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1. Introduction  

Brassica napus (canola or oilseed rape) has emerged as an important cultivated oilseed crop 

species grown in temperate climates of both the northern and southern hemispheres. In 

2009, canola was sown to approximately 23.8 million hectares worldwide and production 

was approximately 53.3 million tonnes (FAOSTAT, 2011). The name “canola” identifies the 

“double low” oil and meal quality (low erucic acid content in the oil and low glucosinolate 

content in the meal) of the crop. Innovations such as herbicide resistance have enhanced the 

value of canola in weed management and crop rotations and improved its profitability. 

Further oil quality improvements have resulted in specialty canola varieties producing high 

oleic and low linolenic acid oils suitable for frying applications. However, one requirement 

that has persisted through the relatively short history of domestication of B. napus is the 

need for substantial improvement in shatter resistance to prevent significant seed loss 

especially under adverse harvest conditions. 

Dehiscence of siliqua due to external forces at or after maturity leads to siliqua shatter 
(Kadkol et al., 1986a). Siliqua shatter can occur both prior to harvest due to adverse weather 
conditions and at harvest due to impact from combine harvesters. Dehiscence of ripe, dry 
fruit is a natural process by which many plant species disperse their seed in order to survive 
and spread in the wild. Whilst this mechanism is advantageous in nature, siliqua dehiscence 
in agriculture results in significant yield loss. Moreover, the dehisced seed can persist in the 
soil up to 10 years in winter B. napus, giving rise to volunteer plants or weeds in subsequent 
crops (Pekrun et al., 1996; Gulden et al., 2003). Typically yield losses are in the range of 10%-
25% (Price et al. 1996). Seed losses of as much as 50% of expected yield have been reported 
when adverse climatic conditions delayed harvesting (MacLeod, 1981; Child & Evans, 1989). 
Current cultural practices to reduce siliqua shatter and to achieve better uniformity of 
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ripening for harvest include windrowing (or swathing) and spraying desiccants. However, 
both these practices add to the cost of production and reduce flexibility in farm operations 
(Kadkol, 2009). Increased inherent shatter resistance could provide an option to delay 
harvesting to allow more even maturing of seeds and decrease the incidence of chlorophyll 
contamination from immature seeds in extracted oil (Morgan et al., 1998). 

The fruits of Brassicaceae are botanically known as siliquae. Siliquae are derived from two 

carpels that form two locules separated by a thin, papery white replum. The fruit walls are 

valves that are attached to the replum forming a suture. The siliquae are attached to the 

raceme by a pedicel at the proximal end. At the distal end is the beak formed by the style 

(Fig 1). The suture is also known as dehiscence zone (DZ), where the valve margin is 

connected to the replum. Typically, a layer of thin parenchyma cells, that acts as a 

separation layer upon ripening, connects the valve margin to the replum. Dehiscence is 

usually initiated at the proximal end of the siliqua. 

 
Fig. 1. The main structural features of a Brassica napus seed siliqua (from Kadkol, 2009) 

Kadkol et al. (1986a) showed the presence of an abscission layer in the suture of siliquae of 

shatter susceptible Brassica napus and its absence in shatter-resistant Brassica rapa (Fig 2). 

They suggested that presence of an abscission layer is the basis of shatter susceptibility of B. 

napus. Differences in the vascular structure of siliquae and the width of the DZ has also been 

reported to be associated with variation for shatter resistance in a resynthesized B. napus 

line, ‘DK142’ in comparison with the shatter-susceptible winter B. napus line‘Apex’ (Child et 

al., 2003). The size of the main vascular bundle as it exited the valve and joined the vascular 

tissue of the replum was much larger in the resynthesized line.  

Picart and Morgan (1984) investigated the physiological processes implicated in the control 

of siliqua dehiscence such as autolysis of the cells (degradation of pectic material in the 

middle lamella) of the DZ, senescence of the siliqua wall, water loss from thin walled cells, 

development of tensions resulting from different rates of drying of non-lignified and 

lignified cells of the valve and breakage of the vascular bundles at the base of the siliqua at 

the pedicel end. However, a study using polarizing microscopy by Kadkol et al. (1986a) 

suggested that development of tensions in the siliqua due to differential drying is unlikely. 
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A number of possible factors involved in the expression of the siliqua shatter resistance 
include morphological, anatomical and biochemical aspects of siliqua development and 
physiology. It may even encompass biotic and abiotic stress factors (Kadkol et al., 1986a; 
Morgan et al., 1998; Morgan et al., 2003; Summers et al., 2003). A summary of siliqua and 
plant characters as well as other factors reported to be involved in siliqua shatter are 
presented in Table 1.  

 

Source of trait Trait Trait type Reference 

Siliqua Siliqua erectness  

Siliqua size, shape and weight 

 

Density of siliqua 

Pedicel length 

Lignification of the 

suture/dehiscence zone 

Lignification of the siliqua valves 

Size of main vascular bundle 

 

Size  of the dehiscence zone 

Enzymatic activity  

Hormonal activity 

Morphological Kadkol et al., 1984; Morgan et al., 2000 

Morphological Morgan et al., 2000; Squires et al., 2003; Dinneny 
and Yanofsky 2004 

Morphological Kadkol et al., 1984 

Morphological Morgan et al., 1998; Kadkol et al., 1984 

Anatomical 
 

Kadkol et al., 1986a 

Anatomical Morgan et al., 1998 

Anatomical Child et al., 2003; Kadkol et al., 1989; Morgan et al., 
1998 

Anatomical Child et al., 2003 

Biochemical Morgan et al., 1998; Child et al., 2003 

Biochemical Chauvaux et al., 1997; Child et al. 1998; Morgan et 
al., 1998 

Canopy 
structure 

Interaction between plants Morphological Bowman, 1984; Kadkol et al., 1989; Summers et al., 
2003  

Plant Stem thickness  

Uniformity of flowering 

Plant height  

 

Raceme structure  

Angle of the branches to the 

main stem 

Number of primary branches 

Morphological Morgan et al., 1998 

Physiological Chandler et al., 2005; Morgan et al., 1998 

Morphological Morgan et al., 1998; Morgan et al., 2000; Summers et 
al., 2003  

Physiological Child & Huttly, 1999; Summers et al., 2003 

Morphological
 

Kadkol et al., 1984; Child & Huttly, 1999 

Morphological Kadkol et al., 1984 

Abiotic 
factors 

Temperature 

Rain and drought 

Time of sowing 

Environmental Morgan et al., 2003; Summers et al., 2003 

Environmental Morgan et al., 2003; Summers et al., 2003 

Environmental Summers et al., 2003 

Biotic factors Pests e.g. siliqua midge, aphids 

Pathogens  e.g. alternaria 

Environmental Meakin & Roberts , 1991; Summers et al., 2003 

Environmental Morgan et al., 2003 

Table 1. Morphological, anatonomical, biochemical, physiological and environmental 
attributes implicated in siliqua shatter  

2. Biochemical and molecular mechanisms underlying shatter resistance  

Dehiscence of siliquae occurs as a result of highly coordinated and regulated events in growth 

and differentiation of the DZ and the degradation of the separation layer at ripening. This is 

due to triggering of enzymatic activity in DZ and cell separation predisposing siliqua to 

dehiscence from external forces. Several genes involved in growth and differentiation of the 

DZ have been identified and studied in Arabidopsis (e.g. Sorefan et al., 2009). 
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                                                           (a)                                                                                     (b) 

Fig. 2. Transverse sections (x120) of fresh siliquae of B. napus (2a) and B. rapa cv. DS17D (2b) 
through dehiscence zones, stained with phloroglucine (al = abscission layer, en = endocarp, 
me = mesocarp, ep = epicarp) (from Kadkol et al., 1986a) 

Many growth regulators such as abscicic acid (ABA), ethylene and auxin are well known for 
their role in abscission (Nemhauser et al., 2000; Ferrándiz, 2002; Sohlberg et al., 2006; Child 
et al., 1998; Meakin & Roberts, 1990b; Roberts et al., 2002). In Brassica, the role of an 
abscission cell layer in the siliquae dehiscence was first investigated by Kadkol et al. (1986a). 
Dehiscence is caused by the loss of cellular cohesion in the abscission layer, primarily 
attributable to the degradation of the middle lamella which appeared to result from an 
increased activity of hydrolytic enzyme cellulase leading to the cell separation process 
(Meakin & Roberts, 1990a; Meakin & Roberts, 1990b).  

Johnson-Flanagan and Spencer (1994) found a climacteric of seed-produced ethylene 
preceding the pre-desiccation phase of B. napus. The evidence for ethylene acting as a 
regulator of dehiscence is unclear but it could still be a trigger for cellulase activity in DZ. 
Child et al. (1998) observed a correlation between delayed shattering and reduced ethylene 
production. The suppression of ethylene production by the treatment of siliquae with 
amino-ethoxyvinylglycine (AVG) delayed siliqua shatter. However, Roberts et al. (2002) 
reported Arabidopsis mutants that have nonfunctional ethylene receptors still exhibit a 
normal time-course of siliqua dehiscence and that the elevation in the cellulase β-1,4-
glucanase in B. napus DZ occurs when the ethylene level in the siliqua is falling.  

The activity of hydrolytic enzymes including β-1,4-glucanase and polygalacturonase 

involved in cell separation in the DZ appears to be regulated by auxin (Coupe et al., 1993). 

Chauvaux et al. (1997) observed that a decrease in auxin content in the DZ just prior to 

moisture loss in siliquae was correlated with a tissue specific increase in β-1,4-glucanase 

activity and hence with siliqua dehiscence. Auxin appears to have the opposite effect to 

ethylene and negatively regulates β-1,4-glucanase. Sorefan et al. (2009) demonstrated that 

formation of a local auxin minimum is required for specification of the valve margin 

abscission layer in Arabidopsis where dehiscence takes place. Thus, a low level of auxin 
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seems to be a prerequisite for siliqua dehiscence and may allow for the induction of the 

activity of cell wall degrading enzymes. 

In addition to cellulase activity, dissolution of the middle lamella in the DZ is another 

important process leading to cell separation. Jenkins et al. (1996) and Petersen et al. (1996) 

cloned and characterised two DNA fragments, SAC66 and RDPG1 associated with an endo-

polygalacturonase (endo-PG). Both the DNA fragments related to a single Arabidopsis 

ortholog (called SAC70). Both transcriptional and post-translational control of PG activity 

has also been proposed (Roberts et al., 2002; Sander et al., 2001). However, in contrast to the 

activity of the cell wall degrading enzyme β-1,4-glucanase, polygalacturonase exhibits no 

correlation either temporally or spatially with siliqua dehiscence (Meakin & Roberts, 1990). 

This lack of siliqua DZ specificity of the endo-PG promoter has prevented the engineering of 

shatter resistance by silencing the endo-PG (Ostergaard et al., 2007). 

3. Methods for screening germplasm for shatter resistance  

Many of the early assessments used to evaluate siliqua shatter resistance have been based on 

imprecise, visual field observations (e.g., harvest yield and visual assessments) or manual 

tests (Table 2). These tests are somewhat subjective and are often not necessarily comparable 

due to the difference in maturity and moisture status of siliquae or differences in 

environmental conditions (Morgan et al., 1998). 

 

Approach Type Measure Reference 

Field 
observations 

Visual scoring Index Josefsson, 1968 

 Direct harvesting vs. 
windrowing 

Yield Josefsson, 1968 

 Number of volunteer plants 
after harvest 

Plants/area Josefsson, 1968 

 Seed counting after harvest % seed loss Josefsson, 1968 

 Count shattered siliquae % shattered siliquae Tomaszewski & 
Koczowska, 1971 

Mechanical 
test 

Compress plants between 
plates 

% shattered siliquae Jakubiec & 
Growchowski, 1963 

 Vibrate whole plants % shattered siliquae Voskerusa, 1971 

 Squeeze siliquae between 
fingers 

Index Tomaszewski & 
Koczowska 1971 

Anatomical 
test 

Size of sclerenchymatic bridges 
between valves and replum 

Thickness of 
sclerenchymatic bridge

Loof & Jonsson 1970 

Table 2. Early tests used to identify shatter resistance in Brassica species 

Kadkol et al. (1984) suggested that the methodology used to test siliqua shatter resistance 
should simulate shattering as it occurs in the field and during harvesting. They further 
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suggested that it would be most appropriate to test the siliqua as a cantilever because most 
external forces acting on the siliqua would load it at the distal end whilst it is attached to the 
plant at the proximal end. However, many of the mechanical tests (Table 3) including the 
random impact test do not achieve this requirement. Another requirement of testing 
procedures is that they should be low cost, fast and efficient. This criterion is not met by 
tests of the DZ that involve considerable preparation of the sample and subsequent technical 
demanding analysis. 

To date, several mechanical testing procedures have been employed to investigate shatter 
resistance (Table 3) which allowed for greater comparability, accuracy and repeatability 
across different lines and cultivars. Liu et al. (1994) developed a pendulum-based test (Fig 3) 
that was a further development from the quasi-static cantilever test developed by Kadkol et 
al. (1984). The use of a pendulum provided a dynamic cantilever test of the siliquae that 
simulates the natural process in the field and achieves rates of loading comparable to those 
in the field. Recently, Kadkol (2009) reported further refinements of computer software and 
the apparatus for the pendulum test (Fig 4) which have improved the efficiency of the 
process as a screening method for use in breeding. 

 

Name of the test Purpose Methodology Reference 

Manual bending 
test 

Evaluate shatter 
resistance  

Collected siliqua placed on flat surface 
with angles marked and with pedicel 
held firm. The siliqua is bent 
anticlockwise causing bending stress at 
which the angle is noted (this bending 
stress is similar to wind stress in field). 

Roy, 1982 

Cantilever test To measure the 
bending moment 
and energy 
required to cause 
siliqua fracture 

Siliqua is clamped at the pedicel end in a 
Universal Testing Machine. A steel wedge 
fixed to the load cell was used to load the 
siliqua as a cantilever, the applied force is 
recorded on the chart. Shatter resistance 
was defined as the bending moment at the 
peak of the force displacement graph. 
Another measure of shatter resistance was 
energy measured as the area under the 
curve up to the peak. 

Kadkol et 
al., 1984 

Microfracture 
test (MFT) 

To establish the 
contribution of 
the main vascular 
bundle of the 
valve to the 
amount of energy 
needed to 
separate the valve 
from the replum.  

Siliqua wall tissue is excised at the 
pedicel end of the valve or from the 
middle of the siliqua half-way between 
pedicel and the beak in order to isolate 
areas for testing that were ~1mm in 
length containing the septum and valve 
between which the DZ was intact. An L-
shaped steel device is raised by a 
Universal Test Machine until fracture 
occurred. 

Child et 
al., 2003 
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Siliqua twisting 
(applying 
torque) 

 
To determine the 
strength of the DZ 
by applying 
twisting force to 
the siliqua. Angle 
at which seed 
siliqua rupture 
occurs and the 
maximum torque 
required for 
siliqua rupture 

 
Torque applied under twist of 180° in a 
holder using an INSTRON device. 

 
Tys et al., 
2007 

 

‘Ripping’ 
method 

 

To quantitatively 
determine siliqua 
dehiscence 
strength at 2.5 cm 
from pedicel 

 

6 siliqua per variety kept at 25°C and 
50% RH for 2 weeks. A metallic thread 
laced around the siliqua 2.5 cm from 
pedicel and laced to the pedicel, siliqua 
glued to plate. An L-shaped probe of the 
texture analyser lifted thread and opened 
siliqua; probe recorded opening strength. 

 

Tan et al., 
2007 

 

Pendulum test 
 
 
 
 
 
 
 
 
Random Impact 
Test (RIT) 
 

 

To measure 
energy absorbed 
by the pendulum 
in siliqua 
rupturing process
 
 
 
 
Measure breaking 
response of 
siliqua by 
mimicking 
conditions in the 
crop canopy 
caused by 
agitation during 
harvest or caused 
by poor weather 
conditions, fit a 
model and 
estimate half life 
of sample 

 

Siliqua is clamped vertically by its stalk 
at the bottom dead centre of the 
pendulum swing. An optical encoder is 
used to measures the loss of pendulum 
movement upon striking and shattering 
the siliqua which provides an estimate of 
the energy absorbed by the siliqua. 
 
 
Equilibrate siliqua in atmosphere of 
constant relative humidity (50%) and 
temperature (105°C) to achieve constant 
weight; 20 siliqua per sample (2 
replications), Controlled agitation of 
sample in a receptacle (cylindrical of 
20cm diameter, axis vertical) containing 6 
steel balls (12.5mm diameter) and shaken 
in the horizontal plane, 17 seconds ; 
remove siliqua and classify them as 
shattered or intact. 

 

Kadkol et 
al., 1991; 
Liu et al., 
1994 
 
 
 
 
 
Bruce et al. 
(2002); 
Morgan et 
al. (1998; 
2003); 
Squires et 
al. (2003) 

Table 3. Recent attempts to evaluate siliqua shatter resistance. 
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Fig. 3. Arrangement and analysis of pendulum (from Liu et al., 1994).  

 

Fig. 4. The new pendulum machine for testing Brassica siliquae. 

Morgan et al. (2003) cited the random impact test (RIT) as a good overall measure to 

compare the relative susceptibility of lines. The RIT involves agitation of 20 siliquae with 

ball bearings for 20 s and counting the number of intact siliquae. This test does not simulate 

the process of shatter as it happens in the field. These authors also quoted the tensile 

strength test as a useful test which correlates well to the RIT and field scores of shatter. 

However, the test appears to involve considerable sample preparation and hence is 

unsuitable for application in breeding programs. Wang et al. (2007) compared the degree of 
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correlation between field data and results from pendulum test and RIT. Although it is 

difficult to accurately quantify harvest losses due to shatter in the field, in the study of 

Wang et al. (2007), RIT showed a lower level of association with field shatter than the 

pendulum test. 

Morphological characters associated with shatter are more difficult to quantify. Delayed 

harvesting restricts the accuracy and effectiveness in discriminating between small differences 

in shattering affected by climatic and other environmental factors such as bird damage.  

4. Genetic variation for shatter resistance  

Genetic variation for shatter resistance exists both within Brassica species including B. rapa 
L., B. juncea L., B. hirta L. and within wild relatives of Brassica (Kadkol et al., 1985; Wang et 
al., 2007). Although there is some variation in B. napus, the level of resistance available is 
generally considered inadequate to avoid windrowing of crops on a routine basis (Raman et 
al., 2011). There have been a small number of reports characterizing genetic variation for 
shatter resistance in Brassica in germplasm collections. Wen et al. (2008) investigated the 
siliqua shattering resistance index of 229 accessions (mostly of Chinese origin) of B. napus 
using RIT. Most of the accessions (59.4%) were very susceptible to siliqua shatter. However, 
there were two lines considered to be shatter resistant which could potentially be used as 
parents to develop new varieties for improved this trait. Peng-Fei et al. (2011) evaluated 220 
lines of B. napus for shatter resistance using ‘ripping’ method (Tan et al. 2007) and showed 
that ripping force ranged from 1.46N to 4.23N. The levels of pod strength reported in this 
study appear to be in general agreement with studies in Australia (Kadkol et al., 1984; 
Raman et al., 2011) indicating limited genetic variation in B. napus. Raman et al. (2011) 
evaluated 181 accessions of Brassica napus, one B. rapa, three B. juncea and two accessions of 
B. carinata, using a pendulum test (Kadkol, 2009) in two separate experiments. These 
accessions were collected from different parts of the world, representing contemporary 
cultivars and elite lines from Australian and international programs for shatter resistance. 
There was a moderate degree of correlation between the two sets of data. Siliqua strength 
(rupture energy - RE) values varied from 2.09 to 5.28 mJ and 2.34 to 5.58 mJ respectively, in 
the two experiments, indicating good correspondence between the two trials. These levels of 
RE are associated with intermediate shatter resistance which could prevent pod shatter in 
standing crops but insufficient to prevent harvest shatter (Kadkol, 2009). Genetic variation 
for higher levels of siliqua strength necessary for resistance to harvest shatter is present in B. 

rapa vars Yellow Sarson and Brown Sarson (Kadkol et al., 1984; Liu et al., 1994; Mongkolporn 
et al., 2003; Kadkol, 2009). Shatter resistance could be improved by introgressing the trait 
from these types and B. juncea (Kadkol 2009; Raman et al., 2011). 

5. Inheritance of shatter resistance  

Kadkol et al. (1986b) considered the genetic variation for shatter resistance within B. napus to 
be limited and studied inheritance of shatter resistance (measured as siliqua strength) in B. 
rapa in crosses between Brown Sarson (shatter resistant) and Torch (shatter susceptible) and 
Yellow Sarson (resistant) and Torch (susceptible). Segregation in the F2 generation indicated 
the presence of 2 to 3 recessive genes which showed dominant epistatic interaction 
controlling shatter resistance. Further genetic analysis in one cross (Torch x DS-17-D) 
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showed the presence of significant non-additive and additive genetic variances and a high 
broad sense heritability of shatter resistance (Kadkol et al., 1986c). The degree of dominance 
for shatter resistance was close to one supporting results from Mendelian analysis. In a 
subsequent study, Mongkolporn et al. (2003) confirmed a phenotypic segregation ratio of 
12:3:1 (susceptible: intermediate: resistant) in an F2 population derived from the Torch x DS-
17-D, which indicated two recessive major genes (sh1 and sh2) with dominant epistasis 
conferring the resistance. This supports the earlier findings of Kadkol et al. (1986b). 

Morgan et al. (2000) reported that shatter resistance in B. napus was recessive and mostly 
determined by additive genes. In their study, correlation of shatter resistance with 
important agronomic traits was low, suggesting that it would be feasible to introgress the 
shatter resistance trait into commercial breeding lines. They also noted the absence of 
genetic linkage of siliqua strength with other siliqua characters such as short/long siliqua or 
erect/horizontal siliqua. This suggested that it should also be possible to enhance shatter 
resistance by combining it these characters. Peng-Fei et al. (2011) investigated inheritance of 
shatter resistance in B. napus by mixed model analysis of parental lines, F1, BC1, RBC1 and F2 
generations. They showed that two genes with additive–dominance–epistatic effects plus 
polygenes with additive–dominance-epistatic effects control shatter resistance. The 
heritability of two major genes in the F2 and backcross generation ranged from 49.4% to 
50%, suggesting that significant genetic gain can be made through conventional breeding.  

Molecular studies of dehiscence zone specific mRNAs have led to isolation of genes which 
have been considered to be involved in production and regulation of enzymes involved in 
degeneration of the separation layer upon siliqua ripening (Coupe et al., 1993, 1994; Petersen 
et al., 1996; Whitelaw et al., 1999). In Arabidopsis, seed shattering is controlled by the several 
MADS-box and homeodomain genes. Screening of Arabidopsis enhancer or gene trap lines 
(Ferrándiz, 2002) identified genes involved in DZ differentiation. SHATTERPROOF (SHP1) 
and SHATTERPROOF (SHP2), previously called AGL1 and AGL5 respectively, are closely 
related MADS-box genes and are members of a monophyletic clade that also includes 
AGAMOUS and AGL11 control and promote DZ differentiation at the valve-replum 
boundary in Arabidopsis (Liljegren et al., 2000). The expression of shp1 and shp2 is regulated 
by AGAMOUS (Savidge et al., 1995), FRUITFULL (Ferrandiz et al., 2000) and REPLUMLESS 
genes (Roeder et al., 2003). Recently, SHP1 and SHP2 have been shown to play an important 
role in promoting stigma, style and medial tissue development (Colombo et al., 2010). 
Another indehiscent mutant gene, ALCATRAZ (ALC), corresponding to the bHLH 
transcription factor, has been isolated which is involved in the development of the 
abscission layer in the DZ and direct cell differentiation (Rajani & Sundaresan, 2001). Girin 
et al. (2010) reported that the REPLUMPNESS (RPL) gene which acts by limiting the 
expression of the valve margin identity genes; Shp-1 and Shp-2, INDEHISCENT and ALC to 
the narrow strips where wall margins will form. In the valves, the FRUITFULL gene is 
required for post-fertilization development and elongation of the fruit and it acts similarly 
to the RPL by repressing Shp1/Shp2 and IND gene activity.  

6. Breeding B. napus for shatter resistance  

Previous research on evaluation of B. napus germplasm have revealed that there is limited 
variation in siliqua shatter resistance among current cultivars (Bowman, 1984; Kadkol et al., 
1985; Downey & Röbbelen, 1989; Roberts et al., 2002). Ostergaard et al. (2007) ascribed this to 
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the narrow genetic base as a result of breeding focus on ‘double-low’ cultivars originated 
from two cultivars, Bronowski and Liho. Also, the recent studies of variation for shatter 
resistance in germplasm collections (Raman et al., 2011; Wen et al., 2008) support previous 
reports of a general lack of variation for high levels of shatter resistance in B. napus.  

Tolerance to field shattering has been developed in some Australian breeding programs by 
direct heading of breeding trials and plots as an indirect selection method for shatter 
resistance. Although the varieties from Australian programs have not been properly 
characterized for shatter resistance, there appears to be significant improvement in field 
shatter tolerance in new lines relative to older varieties (Kadkol, 2009; Hossain et al., 2011a). 
However, further improvement in shatter resistance is required to allow direct heading of 
commercial crops. The conventional approach to breed B. napus for higher levels of shatter 
resistance has been based on interspecific hybridisation or resynthesis of B. napus using 
shatter-resistant species from the triangle of U. This approach requires several cycles of 
breeding and selection to overcome chromosomal imbalances and consequent impairment 
of meiosis and improve fertility of the shatter-resistant segregants. Often, malformation of 
the siliqua on partly sterile plants results in high siliqua strength.  

Prakash and Chopra (1990) carried out interspecific hybridisation between B. juncea and B. 

napus and were able to isolate a reconstituted B. napus plant with complete nondehiscent 

fruits. This plant had normal meiosis and formed 19 bivalents. However, the seed fertility 

was very poor (23%) although pollen fertility appeared acceptable (84%) and this indicated 

significant chromosomal imbalances which might not have been apparent in meiosis 

studies. Agnihotri et al. (1990) attempted to transfer shatter resistance from Raphanus into B. 

napus using Raphanobrassica as the bridging material. This resulted in genetic material with 

variable fertility. In a Canadian study, lines derived from complex crosses made for 

development of yellow seeded B. napus showed better shatter resistance than standard 

Canadian B. napus varieties (Wang et al., 2007). Summers et al. (2003) resynthesised B. napus 

from crosses between B. oleracea var. alboglabra and B. rapa var. chinensis and developed 

DK142 that showed superior shatter resistance based on RIT assessments. However, the line 

turned out to have significantly lower levels of seed set relative to Apex, a commercial check 

variety. Recently, Banga et al. (2011) transferred shatter resistance from B. carinata to B. 

napus. Hybrid derivatives were characterized cytologically and further evaluated for shatter 

resistance using delayed harvesting. Anatomical analysis of shatter susceptible lines 

indicated the presence of DZ comprising thin-walled parenchymatous cell and showed 

dissolution in 40 days. Whilst shatter resistant genotypes displayed well defined DZ but 

remained intact and no sign of dissolution of cells or change that could lead to separation of 

siliquae valve margins from replum. The degree of improvement achieved in siliqua 

strength in this work is unclear.  

Interspecific hybridisation of B. napus with B. rapa var. Brown Sarson and var. Yellow Sarson 

(Kadkol et al., 1991; Hossain et al., 2011b) has provided promising initial results. Stable 

segregants with high levels of siliqua strength have been produced with potential to provide 

harvest shatter resistance. However, further work is required to fully characterise and assess 

the shatter-resistant selections for meiotic stability, seed set and agronomic traits.  

There have been a few reports of genetic transformation for improving shatter resistance in 
Brassicas. Chandler et al. (2005) over-expressed Sinapis alba MADSB gene, a close homologue 

www.intechopen.com



 
Plant Breeding 

 

324 

to FRUITFULL in Arabidopsis, using a transgenic approach in winter and summer oilseed 
rape plants. The expression of the MADSB transgene modified the dehiscence zone 
differentiation and produced indehiscent plants. Ostergaard et al. (2006) showed that 
ectopic expression of the Arabidopsis FRUITFULL gene in B. juncea is sufficient to produce 
shatter-resistant Brassica fruit and that the genetic pathway leading to valve margin 
specification is conserved between Arabidopsis and Brassica. Studies have shown that 
transgenic fruit produced this way were completely shatter-resistant and were too tough for 
a combine harvester to thrash (Ferrandiz et al., 2000; Vancanneyt et al., 2003; Ostergaard et 
al., 2006). This is possibly because of the loss of the basic siliqua structure with valves and 
sutures that facilitates siliqua rupture. Authors suggested that the use of mutated forms of 
FUL or RNAi techniques to inactivate valve margin identity genes will probably prove 
useful in the fine–tuning of the degree of shatter resistance. Although these studies have 
been unsuccessful in producing the correct anatomical phenotype, they demonstrate a 
genetic strategy that can be used for improving shatter resistance.  

6.1 Targeting Induced Local Lesions IN Genomes (TILLING) 

The TILLING approach has been utilized for a large number of plants such as in Arabidopsis, 
wheat, barley, maize, lotus and B. napus (Comai et al., 2004; Slade et al., 2005; Slade & Knauf, 
2005; Dreyer et al., 2007). The major advantage of this approach is the identification of 
mutants in target genes without genetic transformation. It allows the identification of single 
base-pair allelic variation in a target gene in a high throughput manner and may offer an 
alternative approach to identifying variation in shatter resistance among B. napus cultivars. 
Using this approach, Laga et al. (2011) achieved down-regulation of IND (indehiscent) gene 
which led to an indehiscence in B. napus, however, siliquae had a tube –like phenotype and 
did not rupture during mechanical harvesting obviously due to the loss of the valve and DZ 
structure similar to the transgenic canola discussed above. Use of a reverse genetics 
approach has produced an agronomically desirable phenotype that has optimal levels of 
seed shatter reduction. This study isolated and combined a set of mutant (null, weak and 
dominant negative) IND allele combinations that generated a range of seed shattering levels 
from natural shattering to pods that were shatter-resistant. Mutant plants displayed a range 
of reduction in shattering (5 to 15%) depending upon the combination of mutations used. 
This variation is being utilized for variety development. However, the method of screening 
for shatter resistance is unclear. 

6.2 Molecular marker assisted breeding for shatter resistance 

Identification of markers for shatter resistance in B. napus has not been reported extensively 

in the published literature due to lack of ‘useful’ variation for this trait in B. napus 

germplasm. Mongkolporn et al. (2003) utilized bulk segregant analysis (BSA) and identified 

three RAPD markers in an F2 population derived from Torch X DS17D. Two of these 

markers (RAC-3900 and RX-71000) were linked to the sh1 and sh2 major genes for shatter 

resistance. RAPD marker SAC-201300 showed a complete linkage with dominant alleles SH1 

and SH2 for shatter susceptibility. The authors suggested it is likely that the recessive alleles, 

sh1 and sh2, could have originated from independent mutations at two duplicate loci during 

the evolution of B. rapa. The marker linked to the dominant alleles can be used for marker-

assisted selection (MAS), once validated in genetically diverse backgrounds. Mongkolporn 
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et al. (2003) did not determine the chromosomal location of the loci associated with shatter 

resistance and this will require further research. 

Association mapping (AM) is a promising new strategy for identification of markers for 

shatter resistance. AM approach is based upon the principle that linkage disequilibrium is 

maintained between loci over many generations in a given gene pool. Association mapping 

has been used for discovery and validation of trait-marker associations identified in the 

classical quantitative trait loci (QTL) mapping for loci associated with blackleg resistance, 

flowering time, leaf traits, seed phytate content in rapeseed (Jestin et al., 2010; Raman et al., 

2010; Raman et al., 2011; Zhao et al., 2007). AM overcomes the major limitations of the QTL 

analysis that utilize bi-parental populations such as doubled haploids and recombinant 

inbred lines, as it surveys a large number of alleles at one locus and saves resources and 

time required to construct purpose designed ‘mapping and validation’ populations derived 

from structured biparental crosses. 

Association mapping was used by Raman et al. (2011) to identify loci for shatter resistance in 

188 genotypes of Brassica napus, B. rapa, B. juncea and B. carinata. These lines were phenotyped 

for siliqua strength using the pendulum method (Kadkol 2009). All accessions were genotyped 

with 1513 markers based upon Diversity Array Technology (DArT), Simple Sequence Repeats 

(SSR) and candidate genes that are reported to be involved in shatter resistance. Association 

analysis revealed that 150 markers were significantly associated (P<0.05) by the mixed linear 

model whereas the generalized linear model detected a total of 266 markers showing 

significant associations with rupture energy. Significantly associated markers were located on 

chromosomes A1, A2, A4, A6, A7, A8, A10, C2, C3, C5, C8 and C9. These results are consistent 

with the findings of a comprehensive transcriptome analysis of silique development and 

dehiscence in Arabidopsis and Brassica (Jaradat et al 2010). This study identified 131 cell wall 

related genes and 112 transcription factors that may be involved in silique dehiscence. Raman 

et al (2011) utilized markers that were largely based upon Diversity Array Technology. The 

majority of these markers have not been genetically mapped yet on the linkage maps of 

Brassica napus. It is possible that many DArT markers may be cosegregating and therefore map 

on the same loci. Previous studies have shown that B. napus genome has several chromosome 

rearrangements and therefore some of the DArT markers may represent to multiple copies of 

the same gene. Validation and fine mapping of these genomic regions, utilizing structured 

(doubled haploid or intercross) populations, will allow identification of candidate genes 

and/or their pathways associated with shatter resistance. The genes/QTLs identified in this 

work would mainly include loci that influence biochemical processes leading to formation of a 

separation layer in the DZ and its degradation at ripening.  

7. Conclusions  

Resistance to shatter is an important trait for B. napus improvement. It is a difficult trait to 

measure and breed into adapted germplasm and requires multiple years of selection and 

screening. To date, various breeding approaches have been attempted for improving shatter 

resistance of B. napus, mainly through interspecific hybridization or resynthesis of B. napus 

using shatter-resistant species from the triangle of U. In recent years, the power of high-

density genetic maps and candidate gene studies in Brassica crops have demonstrated that an 

understanding of the number of genes underpinning the trait and their mode(s) of inheritance 
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is important for further progress. In addition, an understanding of the potential of 

environment to impact on genetics is also required for the successful introduction of this trait 

into commercial oilseed rape. This information will greatly enhance breeding efficiency by 

identifying associated QTL or development and use of molecular markers for marker assisted 

selection. 

Field screening using delayed harvest and visual assessments has been widely used to 
evaluate pod shatter resistance. It still remains the simplest way to get an approximate 
understanding of the shatter susceptibility of a large subset of lines. However, such 
assessments may be somewhat unreliable due to large environmental influences and 
subjective due to the vague boundaries of the assessment criteria. The development of 
pendulum method and the associated software facilitating rapid tests of shatter resistance 
have made it possible to characterize large germplasm collections in an objective way. 

8. Future approaches in incorporating shatter resistance  

To date, various approaches have been attempted for improving shatter resistance of B. 
napus, including indirect selection in breeding programs by direct heading, interspecific 
hybridization and also transformation with genes from other species. Breeding and selection 
within the species has limited potential due to the low genetic variation for the trait but 
could still result in development of varieties that are tolerant to field shattering.  

To achieve higher levels of shatter resistance, it would be necessary to obtain siliqua 
strength levels that are available only in other species such as B. rapa and B. juncea. Although 
the reported attempts have generally not demonstrated complete success, interspecific 
hybridization could still achieve transfer of shatter resistance into B. napus combined with 
genetic stability, normal meiosis, and complete fertility together with absence of association 
with yield negative traits. The power of interspecific hybridization as a means of 
incorporating useful traits has been demonstrated in B. napus notably for blackleg resistance 
(Crouch et al., 1994) and yellow seed colour (Relf-Eckstein et al., 2007) but such work often 
needs a consistent, targeted breeding program over several generations after the initial 
isolation of the segregates to improve genetic stability and fertility. Molecular marker 
technology, such as marker assisted backcrossing would be very important for efficient 
development of shatter-resistant commercial cultivars upon achievement of successful 
incorporation of shatter resistance into B. napus. 

Genetic engineering offers a promising a alternative approach for developing shatter-
resistant B. napus in view of the advances in research on biology of shattering in Arabidopsis. 
However, shatter-resistant transgenics developed to date appear to have radically altered 
siliqua anatomy such that valve differentiation, DZ structure and consequently threshability 
are lost. Further research could develop mutations that retain valve differentiation and 
siliqua DZ structure whilst eliminating the separation layer similar to the anatomical 
phenotype of the Brown and Yellow Sarson varieties. 
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