrigation has declined gradually over the past decades 

due to rapid urbanization and industrialization which exacerbates the problem of water 

scarcity (Gleick et al., 2002). Current rice production systems rely on ample supply of 

water and it is estimated that on average rice require 1900 liters of water to produce 1kg 

of grain. Even a short period of water deficit is highly sensitive to rice farming and rice 

productivity (O’Toole, 2004). Different developmental stages of rice such as tillering 

phase, panicle initiation and heading known to respond differently to drought stress 

(Botwright Acuna et al., 2008; Kamoshita et al., 2004), however, factors such as timing, 

intensity and duration of stress have detrimental effect on plant growth. Liu et al., (2006) 

reported that reproductive stage, especially during flowering, is more vulnerable to stress 

and cause spikelet sterility.  
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Rice-cropping system is considered as economic backbone of many Asians as 90% of the 
World total rice is grown and consumed in Asia. A small decrease in availability of water 
would drastically affect grain yield and imperil food security.  Increasing crop tolerance to 
water scarcity would be the most economic approach to improve the productivity and to 
minimize agricultural use of fresh water resource. To fulfill this objective, a deeper 
understanding of the possible mechanisms under water stress environment is a must. 
Recent studies have shown that plants have evolved various morphological, physiological, 
biochemical and molecular mechanisms to cope up with adverse climatic effect.  
Conventional breeding strategies utilized those mechanisms to certain extent and achieved a 
linear improvement in yield by exploiting genetic variation of phenotypic traits in the 
germplasm (Atlin et al., 2006; Lafitte et al., 2006; Serraj, 2005). However, development of 
tolerant varieties to water deficit condition has been slow due to lack of understanding on 
the mechanism of drought tolerance. Several efforts have been made to improve crop 
productivity under water limiting environment. Munns (1993) suggested that physiological 
based approach could furnish a new insight to breeding programme by offering reliable key 
indicators for screening drought tolerant genotypes to improve crop yield over a range of 
environment. Nevertheless, very little information is available on magnitude of genetic 
variation associated with physiology of tolerance. Furthermore, plants evolve a wide 
spectrum of adaptive mechanisms from whole plant to molecular level which varies within 
species and cultivars to overcome drought stress (Bartels & Sunkar, 2005; Jones, 2004; 
Rampino et al., 2006; Yamaguchi Shinozaki and Shinozaki, 2005). To exploit genetic basis of 
physiological variations effectively, investigations on molecular basis of stress are 
indispensable. Rapid advancement in molecular techniques helps to elucidate the control 
mechanisms linked to stress perception and responses by dissecting yield and integrative 
traits influenced under stress. Number of drought inducible gene and gene products have 
been identified at transcriptional and translational level and most of the gene products may 
function in stress tolerance at cellular level (Umezawa et al., 2006; Yamaguchi Shinozaki & 
Shinozaki, 2005; Zang et al., 2004). Further, all these investigations have provided important 
clues for functional characterization of stress responsive gene and stress tolerance 
mechanism; thereby widen our knowledge in mitigation of drought stress. The present 
review addresses the recent advances of the adaptive strategies in rice and facilitates the 
development of enhanced tolerance by integrating functional genomics into breeding 
programs. 

2. Physio morphological traits for yield under drought stress 

In rice, a number of physio-morphological putative traits have been suggested to confer 
drought tolerance (Deivanai, et al., 2010). Indeed, root system architecture plays a primary 
constitutive role in acquisition of water and nutrient from the soil and maintains plant water 
status (Nguyen et al., 1997; Lafitte et al., 2001; Kato et al., 2006). Descriptors of root 
architecture such as rooting depth (Pantuwan et al., 1996; Wade et al., 1996), root density, 
root thickness, root distribution pattern (Lilley and Fukai, 1994; Fukai and Cooper, 1994) 
increases plant water uptake and avoid dehydration mechanism. However, water uptake 
efficiency is determined by the function of root length, soil type, root hydraulic conductance 
and transpiration demand (Nobel, 2005). Further, root system architecture is highly dynamic 
and its functions are affected by change in environmental conditions and soil types (Lafitte 
et al., 2001).  Since root characteristics are invisible for direct selection, knowledge on 
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interrelationship between plant type and root architecture would be desirable to facilitate 
yield performance of rice varieties under different water regimes.  
Traditional plant breeding has identified traits such as plant type (plant height, tiller 
number, leaf area, leaf area index), phenology (timing of germination, floral initiation, 
flowering and seed maturity) and canopy temperature for screening of genotypes to 
improve grain yield under stress (Turner, 1982; Cooper et al., 1999; Slafer, 2003; Turner, 
2004; Reynold et al., 2005a). In fact, grain yield is a complex quantitative trait attributed by 
number of panicle/shoot/m2, grains/spikelet/panicle and grain weight / panicle (Sinha 
and Kanna, 1975). Improvement of crop yield could be achieved by selecting the genotypes 
based on the intensity of genetic variation. Several investigations have observed significant 
genetic variation for root number, diameter, depth, branching, root to shoot ratio, water 
extraction and root penetration (Yadav et al., 1997; Lafitte et al., 2001; Price et al., 2002b; 
Pantuwan et al., 2002a & b; Nhan et al., 2006). Meanwhile, high heritability was also noticed 
for root thickness, root dry weight and root length density (Lafitte et al., 2001). Moderate 
heritability for grain yield was reported by Babu et al., 2003; Atlin et al., 2004; Lafitte et al., 
2004b; Yue et al., 2005; Kumar et al., 2007.  Though, several traits were considered for 
improving drought tolerance in rice, only few have contributed significantly towards grain 
yield under drought condition (Lafitte, 2003).  It is because most of the traits that respond to 
stress are constitutive and are not adaptive to stress (Parry et al., 2005; Komoshita et al., 
2008). Further, substantial differences in root system architecture and grain yield have been 
reported between species, cultivars and land races. Obviously, grain yield is characterized 
by yield potential of the genotypes under target environment and intrinsically linked with 
plant water status (Araus et al., 2003; Rizza et al., 2004; Blum, 2005), a relevant physiological 
measure of interest under drought prone environment.  Plant water status is determined by 
a balance between water uptake through root system and demand by shoot. Since plant 
production is the function of water use (WU), water use efficiency (WUE) and harvest index 
(HI), it is therefore vital to understand its effect during defined developmental stage to 
design effective selection method to improve plant production under dry environment. 
Several direct measurements are recommended to assess plant water status and its 
physiological consequences, some widely used measures are mentioned in this review 

2.1 Water use efficiency (WUE) 

WUE provide the means of efficient use of water and serves as a breeding target in water 

saving agriculture. Traditionally defined as the ratio of dry matter produced per unit of 

water transpired, and constitute one of the key determinants in controlling plant 

production. It is also referred as “transpiration efficiency” and estimated from the measures 

of leaf gas exchange or by using carbon isotope discrimination. Mean while, carbon isotope 

discriminant method had contributed much in the study of WUE and provided large 

volume of data in relation to genetic diversity and plant breeding. Studies have shown that 

yield related traits such as biomass accumulation and transpiration rate are highly 

interlinked with stomatal control and leaf area (Cabuslay et al., 2002; Richards, 2000; 

Tardieu & Tuberosa, 2010). For example, when plant experienced mild water stress, it 

increased WUE by regulating stomatal conductivity and lower carbon isotope discriminant 

measures. In most of the drought related studies low measures of carbon isotope 

discrimination found to be associated with high WUE.  Higher WUE in turn lower 

photosynthetic rate due to reduced rate of transpiration and consequently slower the rate of 
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plant growth (Codon et al., 2004).  It is obvious that increased WUE has resulted in smaller 

or short duration plants with reduced transpiration, biomass production and yield potential 

due to reduced water use. Blum (2005) pointed out that high WUE is largely a function of 

reduced WU and suggested that it can be used as a yardstick to measure irrigation efficiency 

in agriculture.  Further, he proposed direct selection of plant type with moderate growth, 

short duration and reduce leaf area would promote WUE.  Currently, agricultural sectors 

are slowly progressing due to use of genotypes with increased WUE and improved 

agronomic practices (Pereira et al., 2006; Richards et al., 2002).  

2.2 Leaf water potential (LWP) 

Leaf water potential (LWP), a measure of whole plant water status and has long been 
recognized as an indicator for dehydration avoidance (Pantuwan et al., 2002). When water 
deficit in leaf goes beyond a threshold level, stomata closes as a response to lower the rate of 
transpiration. According to Hsiao and Bradford (1982), stomata functions as safety valve to 
regulate water loss when tissue water status becomes too low, whereby minimize the 
severity of water deficiency in plants. Thus higher LWP is maintained by stomatal closure 
and varietal differences in stomatal response to water status have been reported by Jongdee 
et al., (1998), O’Toole & Cruz (1980) and Turner (1974), it is mainly due to differential 
capacity of hydraulic conductance among the genotypes.  Further, genotype with deeper 
and thicker roots shown to extract more soil moisture effectively and maintains higher plant 
water status (Yoshida & Hasegawa, 1982). In a study, Sibounheuang et al., (2001) observed 
consistence in the performance of LWP and suggested a mighty relation between shoot 
water potential and internal plant water conductivity. Mean while, Kumar et al., (2004) 
reported a positive association between grain yield and relative water content with LWP. 
Stomatal closure found to increase leaf temperature and measure of canopy temperature 
serves as an indirect measure of plant water status. Boonjung and Fukai (1996) as well as 
Pantuwan (2000) observed taller genotypes tend to have larger canopy than the shorter 
genotypes and they found smaller canopies had lower demand for water and were able to 
maintain higher LWP. The two parameters namely leaf rolling and leaf death are considered 
as determinant for estimating LWP. Earlier studies have reported higher estimates of visual 
scores and heritability for those two determinants while screening cultivars for drought 
tolerance. 

2.3 Osmoregulation 

Osmoregulation is receiving increasing recognition as an effective physiological mechanism 
of drought tolerance. Drought stress known to alter internal plant water status and lower 
water potential of cell environment (Babu et al., 1999). As a consequence, solutes are actively 
accumulated at high concentration within cells in order to maintain water potential (Blum, 
1998; Kramer & Boyer, 1995). Such solutes are referred as osmolytes which include amino 
acids, sugars, polyols, quaternary ammonium and sulfoium compounds (Rontein et al., 
2002). According to Blum (1998) the process of accumulation of solutes during the 
development of water shortage and enabling the plant to maintain hydrated state is termed 
as osmotic adjustment (OA), while buffering mechanism against dehydrated condition by 
addition or removal of solutes from cytoplasm is osmoregulation.   
Generally, OA restores turgor pressure of both root and shoot, thereby permit stomatal 
conductivity to continue and help to sustain plant growth at time of transpirational demand 
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(Blum, 1996, 2005; Serraj & Sinclair, 2002; Stoop et al., 1996). Further, Blum (1996) found that 
these compounds stabilize macromolecular structures and membrane proteins. 
Nevertheless, the role of osmolytes are diverse and investigations on osmoprotectants have 
revealed that proline regulates cellular redox during stress (Kuznetsov & Shevyakova, 1999) 
while, manitol protects oxidation sensitive cellular structure by scavenging reactive oxygen 
species (Huang et al., 2000) whereas, trehalose and fructan function as membrane stability 
(Nakayama et al., 2000), aquaporin, a major intrinsic protein super family facilitate control 
of water permeability through membrane (Luu & Maurel, 2005). 
A genetic variation of 0.3 – 0.5 MPa has been reported for OA in rice (Turner et al., 1986). 
Though OA enable to maintain water absorption and cellular turgor pressure, a number of 
contrasting reports have been published. For instance, Munns (1988) pointed that OA may 
not show positive effect on plant growth and grain yield. It was also argued that OA occurs 
in root facilitates elongation of root growth at the onset of soil drying and in turn assist the 
root to penetrate deeper in search of resources thereby enable the plant to extract more soil 
water. Serraj & Sinclair (2002) found that plants with higher root penetration capacity is 
capable of sustaining plant growth and they suggested investigation on OA with focus on 
roots and root tips would elucidate the role of OA in practical breeding.  

2.4 Stay green  

Retention of greenness in leaves helps the plants to live longer and increase crop 
productivity; hence this trait is considered as one of the key determinants for developing 
drought resistance in rice (Fukai & Cooper, 1995). Genotype possessing stay green trait  
maintain high photosynthetic activity often protects the plants from premature senescence 
(Campos et al., 2004) during the onset of stress. It is reported that stay green plants 
assimilate more nitrogen and retain high level of nitrogen content in the leaf, thereby retains 
photosynthetic capacity under water limited conditions (Borrell et al., 2001). Further it 
enhances the transpiration efficiency and enable the plants to use more water to ensure 
continuous availability of new assimilate thereby increase the grain filling and size.  Studies 
have also shown that stay-green is positively associated with grain yield 

3. Functional genomic approach  

In the past decades, integration of physiological and biochemical studies on abiotic stresses 

have contributed extensively in identifying tolerance traits responsive to stresses (Richard, 

2000). Conventional breeding techniques attempted to utilize genetic variations of those 

traits from varietal germplasm; however the success is limited by: i) complexity of stress 

responses, ii) low genetic variation of yield component under stress condition and iii) lack of 

suitable selection technique (Ashraf, 2010; Cushman & Bohnert, 2000). Recently engineering 

of drought tolerance in plants is being pursued as viable option as it seems to be more 

attractive and rapid approach for breeding drought tolerance. Since transfer of functional 

genes that are directly involved in drought mechanism by genetic engineering is complex, 

the success of present engineering strategies rely on understanding of key gene network and 

regulatory control of biological processes associated with drought stress (Seki, et al., 2003; 

Shinozaki et al., 2003). Further, the advent of high throughput genomic platforms has 

facilitated increasing number of tools and resources for elucidation of abiotic stress 

responses in plants. Furthermore, large scale genome sequencing projects has generated a 
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number of sequence information from DNA microarrays, serial analysis of gene expression 

(SAGE), cDNA fragment sizing combined with amplified fragment length polymorphism 

(cDNA – AFLP), differential screening of cDNA libraries, expressed sequence tag (EST) 

sequencing, massive parallel signature sequencing (MPSS) etc., provides important clues for 

gene expression, functional characterization and identification of stress responsive genes 

(Bohnert et al., 2006, Parray et al., 2005; Umezawa et al., 2006). 

More recently several stress inducible novel putative genes have been identified from wide 
range of tissue specific for genetic engineering. Meanwhile, sequencing project also enabled 
the development of molecular markers such as RFLPs, RAPDs, CAPS, PCR indels, AFLP, 
microsatellite such as SSR and SNP that are closely linked to target loci and facilitated 
mapping of quantitative traits loci (QTLs) for agronomically important attributes under 
drought stress (Lafitte et al., 2004; Talame et al., 2004). Subsequently those markers were 
used for marker assisted selection (MAS), a powerful tool for indirect selection of complex 
traits at early stage. However the efficiency of MAS depends on the distance between 
observed QTL and marker loci and also the magnitude of additive variance explained by 
QTL (Blumwald, et al., 2004). Thus the key role of functional genomics is to deduce the 
biological function of gene and gene products through genomic approaches like genetic 
mapping, transcriptional profiling and proteomics.  

3.1 Quantitative trait loci (QTL) to dissect drought stress related traits 

Progress in genomic sequencing of rice has facilitated a range of approaches to identify 
molecular markers (Nguyen et al., 1997), which examines the inheritance pattern of QTL in 
response to drought stress. Further these markers explore chromosome regions controlling 
genetic variations of physiological traits and play a central role in construction of linkage 
map using QTL analysis. QTL mapping approach has successfully identified a number of 
genetic regions that are expected to be associated with drought response, such as plant 
height and flowering time (Ishimaru et al., 2004; Li et al., 2003), root architecture (Courtois et 
al., 2003; Kamoshita et al., 2002; Price et al., 2002c; Tuberosa et al., 2003; Venuprasad et al., 
2002; Zheng et al., 2003), root penetration (Johnson et al., 2000; Nguyen et al., 2004; Zheng et 
al., 2000), stay green phenotype (Jiang et al., 2004). OA, RWC and leaf rolling (Robin et al., 
2003; Zhang et al., 2001), LWP (Yan Ying et al., 2008), leaf drying (Lafitte et al., 2004), yield 
and yield component under drought stress (Babu et al., 2003; Bernier et al., 2008; Campos et 
al., 2004; Kamoshita et al., 2008; Kumar et al., 2007; Lafitte et al., 2004; Lanceras et al., 2004). 
Most of the mapping populations were derived from cross between upland japonica and 
low land indica cultivars (Courtois et al., 2003) under varying water regimes, further these 
studies identified the location of drought tolerant traits as well yield and yield components 
under stress on chromosomal regions. For example, Babu et al., (2003) documented the 
location of drought tolerant QTLs in rice in the regions of chromosome 1 (plant water 
status), chromosome 3 (biomass yield under stress), chromosome 4 (root morphological 
traits) and chromosome 9 (RWC and delayed flowering due to stress). Whereas another 
group (Lanceras et al., 2004) mapped physio-morphological traits and confirmed the region 
of QTL traits in chromosome 3 (Grain yield, biomass and delayed flowering), chromosome 4 
(grain yield) and chromosome 8 (biomass yield and spikelet sterility). In both the studies, 
the traits such as biomass, yield and yield components were found to be common and 
located at the same intervals on chromosome 3, 4 and 9.In another study, Bernier et al., 
(2007) while evaluating F3 progenies derived from a cross between two upland rice cultivars 
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under field trials for two years, identified a stable QTL for drought tolerance on 
chromosome 12 linked to grain yield, biomass production, harvest index, plant height and 
early flowering.  Wealth of information thus generated on QTL over last two decades helps 
to develop strategies for marker assisted selection (MAS) to screen drought tolerant strains 
at early stage of growth. Several studies have been conducted under both well watered and 
drought stressed conditions and a significant progress has been made during last few years 
in marker assisted selection (Jearakongman, 2005; Price et al., 2002c; Shen et al., 2001; Yue et 
al., 2005; Steel et al., 2006). One of the classic achievement of MAS is  the release of first ever 
highly drought tolerant Indian rice variety “Birsa Vikas Dhan III (PY,84)”, characterized by 
early maturity, good quality high grain yield (Steele, 2009). Though several putative loci for 
drought stress tolerance have been identified, the contribution of MAS to development of 
drought stress tolerant cultivars has been marginal. The effectiveness of MAS is challenged 
by  number of factors such as: i) accuracy and preciseness of phenotyping of traits, ii) very 
large genetic x environment interaction component wherein the QTL established in one 
environment often disappear in another and iii) poorly defined genetic architecture of 
polygene controlling yield (Ashraf, 2010; Cattivelli et al., 2008). 
The efficiency of MAS could be improved through map based cloning (MBC), where specific 

QTL is introgressed into sensitive cultivars through pyramiding, a process of combining 

several genes together into single genotype (Steele et al., 2006). To date most plant QTLs 

have been cloned by positional cloning approach using functional markers with a goal to 

identify candidate gene responsible for drought stress and to manipulate the target trait 

more directly. Most of the comprehensive physical map reported from the earlier studies 

covers a region of 35-64 cM resolution which may contain several hundred to few thousand 

genes, need to be fine mapped. High density genetic map using single nucleotide 

polymorphism (SNP) and other marker may precisely detect QTL genes associated with 

drought tolerance. Further, fine mapping of specific QTL regions could be achieved by 

developing near isogenic lines (Nguyen et al., 2004). However, identification and 

characterization of QTL genes involved in regulatory network is still remain challenging. 

3.2 Transcript profiling 

ESTs provide a direct approach for discovering genes in response to stress, with the advent 

of high throughput trancriptome studies, several ESTs have been generated from different 

cDNA libraries (viz., full length, normalized and subtracted) which offered a foundation in 

deciphering the role of regulatory network in stressed tissues derived at various 

developmental stages (Goff, 1999). Numerous putative genes respond to dehydration stress 

have been categorized by EST based gene expression profiling (Shinozaki et al., 2000; 

Yamaguchi – Shinozaki & Shinozaki, 2006). Some of these genes that are induced during 

stress protects the plant cell directly while the others involved in signaling cascades with 

diverse pathways, suggesting the complexity of the mechanism involved in sensing and 

responding to multifarious stresses (Bartels & Sunkar, 2005; Blumwald et al., 2004; Bray et 

al., 2000). Further, the plasticity of plant response to water limited conditions is governed by 

a number of transcription factors (TFs) which can modulates and regulates various stress 

inducible genes either independently or constitutively. More than 50 different TFs have been 

identified and characterized, are found to be member of large multigene families such as 

bZIP- (Martinez-Garcia et al., 1998), MYB (Jin & Martin, 1999), MYC, AP2/ERF (Riechmann, 

www.intechopen.com



 
Crop Production Technologies 

 

120 

& Meyerowitz., 1998) , NAC (Kikuchi et al., 2000) and WRKY (Dong et al.,  2003). Many 

genes that respond to multiple stresses are induced by abscisic acid (ABA); a phytohormone 

which acts as a key signaling intermediate in controlling the expression of stress related 

genes. A detail examination of ABA regulated genes has shown the presence of both ABA 

dependent / independent regulatory systems in ABA biosynthesis (Vinocur & Altmam, 

2005; Yamaguchi-Shinozaki & Shinozaki, 2005). Further, the transcriptional factors such as 

MYC and MYB function as activator in one of the ABA-dependent regulatory system, while 

a cis-acting element known as drought responsive element factor/ C-repeat (DREB/CRT) is 

involved in ABA-independent regulatory system (Shinozaki et al., 2000). Several 

experimental approaches on genomic analysis have reported different TFs that are 

associated with stress responsive gene induction are presented in Table 1. 

 

TF family 
Gene 

category 
Gene name Physiological response Reference 

AP2/ERF DREB1/CBF OstDREB1A Stomatal closure 
Ito et al., 2006;  Oh et al., 

2005; 
Xiao et al., 2009 

NAC SNAC AtSNAC1 Stomatal closure Rabbani et al., 2003 

bZIP AREB/ABF AtABF3 
Reduced leaf rolling and 

wilting 
Oh et al., 2005 

TFIII-A 
Zinc 

finger 
ZFP252 OsZFP252 

Proline and sugar 
accumulation 

Xu et al., 2008 

NF-Y 
(A, B, C) 

NF-YB 
AtNF-YB1 
ZmNF-YB2

High photosynthesis Nelson et al.,2007 

WRKY 
Zinc 

finger 
WRKY OsWRKY11

Reduced leaf wilting and 
slow water loss 

Wu et al., 2009 

EAR 
Zinc 

finger 
Zat10/STZ AtZat10 

High spikelet fertility and 
grain yield 

Xiao et al., 2009 

Table 1. Genome wide transcriptome analysis of drought response in rice 

To date, substantial amount of published works have examined the mechanism of plant 

response to various environmental changes and demonstrated that some transcription 

factors significantly overlaps with the expression of gene that are induced in response to 

different stress (Chen & Murata, 2008; Seki et al., 2001). Further, overexpression of one or 

more transcription factors confirmed the activation of TF regulons that modulate a wide 

range of signaling pathways in achieving tolerance under multiple stress conditions 

(Umezawa et al., 2006). For example, it enables the regulation of key enzymes in the 

biosynthesis of compatible solutes such as proline (Ito et al., 2006; Zhu et al., 1998), 

glycinebetaine (Quan et al., 2004), variety of sugars and sugar alcohol, viz., trehalose (Garg 

et al., 2002), manitol (Abebe et al., 2003), galactinol and raffinose. Transgenic rice plants 

produced by overexpression of transcription factors help to understand and manipulate the 
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responses of plant stress. Considerable progress has been made in developing transgenic 

rice strains that are tolerant to drought stress and the results are summarized in Table 2. 

 

Gene Gene action Phenotype Reference 

Adc 
Arginine decarboxylase 
(Polyamine synthesis) 

Drought resistance 
Capell et al., 
2004 

codA 
Choline oxidase 
(glycinebetaine 
synthesis) 

Recovery from a week long stress 
Mohanty et al., 
2003 

COX 
Choline oxidase 
(glycinebetaine 
synthesis) 

Stress tolerance Su et al., 2006 

HVA1 
Group 3LEA protein 
(late embryogenesis 
abundant) 

Dehydration avoidance and cell 
membrane stability 

Babu et al., 
2004 

OCPI1 

Chymotrypsin inhibitor 
like 1 
(proteinase inhibitor 
gene) 

Stress tolerance 
Huang et al., 
2007 

OsLE
A3-1 

LEA protein 
(late embryogenesis 
abundant) 

Drought resistance for yield in the 
field 

Xiao et al., 2007 

P5CS 
Pyrroline carboxylate 
synthase 
(proline synthesis 

Reduced oxidative stress under 
osmotic stress 

Hong et al., 
2000 

P5CS 
Pyrroline carboxylate 
synthase 
(proline synthesis) 

Increased biomass production 
under drought stress 

Zhu et al., 1998 

RWC3 
Aquaporin 
(water channel protein) 

Stress  response 
Huang et al., 
2007 

TPS 
Trehalose-6-phosphate 
synthase 
(Trehalose synthesis) 

Drought tolerance Jang et al., 2003 

TP 
Trehalose-6-
phosphatase  
(Trehalose synthesis) 

Drought tolerance Lee et al., 2003 

Table 2. Achievements made in overexpression of candidate genes through transgenic 
approach in rice 

3.3 Proteomics 

In general, abiotic stresses cause considerable dysfunction in proteins, proteomic 

approaches focused on protein changes in response to stresses and explore the functional 

network of protein. A global protein expression profile can be investigated using two 

dimensional polyacrylamide gel electrophoresis (2DE) technique coupled with protein 
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identification by mass spectrometry (MS). This  technique facilitated identification of new 

proteins of interest and elucidated the expression profile, post translational modification, 

interactions and de novo synthesis of proteins (Peck, 2005). Salekdeh et al., (2002) 

investigated the drought responsiveness using lowland indica (IR62266) and upland 

japonica (CT9993). They quantify nearly 1000 rice leaf proteins out of which 42 responded to 

stress. Similar such studies have identified several proteins based on its function and 

classified them into two groups. One group of proteins such as heat shock proteins (HSPs), 

late embryogenesis abundant protein (LEA), Dehydrin proteins, RuBisCo and reactive 

oxygen species (ROS) play a direct role in protecting the plant cells against stress by 

involving in osmotic adjustment, chaperon like activity and scavenging of reactive oxygen 

species. The second group of proteins are viz., mitogen activated protein kinase-MAPK and 

calcium-dependent protein kinases-CDPK (Ludwig et al., 2004), salt overlay sensitive-SOS 

kinases (Zhu, 2001), phospholipases (Frank et al., 2000) and transcriptional factors (Choi et 

al., 2000) are actively involved in signaling cascades and transcriptional control. 

Overexpression of signaling factors known to control a broad range of downstream events 

and has resulted in superior tolerance (Umezawa et al., 2006) 

Huge amount of data generated from proteomic studies provided useful information on 
individual enzymes and transporters that are involved in stress responsive network 
including protein modifications, interactions and de novo synthesis. Further the information 
would be helpful in developing biomarker for molecular cloning. However, the application 
of a proteomic approach at the whole cell level is limited by several factors such as protein 
abundance, size, hydrophobicity and other electrophoretic properties (Parker et al., 2006; 
Timperio et al., 2008). Moreover, low abundance proteins including regulatory proteins and 
rare membrane proteins are out of scope of most proteomic techniques, it is due to chemical 
heterogeneity of proteins associated with diverse functions within a cell. The limitation 
could be resolved using comprehensive protein extraction protocol for proteome analysis. 

4. Conclusion and future prospects 

The present review summarizes the achievements of breeding enhanced tolerance towards 
water deficit condition in rice. In early 1980’s large number of studies on drought stress have 
identified some morphological features such as strong root system, short stature plants, 
reduced leaf area and limited tillering ability were capable of maintaining high plant water 
status to enhance drought avoidance. Among those features, the most important is the root 
system as it ensures extraction of soil water from greater depth in upland regions and 
maintains high LWP during stress. While, in rainfed lowland regions, soil forms hard 
encrustation and inhibit root penetration when the available soil moisture is exhausted. The 
genotypes with dense and thick roots were suggested to improve selection efficiency. 
Further, physiological studies in the past have provided knowledge on complex network of 
drought stress related traits and suggested relevant drought related determinants such as 
WUE, osmotic potential, utilization of stem reserve, dry matter production, etc., that could 
be used to achieve high potential (Blum, 2005). 
Conventional breeding program effectively utilized those traits and achieved drought 
tolerance by generating reasonable number of cultivars. However, the program is limited by 
lack of appropriate screening technique. It is because drought stress can occur at any time of 
the developmental stage; starting from sowing to grain maturity. Generally it is widely 
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accepted that stress at reproductive phase is critical and deserves attention. However, 
genotypic response that contributes to drought stress avoidance/ tolerance is largely 
depends on the genetic mechanism of tolerance in the target environment (Fukai and 
cooper, 1995).  
With the advancement in biotechnological tool, the genetic basis of drought tolerance has 
received considerable attention. Gene governing quantitative traits were identified using a 
variety of molecular markers and their loci controlling drought tolerance were mapped on 
the chromosomal regions. Mapping of QTL has resulted in greater understanding of genetic 
phenomenon of drought tolerance traits. Despite the significant progress in cereal genomics, 
the QTL approach has not widely practiced in marker assisted breeding and still remains a 
major challenge. The efficiency of MAS is   hampered by the complexity of gene governing 
grain yield, epistatic interactions and epigenetic variation among QTLs. However, Tuberosa 
and Salvi (2006) opinioned that conscious selection of mapping population and careful 
introgression of specific alleles from genotype to other, through pyramiding could bring 
success to MAS. 
In the last decade, transgenic and functional genomic approaches offered a reliable promise 
in identifying stress responsive genes, pathways and deciphering the mechanism of stress 
tolerance. Further it enabled to solve several essential key questions associated with stress 
tolerance through gene expression profiling and engineering of tolerant traits. A large 
number of functionally characterized genes, transcriptional factors and promoters were 
introduced by such methods to enhance tolerance against abiotic stresses. Although several 
reports have highlighted the significance of this approach (Cattivelli, et al., 2008; Kamoshita 
et al., 2008; Umezawa et al., 2006; Vij and Tyagi, 2007; Yang et al., 2010), introgression of 
genomic portion often associated with undesirable agronomic traits and only very few field 
screening and genetic transformations have resulted in improved grain yield under drought 
condition. It is likely due to the fact that interaction between number of edaphic and climatic 
factors poses difficulty in screening of stress tolerance (Ashraf et al., 2008). Further it is 
anticipated that transcriptional regulation as well as post transcriptional gene plays a major 
role in determining the tolerance against various stress. Therefore while using functional 
genomics, it is important to consider the phenomenon of regulatory network including 
siRNA and miRNA to fine tune the expression of genes associated with stress responses 
(Yang et al., 2010). Indeed, the post genomic era has offered a great potential to increase the 
efficiency of breeding by determining the phenotype more precisely. Further, the challenge 
in stabilizing high yield under drought condition could be achieved in near future by 
integrating plant breeding with multidisciplinary approach based on plant physiology, 
functional genomics and by adapting comprehensive screening technique. 
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studies of special interest. The subject has been presented through fifteen chapters to clearly specify different

topics for convenience of the readers.
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