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1. Introduction  

Reliable environmental monitoring strongly depends on the quality of chemical and 
biochemical sensors. There are still some unsolved problems especially when higher 
selectivity is required. In this chapter we propose a new class of materials – fluorescently 
labeled phospholipids, which can be used as chemical and biochemical sensors. We focus 
our attention on the most promising compound - head labeled with nitrobenzoxadiazole 
(NBD) phosphatidyl ethanolamines. We were the first to study these compounds in one 
component layers. Three new phenomena were discovered for this material that can be used 
for successful sensor applications. In our research we use the Langmuir and Blodgett 
method for investigation of organic monolayers at the air-water interface and for thin film 
deposition. It can also independently be used for environmental monitoring, e.g. water 
purity monitoring.   

2. The Langmuir and Blodgett method - Use of the Langmuir film method for 
measuring the quality of water in natural basins 

Probably the most promising method for the creation of supramolecular architectures in a 
well controlled manner is the method of Langmuir and Blodgett. This method is 
schematically described on Fig. 1. A trough, usually manufactured from well cleanable and 
inert material Teflon® (polytetrafluorethylene) is filled with ultra pure water. The organic 
substance to be investigated and deposited is spread from a solution. Molecules of the 
substance should be with the proper hydrophilic–hydrophobic balance so they remain at the 
air-water interface and do not penetrate the water. These molecules consist of a hydrophilic 
head group, which is attracted to the water and a hydrophobic tail (most often – 
hydrocarbon groups) which is repelled by the water. Some time is allowed for the solvent to 
evaporate until something like a 2D gas of the investigated molecules remains at the air-
water interface. This is called Langmuir film. After this a compression of the organic 
monolayer with a barrier is started. 
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Fig. 1. The Langmuir and Blodgett method for investigation of organic monolayers at the 

air-water interface (Langmuir films) and for thin film deposition.  

The surface pressure is constantly measured by a surface tensiometer (not shown on Fig. 1). 

A surface pressure – mean area per molecule isotherm can be measured. Additionally, the 

trough can be integrated with another instrument, e.g. fluorescence microscope and 

additional data can be gathered. At any point the compression of the monolayer can be 

stopped, the regime of constant surface pressure maintenance can be switched on, and a 

deposition on a solid substrate can be started. If we have a hydrophilic substrate which 

attracts the molecules’ heads and it is immersed in the water before the monolayer spread 

then on the first movement up the first monolayer is deposited. Now the substrate becomes 

hydrophobic because the hydrophobic molecular tails are on the surface and on a 

downward movement of the substrate a second layer is deposited. Again the substrate 

surface becomes hydrophilic and on a subsequent movement upwards a 3rd layer is 

deposited. And the layer by layer deposition can continue. This deposition method has the 

following advantages compared to alternative methods of thin film deposition like spin 

coating, vacuum evaporation and self-assembling: 
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• This is a discreet method of deposition, a complete layer after complete layer are 
deposited. This gives the possibility for a very precise control of the film thickness. 
Phospholipid molecules are with height of around 3 nm but also the tail chain length 
can be varied so a thickness control to 0,1 nm accuracy can be achieved. 

• The molecules are well oriented. This is very important for some applications, e.g. non-
linear optics. 

• The molecules are prearranged on the water surface before the deposition process. Thus 
the surface density of defects is much smaller. 

• This is the most suitable method for molecular architecture. Different layers can be from 
different molecules. Inside the layer mixture of different molecules can be used. There is 
a possibility for interface reactions (e.g. CdSe nanoparticles incorporated in the lipid 
matrix can be prepared in this way). Also absorption from the water subphase of e.g. 
proteins is possible. 

The development of rapid, economical and sensitive techniques for characterization of the 

purity of natural and drinking water represents leading ecological problem. The surface 

properties of natural waters (sampled from rivers, lakes and gulfs) are already successfully 

used for evaluation of the ecology standard and purity of water basins. Recently Pogorzelski 

et al. (e.g. Pogorzelski and Kogut, 2003 and references there in) proposed a Langmuir 

monolayer based technique which by measuring the surface pressure-area isotherm of the 

samples collected from a range of natural water basins, yields the so called “structural 

signatures” of water, which adequately predicted the quality and the purity of the basin. 

Major advantage of the Langmuir monolayer technique is that it combines ease of use, high 

sensitivity and possibility for rapid application with much lower price in comparison with 

the most commonly used chromatography techniques. 

The “structural signatures” of samples of natural water result from the generalized scaling 

procedures applied to the surface pressure-area isotherms of the natural films. They appear 

to reflect in a quantitative and sensitive way the film composition, film solubility and the 

miscibility of its components, the kinetic mobility of surfactant molecules, and the 

compound’s surface concentration. It is suggested that certain classes of film-forming 

components or “end-members” may dominate the static and dynamic surface properties. 

Variation in the surface rheological parameters of source-specific surfactants is postulated to 

reflect organic matter dynamics in natural waters. The reported results demonstrate that 

natural films are complex mixtures of biopolymeric molecules covering a wide range of 

solubilities, surface activities and molecular masses with a complex interfacial architecture.  

The natural water’s (sea, lakes, rivers) surface microlayer plays an important role in air-

water interactions. A certain fraction of dissolved organic matter in the water basins has 

surface-active properties and makes up a very reactive part of the organic matter (Druffel 

and Bauer, 2000). According to their surface-active properties, these substances accumulate 

at water interfaces thereby influencing gas, mass, momentum and energy transfer between 

the so modified interfaces. The intensity of the film-effect depends strongly on film surface 

concentration, composition, and viscoelastic properties of the surface microlayer films. 

Processes taking place in the water body bulk (biological event, organic matter 

transformation or degradation, anthropogenic effluents, etc.) are sources of surface-active 

substances. Surfactants are concentrated at the air–water interface by numerous physical 

processes including diffusion, turbulent mixing, bubble and particle transport, and 

convergent circulations driven by wind, tidal forces, and internal waves. 

www.intechopen.com



 
Relevant Perspectives in Global Environmental Change 

 

92

The composition of the natural water’s surface films is largely undefined, although 
significant enrichments of many specific classes of compounds in the surface microlayer 
have been demonstrated (for review, see Hunter and Liss, 1981). Natural sea/river/lake 
films mostly resemble layers composed of proteins, polysaccharides, humic-type materials 
and long chain alkanoic acid esters (Van Vleet and Williams, 1983). The generally accepted 
view is that the ubiquitous background of degraded biopolymeric and heterogeopolymeric 
material in the bulk waters has the potential to generate measurable surface films even in 
oligotrophic waters. Specific inputs of fresh bioexudates and biopolymeric material from 
local events are superimposed on this background signal.  
The emphasis in the published studies (Pogorzelski, 2001; Pogorzelski and Kogut, 2001 a, b; 

2003 a, b) has been on the multicomponent character of natural surfactant films and the 

consequent complexities involved in any attempt to predict the interfacial viscoelastic 

properties (playing a crucial role in modeling of physical systems with surface film-

mediated interfaces) due to the diverse chemical composition of such films. 

A complete compositional or structural description of naturally occurring surfactants is not 

currently feasible. 

Instead of analyzing the chemical composition, it should be possible to scale microlayer film 

surface pressure–area isotherms in terms of the structural parameters, reflecting the natural 

film morphology, and resulting from the generalized physical formalisms adopted to 

multicomponent surfactant films. Particularly efficient approach to scale the surface 

pressure (π) - area (A) isotherms of the microlayer films adsorbed on the surface of natural 

waters proved to be the fitting of the isotherms by the virial equation of state as proposed by 

Barger and Means (1985): 

  (1) 

where C0, C1, C2 are virial coefficients, and A is the film area (in cm2). 

As demonstrated by Pogorzelski, 2001; Pogorzelski and Kogut, 2001 a, b, 2003 a, b C1 can be 

interpreted as the limiting specific area occupied by the molecules in the film, and Co can be 

assumed equal to XnkT in the limiting case when π approaches zero: 

  
(2)

 

where the parameter X is related to the interaction forces between molecules in the 

monolayer, n is the number of molecules in the unknown film, k is the Boltzmann constant, 

T is the temperature in degrees Kelvin.  

The limiting specific molecular area Alim (in nm2) can be expressed as (Frew and Nelson, 

1992): 

  
(3) 

Since the area covered with a film of a pure substance at a constant value of k is directly 

proportional to the mass m on the surface, it is possible to extend this computation to all the 

natural films (Barger and Means, 1985). 

Similarly, fitting procedures can be applied to quantitatively analyze the hysteresis of 

natural water’s surface films when subjected to cyclic area compression/expansion, and also 

to describe the sample’s surface pressure–temperature isochores. 
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Thus it is possible to avoid the expensive, time consuming and cumbersome analysis of 

the chemical composition of natural waters, and instead to characterize the sample’s 

quality by the introduction of sensitive and much easier to obtain physicochemical 

“structural signatures” of the natural microlayer films. The structural state of natural 

water films, which can be incorporated with such source-specific markers of both biogenic 

and anthropogenic origin, can be assessed through the quantification of the parameters 

variability. They can be useful for tracking organic matter dynamics, as already 

established factors like the carbon to nitrogen C/N ratio (Bock and Frew, 1993), used in 

microlayer film studies, for instance. The main expectation of such studies is that 

variation in the surface rheological parameters of natural biosurfactant films manifested 

at the air–water interface could be followed to trace and map surface-active source-

specific compounds spatial-seasonal-temporal evolutions. 

Compared to the evaluation of the ecological quality of natural waters, the 

characterization of the purity of drinking water poses higher challenges as it requires 

precise identification of even trace amount of detrimental ingredients. Some compounds, 

like the ions of heavy metals or membrane-active molecules, can have profound 

detrimental effect on the consumers’ health even in very low doses that can not be 

detected by direct measurement of the sample’s surface pressure. More precision 

quantitative measuring techniques are needed. For the purpose of such demanding 

measurements we further advanced the monolayer technique by introducing the use of 

fluorescently labeled LB solid supported phospholipid films. This is because fluorescence 

in some molecules is highly sensitive to even most delicate environmental changes (like 

slight changes in ionic strength, presence of quenchers in trace concentrations, etc.) LB 

films from these materials have high potential to be used as sensitive, selective and fast 

chemical sensors. In this new class of compounds for sensor applications - fluorescently 

labeled lipids, fluorescence intensity and lifetime are strongly influenced by minimal 

amounts of tested substances. In the following chapter we look in greater detail to the 

most promising fluorescence label in this class of compounds – the NitroBenzoxaDiazole 

(NBD) label. Then, results from our research of NBD labeled phospholipids at the air-

water interface, as LB film on solid support, and molecular modeling are presented and 

discussed in view of sensor applications.  

3. Previous research of NBD fluorescently labeled lipids 

Synthesis, where to the polar head (to the amino group) of egg phosphatidylethanolamine 

(PE) covalently is bound the NBD chromophore was first described by Monti et al. (1978). 

Due to the use of egg phosphatidylethanolamine (PE) tail length varies. Solution of NBD-PE 

in ethanol shows absorption maxima at about 330 nm and 460 nm, and the fluorescence 

maximum is at 525 nm. Fluorescent intensity in ethanol is proportional to the concentration 

in the range of 1 ng/ml to about 3 µg/ml. This article studied the dependence of the 

intensity of absorption and fluorescence of NBD-PE to the change in dielectric constant of 

the solvent used. The observed strong sensitivity of the spectral characteristics of NBD-PE to 

the polarity of its surrounding makes this molecule an excellent indicator of conformational 

changes in the membrane. This article notes that small amounts of non-ionic detergent can 

lead to increase in fluorescence intensity and peak position change. Without problems is the 

incorporation of NBD phospholipid molecules in liposomes and biological membranes. For 
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the NBD chromophores the angle between absorption and emission dipole is about 25 ° 

(Thompson et al., 1984) and therefore the real environment of the chromophores may be 

different for absorption and emission. Overview of the spectral characteristics of NBD was 

made by Suzuki and Hiratsuka (1988). 
There are a large number of papers in which NBD labeled lipids are used especially as a 

small percentage additive in the biomembrane studies. Here we will review only the work 

related to the chemical sensor applications of these molecules. The presence of large 

paramagnetic metal ions can be monitored by the fluorescence quenching of the NBD 

chromophore. Morris et al., 1985 used cobalt ions to quench the fluorescence of NBD-PE 

incorporated in phospholipid liposomes. Large paramagnetic ions such as Co2+ efficiently 

quench the fluorescence. The mechanism that is suggested is of lateral diffusion of Co-lipid 

complex followed by collisional quenching with NBD-PE. The addition of the chelator 

EDTA restores the initial fluorescence to 90%. EDTA quenches itself about 10% of the 

fluorescence. Fluorescence is quenched in the outer layer of the liposomes within 

milliseconds after the addition of cobalt ions, then, if possible, it penetrates the inner layer. 

For small monolayer liposomes the process is 10-20 times slower, but in all cases completed 

in the first few seconds. This technique is used also for measuring the surface potential of 

the membrane. Another paramagnetic ion copper Cu2+ is also used for NBD fluorescence 

quenching (Rajarathnam et al., 1989). Chattopadhyay and London (1987) proposed a 

method for measuring the position of NBD chromophores in the biomembrane by 

quenching its fluorescence by spin-labeled in a different position phospholipids. A 

comparison of the fluorescence intensity is made when two located in different depths 

quenchers are used. Results show that the greatest distance from the center of the bilayer is 

for NBD chromophores in the molecules of the Dipalmitoyl-NBD-PE – 1,42 nm. This means 

that due to its strong hydrophilicity the NBD chromophore is folded to the hydrocarbon 

tails and is positioned on the border tail - head, which is 1,5 nm from the center of the 

bilayer. For 6-NBD-PC this distance is 1,22 nm, for 12-NBD-PC, this distance is 1,26 nm, i.e. 

the tail in which is the NBD chromophore is folded and goes to the water surface. In this 

paper is calculated the critical distance Rc, below which the fluorescence of NBD is 

effectively quenched by the spin-label – 1,2 nm. Calculations show that if fluorescence is 

quenched due to presence of acceptor this distance is 10% larger. 

Another important characteristic of the NBD chromophore that can be used in sensor 

applications is the dependence of its fluorescence lifetime on the polarity of the surrounding 

media. In general, reducing the polarity of the environment increases the lifetime. Lifetime 

of dilauroyl and dimiristoyl-NBD-PE in liposomes of egg lecithin is 6-8 ns (Arvinte et al., 

1986). Detailed analysis of the fluorescence lifetime characteristics of NBD-aminohexane 

acid (NBD-NH(CH2)5C02H) at low concentrations in solvents of different polarity and donor 

hydrogen connection strengths was conducted by Lin and Struve, 1991. This substance has 

aminoalkane side chain similar to chains in which NBD chromophore is conected to 

phospholipids and the results are comparable. The conclusions are that the line shift of 

absorption and luminescence is due to the polarity of the solvent, while the drop in 

luminescence intensity due to non radiation transitions is much more affected by the 

hydrogen connection strengths. Fluorescence lifetimes in aprotic solvents is from 7,37 ns in 

DMSO to 10,6 ns in ethyl acetate, but are shorter in alcohols (5,65 ns in methanol). Extremely 

fast is the NBD luminescence in water - 0,933 ns. Low quantum yield in water is explained 
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by anomalously short lifetime of non radiation transitions combined with radiation 

transitions which are with 3 times longer lifetime than those in other solvents. Oida et al., 

1993 developed the so-called Fluorescence Lifetime Imaging Microscopy (flimscopy) which 

uses DP-NBD-PE and rhodamine labeled lipids.  

Fluorescent transduction of changes in the structure of the lipid membranes shows 

properties necessary for biosensor applications. When connected with the substrate a 

single membrane associated "receptor" protein may affect a significant number of 

surrounding molecules via electrostatic interactions, spatial interactions, interface changes 

in ionic strength or pH. The result is that: 1) perturbation of the lipid layer that is caused 

by the interaction receptor - ligand can be qualitatively related to the degree of 

connectivity, and 2) have amplified the original signal after the interaction of 

biomolecules. Placing a "receptor" protein in the phospholipids layer, which simulate the 

biological membrane, and provides improved stability against denaturation of the 

protein, gives biosensors with improved operational life span. Mixed lipid monolayers 

containing small amounts of DP-NBD-PE were shown to be able to convert changes in pH 

due to the hydrolytic enzyme activity at the membrane interface. This conversion scheme 

is used to determine the acetylcholine by acetylcholinesteraze (Brennan et al., 1990) and 

urea by ureaze (Brennan et al., 1992, 1993). In these studies a small concentration (about 1 

mol %) of DP-NBD-PE and the respective enzyme are added in the phospholipid 

membrane. Changes in interface pH caused by hydrolytic enzyme reaction, lead to a 

change in the ionization of acidic phospholipid heads. This causes a change in the forces 

of electrostatic repulsion between neighboring heads. Structural changes in the membrane 

lead to an analytical signal in the form of change of fluorescence intensity due to 

fluorescence selfquenching of NBD-group caused by local increase in concentration. A 

comparison of different fluorophores connected to the same position of a protein showed 

that NBD-group gives the highest sensitivity (typically 4 times better than the next 

fluorophore (see Brennan et al., 2000 and references therein). 

From the viewpoint of sensor applications of DP-NBD-PE important is the optimization of: 

a) the concentration of DP-NBD-PE molecules in the membrane, and b) the composition and 

structure of the phospholipids membrane. This is done by the Krull’s group in Toronto 

(Brown et al., 1994 and Shrive et al., 1995). The results are applicable to both LB film layers 

and liposomes. Fluorescent measurements were performed on liposomes because the 

fluorescence signal from LB monolayers is weak and leads to significant errors. For the 

optimization process a model was developed for the fluorescence selfquenching of DP-

NBD-PE. It considers the probability for static quenching by the formation of emissionless 

traps consisting of pairs of statistical DP-NBD-PE molecules which are at critical distance Rc. 

The model also considers the dynamic quenching due to Förster transfer of energy from DP-

NBD-PE monomers to the traps. Assumptions in this model are: 1) statistical traps are 

formed according to two-dimensional equation of Perrin; 2) all DP-NBD-PE molecules that 

do not participate in the traps are uniformly distributed throughout the monolayer; 3) there 

is no diffusion during the lifetime of the excited state, 4) energy can move between and 

among fluorophores and traps, but once traps are reached energy immediately and without 

emission decreases; 5) passing of energy in more than one DP-NBD-PE molecule before 

reaching the trap is negligible. It is estimated that the distance at which the efficiency of 

Förster transfer of energy becomes 50% R0 = 2,55 nm and that Rc = 0,94 nm. The optimum 
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concentration of DP-NBD-PE molecules is one in which the theoretical expression 

undergoes a maximum change, i.e. the second derivative of the expression to the change in 

concentration is calculated. According to theoretical calculations, the optimal concentrations 

were 0,027 and 0,073 DP-NBD-PE molecules per nm2. These values were the same within the 

experimental error when comparing results of three different types of liposome 

compositions. 

Optimization of composition and structure of membrane phospholipids showed the need 

for structural heterogeneity in the membrane at microscopic and not at molecular level in 

order to produce significant changes in fluorescence intensity. In membranes without 

heterogeneity the signal change is only 5-6%. Heterogeneity is achieved by the mixing of 

dipalmitoyl phosphatidyl choline with dipalmitoyl phosphatidic acid at a ratio of 7:3. At 

surface pressure of 30 mN/m, which is considered the liposome pressure, this mixture 

gives domain structure as observed in Langmuir films by fluorescence microscopy. The 

resulting changes in the average fluorescence intensity on pH change in this case reaches 

60%. The mechanism of response of the membrane is shown to depend on the surface 

potential (Nikolelis et al., 1992) and is the result of changes in the ionic double layer and 

the rearrangement of the lipid heads and tails. This indicates that the mechanism of 

response in these biosensors is much more complicated than changing the distance 

between the heads. Moreover, the choice of phospholipid for these biosensors must be 

based on constraints coming from the ionic strength and pH, imposed on the activity of 

immobilized, chemically selective protein as enzyme activity is highly dependent on pH 

(Brennan et al., 1994). 

4. Investigations of monolayers at the air-water interface 

On Fig. 2 are shown the isotherms of head labeled Dipalmitoyl-NBD-PE (DP-NBD-PE, 

chemical formula is in Fig. 14) at three different temperatures and in the presence of cobalt 

ions in the water at 20° C. Along with these measurements the monolayer was studied with 

fluorescence microscopy. The results for 20° C are published and discussed in detail 

elsewhere (Ivanov, G.R. (1992)). This was the first time that fluorescence self quenching in 

organic monolayers at the air-water interface (Langmuir films) was described. Here on Fig. 3 

for the first time we publish the fluorescence microscopy data at 5° C. At room temperature 

the average area per molecule in the liquid phase is 1,4 nm2, and in the solid phase - 0,45 

nm2. Adding CoCl2 in the water increases the surface area of the molecule in the solid phase 

to 0,67 nm2. The addition of CaCl2 (not shown) leads to a smaller increase in the area in the 

solid phase - 0,56 nm2.  
The shape of the solid domains is due to an interplay of several forces: the growth kinetics 
which at these compression speeds is negligible; the edge energy at liquid phase – solid 
phase interface which is minimal for circular domains; and the electrostatic repulsion 
between the similarly oriented dipoles of the molecules which is minimized when the 
molecules are further apart. Due to the last force the domains repulse each other at low 
surface pressures and when the area of the solid domain is increased at higher pressures the 
domains obtain the dendridic shape which increases the distance between molecules. The 
fluorescence microscopy data at 5° C reveals also something that is not well observed at 
higher temperatures. The solid domains grow in size largely due to the attachment of 
smaller solid domains from the second population of solid domains.  
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Fig. 2. Isotherms of monolayers from DP-NBD-PE at 5° C, 20° C, 35° C and at 20° C with the 

presence CoCl2 in the water. 

The presented data here is for single component monolayers composed only from the 

fluorescently labeled in the head phospholipid DP-NBD-PE. The fact that we are able to 

observe the picture of phase coexistence with an excellent contrast is due to the fluorescence 

self quenching of this molecule in the solid phase when the distance between the molecules 

becomes much smaller and this allows for non radiation transfer of energy between them. 

This new phenomenon can be used with great success in sensor applications. If due to 

interactions of the sensor with the substance to be detected some conformational changes in 

the DP-NBD-PE molecules arise, this will lead to a strong measurable change in the 

fluorescence intensity. So this provides a second mechanism for component detection apart 

from the already discussed influence of the fluorescence peak maximum, intensity and 

lifetime on the polarity of the surrounding medium.  

On Fig. 4. is shown the equilibrium spreading pressure measurement of DP-NBD-PE at 20° 

C. In the first few seconds after placing some crystals from the material on the water surface 

the surface pressure increases insignificantly, then within a few seconds it increases by more 

than 15 mN/m. Then within a minute it reaches its equilibrium value of 19,6 mN/m. This 

value is quite high and indicates that at room temperature the majority of studies described 
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in this work were conducted under equilibrium conditions. This is not quite so with much of 

the work conducted with LB films. For example the most widely studied arachidic acid has 

an ESP of 0 at room temperature indicating that the molecules are in metastable state when 

deposited. 

 

 

Fig. 3. Fluorescence microscopy of monolayers at the air-water interface from DP-NBD-PE at 

5° C at different surface pressures Π: (A) Coexistence of liquid and solid phase at zero 

pressure; (B) the same at Π = 0,2 mN/m; (C) the occurrence of a second population of solid 

phase (the small black dots), which is repelled from the large solid domains Π = 6 mN/m; 

(D) the small solid phase domains overcome the repulsion of the big domains and begin  

to attach to them at Π = 9 mN/m; (E) large domains close the distance between them at  

Π = 12 mN/m; (F) domains of the solid phase obtain the dendridic shape and begin to 

merge with each other at Π = 15 mN/m. 
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Fig. 4. Measurement of the equilibrium spreading pressure (ESP) of DP-NBD-PE at 20° C. 

5. Investigations of deposited on solid support thin films using the LB 
method 

For the possible sensor applications of DP-NBD-PE molecule it is important to obtain quality 
deposition on solid support. Deposition of multilayer structures of phospholipids by the LB 
method is complicated. Usually when immersed for the second layer deposition the first one 
is thrown off back into the water probably due to the presence of residual water between the 
layer and the substrate. A similar phenomenon was observed in the case of DP-NBD-PE. A 
typical way to overcome this problem is to use extremely low deposition speed. So no water 
is entrapped and relatively high quality multilayer structures are obtained. The problem is 
that very few commercial instruments have such low deposition speeds and these speeds 
are not suitable for industrial applications. Therefore we proposed a new method of 
obtaining multilayer structures. In it, after each immersion the bilayer was blown with 
heated air for several minutes at 55°C, which is below the melting temperature of the 
monolayer. The deposition results are compared in Table. 1. The quality of the film, or more 
precisely the amount of transferred substance, is judged by two criteria. On one hand this is 
the transfer ratio (Tr), which ideally is 1. But its determination has large errors due to 
difficulties in maintaining a constant surface pressure, causing the barrier to move back and 
forth without much correlation with the deposited layer. Far more accurate method is the 
measurement of the optical absorption of the film. In it the area of the line of maximum 
absorption of DP-NBD-PE at 465 nm is integrated.  
Usually, in order to improve the LB film quality metal ions are added in the water subphase. 

With fatty acids good results are obtained when divalent ions of heavy metals such as Cd2+ 

are added but in our case this did not lead to good results. For phospholipids it is usually 

recommended the use of univalent metal ions. They bind to the negatively charged 

phosphate head of the phospholipid and neutralize the electrostatic repulsion between 

neighboring layers. With our molecules best results were obtained with the use of NaCl. 

Table. 1 shows that the use of thermal treatment of the film increases the transfer rate which 

means that more substance is deposited. Peeling off the film on the down substrate 

movement is greatly reduced, although almost always the transfer ratio on the down 
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movement is less than the coefficient in the upward movement of the substrate. The results 

of optical absorption also confirm that more substance is deposited when heat treatment is 

used. 

 

Deposition conditions Transfer ratios (Tr) for the corresponding layer Integral 
Absorp-

tion 

No Π 
(mN/m) 

Subphase Trl Tr2 Tr3 Tr4 Tr5 Tr6 Tr7 Tr8 Tr9 Tr10 Trll Tr 
average 

(a. u.) 

Gl 20 D.W./H. 3,2 0,4 2,1 -0,3 1,9 -0,5 1,7 -0,5 1,5 -0,6 1,5 1,40 0,45 

G2 31 D.W./H. 2,7 0,8 1,3 0,7 1,3 1,0 1,1 1,0 0,6 1,1 0,3 1,21 3,16 

G3 40 D.W./H. 2,1 0,1 0,7 0,4 1,1 0,7 1,0 0,6 0,7 0,7 0,7 0,70 2,56 

G4 43 D.W./H. 1,1 0,5 0,5 0,3 0,6 0,4 0,7 0,6 0,7 0,4 0,7 0,80 2,02 

G5 47 D.W. 1,3 1,4 1,1 0,9 1,1 0,9 1,9 0,9 1,3 0,9 0,9 1,67 - 

G6 31 CdCl2/H. 3,2 -4,8 4,8 -11,8 11,8 -11,0 11,7 -13,2 10,6 -10,0 9,2 0,35 0,74 

G7 31 KCl/H. 4,0 1,9 2,1 1,1 2,3 1,4 3,1 1,3 2,1 1,0 2,3 1,80 0,82 

G8 35 NaCl 2,3 -5,7 5,8 -5,6 5,4 -4,4 5,5 -3,7 4,0 -3,7 4,1 0,36 0,76 

G9 35 NaCl/H. 2,7 0,4 3,4 0,4 3,1 0,6 2,5 0,5 2,7 1,3 3,4 2,29 2,59 

Table 1. Transfer ratios (Tr) and integral absorption of LB films from DP-NBD-PE. H means 

heat treated, DW means distilled water. 

To examine the effect of thermal heat treatment on the morphology of the resulting LB films 

comparative optical microscopy studies of samples G8 and G9 were performed. They are 

deposited at the optimum surface pressure of 35 mN/m and in the presence of NaCl in the 

water subphase. The only difference is that in G9 each bilayer was heat treated. Results from 

the dark field and phase-contrast microscopies clearly showed that considerably more 

substance is deposited when heat treatment is used and the density of defects is significantly 

lower. However, a significant number of defects and distinct domain structures with 

dimensions of tens microns can be seen. 

Another way of assessing the quality of the deposition is to measure the mass of the 

deposited substance. This is done when the LB film is deposited directly on a quartz crystal 

resonator. We used a resonator operating at 10 MHz frequency. It should be noted that 

sensitivity depends on the square of the frequency of the resonator. This is one of the most 

promising methods for creating gas and biochemical sensors which directly measures the 

mass of the substance to be detected. The accuracy of the measured frequency shift is below 

0,1 Hz and the sensitivity of the method can be seen. It was possible to observe the water 

evaporation from the layer. In the middle of the resonator is evaporated a gold heater which 

can be used in chemical sensor applications for desorption of the absorbed studied 

substance. On the same resonator were sequentially deposited 21 layers, then frequency was 

measured, then 12 more layers were deposited and the frequency was measured, and finally 

6 more layers were deposited and frequency measured (Fig. 5). In the case of an ideal 

deposition the mass (evaluated from the frequency change) should lie on a straight line. In 

our case this occurs with a deviation of around 10% indicating a high quality deposition. 

During this deposition every bilayer was heat treated.  
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Fig. 5. Increase of the mass of 21, 33 and 39 LB monolayers from DP-NBD-PE measured with 
quartz resonator. 

To get an idea of the effect of heat treatment at molecular level polarization Fourier 
transformed infrared spectroscopy in attenuated total reflection mode of multilayer LB films 
deposited at 35 mN/m was conducted. The results are shown in Fig. 6. The bottom curve 
shows the spectrum of film obtained at very low deposition speed. The middle curve shows 
the same film heated for several minutes at 55 ° C. The upper curve shows the spectrum of 
 

 

Fig. 6. The influence of heat treatment on multilayer LB films from DP-NBD-PE on the 
infrared spectra. 

www.intechopen.com



 
Relevant Perspectives in Global Environmental Change 

 

102 

film obtained by high speed deposition and heat treatment of each bilayer during the 
deposition. The most important change is the significant broadening of the absorption lines 
at 1244 cm-1 (which is a mixture of lines Yw ǿН2 and Yw Ǿ=0) and especially at 1738 cm-1 
(which corresponds to the Ys C=0) when heat treatment is performed. Particularly 
noticeable is this broadening when each bilayer is heated. The broadening of these lines 
indicates greater spread in the orientation of the corresponding parts of the DP-NBD-PE 
molecule. This is an expected result when heat treatment is performed. 
Additional information about the molecular arrangement and orientation of the 

chromophore head may be obtained from polarized absorption spectroscopy in the visible 

region. Simple NBD-derivatives have three main lines of absorption in the visible and near 

UV region - at around 420 nm, at 306-360 nm, and 225 nm (Lancet and Pecht, 1977). The first 

line corresponds to the line of 460 nm for NBD-labeled lipids and is due to intramolecular 

charge transfer (Paprica et al., 1993), which is accompanied by a large (~ 4 Debye) change in 

dipole moment (Mukherjee et al., 1994). The line absorption at 306-360 nm (for NBD-lipids ~ 

335 nm) corresponds to a transition π*←π. Absorption spectra of NBD labeled lipids are 

shown in Fig. 7. The chloroform solution of a tail NBD labeled dipalmitoyl 

phosphatidylcholine has a maximum absorption at 475 nm. DP-NBD-PE in chloroform 

solution has a maximum at 457 nm. When deposited as LB film it has absorption maximum 

at 460 nm and a pronounced shoulder at 492 nm. This shoulder is probably due to J-

aggregation of molecules in which the optical dipoles are arranged like a brick wall 

(Czikklely et al., 1970 a, b). J-aggregates are characterized by red shift of the absorption 

spectrum by about 30 nm and therefore this is the most likely interpretation. The presence of 

a large percentage of J-aggregates in the condensed phase in which deposition was carried 

out, may explain the fluorescence quenching in the solid phase. 

 

 

Fig. 7. UV-VIS absorption spectra of: A – LB film from DP-NBD-PE deposited at 35 mN/m 

and NaCl in water; B – chlorophorm solution of dipalmytoyl phosphatidyl choline labeled 

in the tail with NBD; C – chlorophorm solution of DP-NBD-PE. 
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On Fig. 8 and Fig. 9 are shown the polarization absorption spectra of two samples of LB 
films from DP-NBD-PE with identical thickness. Both normal incidence of the beam and 
incidence at 45° angle is used (index 45) to the substrate. The beam polarization is either 
parallel to the direction of withdrawal of the substrate (index p) or perpendicular to it  
(index s). Results for the area integral under the curves are summarized in Table. 2. 
 

 

Fig. 8. Polarization spectroscopy of sample G5 - 11 LB layer structure of DP-NBD-PE 

deposited at Π=47 mN/m and fast withdrawal. A - p45; B - s; C - p; D - s45. 

 

 

Fig. 9. Polarization spectroscopy of sample G9 - 11 LB layer structure of DP-NBD-PE 

deposited at Π = 35 mN/m with heat treatment and the presence of NaCl in the water. A - 

s45; B - p45; C - s; D - p. 
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LB film p s р45 s45 

G5 10,38 11,39 4,06 2,17 

G9 1,93 2,27 2,55 3,35 

Table 2. Integral areas of the 460 nm line of the absorption spectra at different polarization of 
the incident light for 2 different 11 layer LB films from DP-NBD-PE. G5 and G9 are the same 
films from Table 1. G9 was heat treated during the deposition. 

From the polarization data it is seen that in both cases the optical dipoles of the molecules 

orient themselves with a slight advantage in the direction perpendicular to the direction of 

withdrawal (s component is larger than p component). From the data in table. 2 order 

parameter for the molecules <cos2 θ> can be calculated. The value for G5 film is 0.48. If the 

arrangement is perfect the value should be 1. We can see the weak ordering of molecules or 

more precisely of their chromophore heads. 
Fluorescence spectrum of LB multilayer structure of DP-NBD-PE deposited on a glass 
substrate in the solid phase was compared with the spectrum in chloroform solution in Fig. 
10. Excitation was at the maximum absorption at 465 nm. About five-fold decrease in the 
fluorescence in the solid phase can be seen. When deposition is carried out in the liquid 
phase below surface pressure of 8 mN/m fluorescence is similar to that in a solution. In 
solid phase deposition the fluorescence quenching is almost complete. This is not due to 
reduced absorption, as absorption is increased by 10% in the solid phase deposited film. 
Interestingly, the addition of cobalt ions in the water subphase leads to almost complete 
recovery of fluorescence to its level in the solution (line not shown). This can be used in 
chemical sensors for heavy metal detection. 
 

 

Fig. 10. Fluorescence spectroscopy of DP-NBD-PE of an LB film deposited in a solid phase 
(lower 2 curves) and in a solution. The spectra of an LB film deposited in a liquid phase is 
similar to the spectrum in solution.  

An important question in view of sensor applications are the mechanisms of fluorescence 
selfquenching in NBD-labeled lipids. There is a similar study for octadecyl-rhodamine 
molecule (MacDonald, 1990), commonly used in Resonance Energy Transfer (RET) studies 
with NBD-molecules. The most obvious possibility for a mechanism to quench the 
fluorescence is the collision between an excited molecule and a quencher molecule. For this 
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process is important the local concentration of fluorescently labeled molecules in the liquid 
phase. Calculations show that for collisions to occur with molecules with diffusion rate of 10 
µm2/s and fluorescence lifetime of 4 ns then the distance between them must be less than 0.3 
nm. And such small distance is impossible for molecules with 2 tails in a liquid phase, even 
assuming an increase in local concentration. In monolayers that undergo phase transition 
liquid - solid state diffusion rate decreases more than three orders of magnitude: from 50 
µm2/s to 0,03 µm2/s (Peters and Beck, 1983). Fluorescence lifetime of dilauroil and 
dimiristoil NBD-PE in liposomes of egg lecithin is 6-8 ns (Arvinte et al., 1986). Thus, in the 
liquid phase diffusion during the excited state of the DP-NBD-PE is about 3 nm and in solid 
phase it is only about 0,02 nm. From the isotherm of DP-NBD-PE (Fig. 2) it can be seen that 
at room temperature the average area per molecule in the solid phase is 0,45 nm, and in 
liquid phase is 1,4 nm. Upon an assumption of cylindrical adjacent tightly packed molecules 
the distances between the centers of molecules in liquid phase is 1,33 nm and 0,78 nm in the 
solid phase. Obviously the collisional quenching mechanism of fluorescence is not 
applicable in solid phase. However, it is not clear why there was no significant fluorescence 
quenching in the liquid phase. The answer probably lies in the observation of Lin and 
Struve (1991) for extremely fast fluorescence lifetime of the NBD chromophore in water - 
0,933 ns. Indeed, at the air-water interface the NBD-group in DP-NBD-PE molecule is 
positioned entirely in the water as shown by molecular conformational modeling (see Fig. 
14). Another possible explanation is the dependence of the lifetime on the concentration of 
DP-NBD-PE (Brown et al., 1994). At all concentrations the lifetime is a two exponent 
function and the average ranged from 8,66 ns at 0,1% concentration; 5,39 ns at 10%; 1,32 ns 
at 40%; 0,97 ns at 50%. At 100% concentration (we work with films composed only from this 
molecule) the lifetime will probably be even smaller. The above mentioned distances 
between molecules in the liquid phase are several times larger than the distance which an 
excited molecule can diffuse for these small lifetimes. This explains why there is no 
fluorescence quenching in the liquid phase.  
Therefore, as a possible mechanism for fluorescence quenching remains energy transfer. For 
octadecyl-rhodamine molecule the distance at which energy transfer to monomer or dimer 
of the same molecule is 50% (Förster radius) is 5,5-5,8 nm for a transfer to monomer and 2,7 
nm for a transfer to dimer. This calculation is done using a formula that takes into account 
the spectral overlap of the excitation and emission spectra for a given molecule. For NBD-
molecules the Förster radius R0 is 2,55 ± 0,15 nm (Brown et at., 1994) . Research that shows 
anomalous long distance energy transfer (Draxler et al., 1989; Fromhertz and Reinbold, 
1988) should also be taken into account. In LB films, they observed 20% efficiency of energy 
transfer over distances of 150 nm. Depending on mutual orientation of molecules, this 
distance may decrease to 30 nm. If the molecules, among which energy transfer takes place 
are different, then the lifetime of the donor molecule should increase with increasing its 
concentration. But in the case of octadecyl-rhodamine it decreases. Therefore, the basic 
mechanism of fluorescence quenching in octadecyl-rhodamine is emissionless energy 
transfer to the dimers of the same molecules. This lipid associated fluorescence label forms 
pre-bonded dimers. However this mechanism does not explain why fluorescence quenching 
in DP-NBD-PE molecules occurs only in the solid phase. 
As a most probable reason for the fluorescence quenching for DP-NBD-PE a model was 
developed that takes into account the likelihood of static quenching by forming emissionless 
traps consisting of pairs of statistical DP-NBD-PE molecules that are at critical distance Rc 
for trap formation (Brown et al., 1994; Shrive et al., 1995). Calculations give a value for Rc of 
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0,94 nm for this molecule. This value is greater than the intermolecular distances in solid 
phase layers of DP-NBD-PE and less than the distances in the liquid phase at room 
temperature. The addition of cobalt ions leads to increased intermolecular distances of up to 
0,93 nm, which may explain the recovery of fluorescence intensity of the solid phase in 
presence of this ion which is known as good fluorescence quencher. Thus, this model 
explains fluorescence quenching in the solid phase, the lack of quenching in the liquid phase 
and the recovery of fluorescence in the solid phase with the addition of cobalt ions in the 
water. Given the anomalous long-distance energy transfer, observed in LB films (Draxler et 
al., 1989; Fromhertz and Reinbold, 1988) it is clear that critical is the formation of traps, 
which is precisely what we observed. 
In order to have a better understanding of the morphology of the LB films with 

submicrometer resolution we performed Atomic Force Microscopy (AFM) measurements. 

Fig. 11 shows AFM images with cross-sections along selected lines. On Fig. 11 A deposition 

was carried out at 7 mN/m, slightly above the transition from liquid to solid phase. The 

liquid – solid phase coexistence is clearly seen. Cross section through one of the solid 

domains reveals cylindrical structure with a height of 5,8 nm and a width of several tens of 

nanometers. Taking into account the height of the monolayer (3,1 nm), these structures can 

be interpreted as a bilayer in the solid phase. These structures are observed systematically in 

all our experiments. They occur above the main liquid-solid phase transition. Deposition in 

the liquid phase (Fig. 12) showed that there are no structures outside of the normal silicon 

wafer bumps of less than 0,5 nm in the monolayer. 

Cylindrical structures with bilayer height are observed also when the depositions are 

carried under the equilibrium spreading pressure of 19,6 mN/m (see Fig. 4). If the 

deposition at higher pressures is carried out these cylinders grow in height initially up to 13 

nm for deposition at 33 mN/m (Fig. 11 B) and grow up to 35 nm, and in some cases to a 

hundred nanometers at 43 mN/m (Fig. 11 C). However, if the monolayer is allowed to relax 

under normal laboratory conditions for some time (50 days in this case), those cylinders 

again become with bilayer height (Fig. 11 D). 

These three-dimensional cylinders can not be obtained due to the deposition process and/or 

interactions with the substrate because their height depends on the deposition pressure. 

Layering in the vertical direction of the DP-NBD-PE molecule can be observed in these high 

structures, suggesting that the cylinders are made of DP-NBD-PE molecules rather than 

impurities. The question remains why it is energetically more favorable for part of the 

molecules to accumulate on one another and not to attach to the adjacent solid phase. 

Possible answer is that this can be due to kinetic effects if we are compressing the layer or 

depositing at higher speeds. Against this explanation is the lack of such structures in the 

liquid phase deposition under the same conditions (Fig. 12). Furthermore, our previous data 

from fluorescent microscopy at the air-water interface does not show the presence of kinetic 

effects at these speeds. Against this explanation is the fact that high structures relax to 

bilayer cylinders with time (Fig. 11 D). Data from Stark spectroscopy measurements show 

that DP-NBD-PE molecules tend to form centrosymmetrical non-polar structures. Thus for 

the second layer in the bilayer structures the molecules most probably flip over and we have 

a tail – tail contact. This is the first time that such 3D structures are observed when 

deposition is carried below the ESP. These structures are stable over time at least for several 

months. Their presence is very important for sensor applications because they ensure 

simultaneously high contact area and low film thickness. Thus high sensitivity at fast 
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reaction times can be achieved (no slow diffusion needed). These self assembled 3D 

structures are part of our efforts in the hybrid assembly approach which combines the self-

assembly technology with high performance robotic tools such as precise manipulators with 

submicron resolution and mechatronic handling (Kostadinov, 2010; Dantchev and 

Kostadinov, 2006). 

 

 

Fig. 11. AFM pictures and crosssections of LB monolayers from DP-NBD-PE deposited from 

pure water at 200 C and surface pressures of: (A) 7 mN/m; (B) 33 mN/m; (C) 43 mN/m; (D) 

33 mN/m 50 days after the deposition. 
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Fig. 12. AFM pictures and crosssection (left at a level of 1,04 nm) of LB monolayers from DP-
NBD-PE deposited from pure water at 200 C and surface pressures of 3,7 mN/m. Scan size is 
5 µm.  

6. Molecular modelling of the DP-NBD-PE molecule at simulated air-water 
interface 

In order to get a better understanding of the 3 newly discovered phenomena in LB films 

from DP-NBD-PE we have performed molecular conformational analysis at simulated air-

water interface. The two most probable conformations from this analysis are shown on Fig. 

14 and their characteristics are summarized in Table. 3. 

 

Conformation Height [nm] phi - pho distance
 ∆ [nm] 

Area per molecule –
single molecule [nm2]

Area per molecule – 
in a monolayer [nm2] 

A – liquid phase 2,31 0,938 1,18 0,81 

B – solid phase 3,25 1,396 - 0,69 

Table 3. Characteristics of the two most probable conformations for the DP-NBD-PE 

molecule at the air-water interface. The conformation in the solid phase is obtained only 

when interactions with surrounding molecules are taken into account. 

The solid phase conformation A data correspond very well to the experimental data from 

the previous paragraphs. The average area per molecule is 0.66 nm2 if the isotherm from Fig. 

2 is extrapolated to zero surface pressure, which almost coincides with the measured value 

of 0,69 nm2. The height of the molecule measured with different methods (including small 

angle X-ray diffraction) is 3,1 nm, which taking into account for some interdigitation of tails 

in the LB multilayer structure, matches the obtained here value of 3,25 nm. Also the 

predictions from the measurements of molecular orientation from polarized FTIR data are 

fulfilled. Particularly impressive is that the benzene ring is indeed perpendicular to the 

substrate. 

The liquid phase conformation in Fig. 13 A corresponds to the liquid film of DP-NBD-PE 
provided that the tails are even flatter and not in all-trans conformation. Indeed, the area per 
molecule in the liquid phase at zero pressure is about 2 nm, which is more than the 0,81 nm 
predicted by our model. Also AFM measurements showed a difference in height between 
the liquid and solid phase of about 1,6 nm. If the height of the molecule in the solid phase of 
3,1 nm then for the height of the molecule in liquid phase remains 1,5 nm, which is less than 
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the 2,31 nm in our model. So the assumption of greater tilting of the tails, leading to a lower 
height of the molecule and larger area is fully justified. Scanning surface potential 
microscopy measurements show that there is a big difference in the surface potential of the 
monolayer in liquid and in solid phase, most likely due to the different orientation of the 
strong dipole in the NBD-group. Indeed, the orientation of this group for the conformations 
on Fig. 14 show an angle of almost 90 ° between them, which may explain these results. In 
the liquid phase conformation A just over half of the chromophores are above the air-water 
interface, while the NBD group in the solid phase conformation B is deeply immersed in the 
water. The difference in dielectric constants of the environment in both cases leads to 
different fluorescence quenching by the water and may explain some phenomena observed 
by the fluorescence microscopy. 
 

  

 

Fig. 13. The most probable conformations of DP-NBD-PE obtained from molecular 
conformational analysis. (A) The conformation in the liquid phase; (B) the conformation in 
the solid phase. Also shown are the hydrophilic (phi) and hydrophobic (pho) centers. The 
line that connects them is the phi-pho distance ∆ in Table 3. The chemical formula of the 
compound is shown below. 
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The hydrophilic-hydrophobic balance Ф for DP-NBD-PE was calculated to be 0,55. The 
distance ∆ between the hydrophilic and hydrophobic center in the liquid phase 
conformation was 0,938 nm, while in the solid phase conformation it is 1,396 nm. According 
to the classification of Brasseur, 1990 (vol. 1, p. 210) both conformations fall in the zone with 
Ф > 0,2 and ∆ > 0,43, which is characteristic of molecules that can self assemble in organized 
structures. Another prediction of Brasseur is that due to the large difference in ∆ of the two 
conformations at the molecular level they can not mix and have to form two phases. Exactly 
this is what we observe in our experiments and there is coexistence between liquid and solid 
phase and well seen phase separated domains. 

7. Conclusions 

We were the first to start investigating systematically films at air-water interface and on 
solid support from fluorescently NBD-labeled phospholipids. Previous research has shown 
that this is the most promising fluorophore label for sensor applications. In our 
investigations we use the most advanced method for preparing supramolecular 
architectures from organic molecules – the method of Langmuir-Blodgett film deposition 
and research. This is a true nanotechnology process. 
Over the years we have discovered 3 new phenomena in these molecules which make them 
a promising candidate for chemical and biochemical sensor applications when fast response 
times, high sensitivity and selectivity are required. We were the first to observe fluorescence 
self quenching in insoluble monolayers at the air-water interface. Self quenching not only 
drastically decreases fluorescence intensity but also leads to a decrease in fluorescence 
kinetics times by an easily measurable change of over 30 %. Thus we have 2 independent 
channels to discriminate the effect in a sensor application. This phenomenon was 
understood in terms of molecular conformational change which leads to more dense 
molecular packing in the solid phase and radiationless energy transfer between the closely 
spaced molecular heads. So any change in the molecular environment which leads to this 
conformational change can be easily detected. 
The second new phenomenon describes the influence of heavy metals on fluorescent 
intensity in this type of molecules. Usually large paramagnetic metal atoms are strong 
fluorescence quenchers. But when they are dissolved in the water subphase during the 
deposition process the opposite effect was observed – the fluorescence intensity was 
increased. This was explained by the fact that these large atoms effectively increase 
intermolecular distances in the head of the molecules where they attach and thus decrease 
the fluorescence self quenching described above. This effect can be used for heavy metal 
detection. 
The third new phenomenon describes the possibility to deposit monolayers at some special 
conditions in which there is not only coexistence of solid and liquid phase but higher, 
bilayer or tens of nanometer high cylinders are deposited. This structure was very stable at 
least within several months period. It allows a much greater contact surface between the 
fluorescence molecules and the substances to be detected. Thus, high sensitivity sensors can 
be obtained without increasing their thickness. When the thickness is small so are the 
diffusion lengths which limit the sensor reaction time. Thus, very fast sensors with high 
sensitivity can be obtained. The possibility to mix selectively reacting proteins in this flexible 
phospholipid matrix can provide an unmatched selectivity. These properties are very 
important for environmental monitoring. 
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