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Mathematical Modelling of Dynamics of  
Boiler Surfaces Heated Convectively  

Wiesław Zima 
Cracow University of Technology 

Poland 

1. Introduction 

In order to increase the efficiency of electrical power production, steam parameters, namely 

pressure and temperature, are increased. Changes in the superheated steam and feed water 

temperatures in boiler operation are also caused by changes in the heat transfer conditions 

on the combustion gases side. When the waterwalls of the furnace chamber undergo 

slagging up, the combustion gases temperature at the furnace chamber outlet increases, and 

the superheaters and economizers take more heat. In order to maintain the same 

temperature of the superheated steam at the outlet, the flow of injected water must be 

increased. Upon cleaning the superheater using ash blowers, the heat flux taken by the 

superheater also increases, which in turn changes the coolant mass flow. Changes of the 

superheated steam and feed water temperatures caused by switching off some burners or 

coal pulverizers or by varying the net calorific value of the supplied coal may also be 

significant. Precise modelling of superheater dynamics to improve the quality of control of 

the superheated steam temperature is therefore essential. Designing the mathematical 

model describing superheater dynamics is also very important from the point of view of 

digital control of the superheated steam temperature. A crucial condition for its proper 

control is setting up a precise numerical model of the superheater which, based on the 

measured inlet and outlet steam temperature at the given stage, would provide fast and 

accurate determination of the water mass flow to the injection attemperator. Such a 

mathematical model fulfils the role of a process “observer”, significantly improving the 

quality of process control (Zima, 2003, 2006). The transient processes of heat and flow 

occurring in superheaters and economizers are complex and highly nonlinear. That 

complexity is caused by the high values of temperature and pressure, the cross-parallel or 

cross-counter-flow of the fluids, the large heat transfer surfaces (ranging from several 

hundred to several thousand square metres), the necessity of taking into account the 

increasing fouling of these surfaces on the combustion gases side, and the resulting change 

in heat transfer conditions. The task is even more difficult when several heated surfaces are 

located in parallel in one combustion gas duct, an arrangement which is applied quite often. 

Nonlinearity results mainly from the dependency of the thermo-physical properties of the 

working fluids and the separating walls on the pressure and temperature or on the 

temperature only. Assumption of constancy of these properties reduces the problem to 

steady state analysis. Diagnosis of heat flow processes in power engineering is generally 
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based on stabilized temperature conditions. This is due to the absence of mathematical 

models that apply to big power units under transient thermal conditions (Krzyżanowski & 

Głuch, 2004). The existing attempts to model steam superheaters and economizers are based 

on greatly simplified one-dimensional models or models with lumped parameters 

(Chakraborty & Chakraborty, 2002; Enns, 1962; Lu, 1999; Mohan et al., 2003). Shirakawa 

presents a dynamic simulation tool that facilitates plant and control system design of 

thermal power plants (Shirakawa, 2006). Object-oriented modelling techniques are used to 

model individual plant components. Power plant components can also be modelled using a 

modified neural network structure (Mohammadzaheri et al., 2009). In the paper by Bojić and 

Dragićević a linear programming model has been developed to optimize the performance 

and to find the optimal size of heating surfaces  of a steam boiler (Bojić & Dragićević, 2006). 

In this chapter a new mathematical method for modelling transient processes in 

convectively heated surfaces of boilers is proposed. It considers the superheater or 

economizer model as one with distributed parameters. The method makes it possible to 

model transient heat transfer processes even in the case of fluids differing considerably in 

their thermal inertias. 

2. Description of the proposed model 

Real superheaters and economizers are three-dimensional objects. The basic assumptions of 

the proposed model refer to the parameters of the working fluids. It was assumed that there 

are no changes in combustion gases flow and temperature in the arbitrary cross-section of 

the given superheater or economizer stage (Dechamps, 1995). The same applies to steam and 

feed water. When the real heat exchanger is operating in cross-counter-flow or cross-

parallel-flow and has more than four tube rows, its one-dimensional model (double pipe 

heat exchanger), represented by Fig. 1, can be based on counter-flow or parallel-flow only 

(Hausen, 1976). In the proposed model, which has distributed parameters, the computations 

are carried out in the direction of the heated fluid flow in one tube. The tube is equal in size 

to those installed in the existing object and is placed, in the calculation model, centrally in a 

larger externally insulated tube of assumed zero wall thickness (Fig. 1). The cross-section Acg 

of the combustion gases flow results, in the computation model, from dividing the total free 

cross-section of combustion gases flow by the number of tubes. The mass flows of the 

working fluids are also related to a single tube.  

A precise mathematical model of a superheater, based on solving equations describing the 
laws of mass, momentum, and energy conservation, is presented in (Zima, 2001, 2003, 2004, 
2006). The model makes it possible to determine the spatio-temporal distributions of the 
mass flow, pressure, and enthalpy of steam in the on-line mode. This chapter presents a 
model based solely on the energy equation, omitting the mass and momentum conservation 
equations. Such a model results in fewer final equations and a simpler form. Their solution 
is thereby reached faster. The short time taken by the computations (within a few seconds) is 
very important from the perspective of digital temperature control of superheated steam. In 
the papers by Zima that control method was presented for the first time (Zima, 2003, 2004, 
2006). In this case the mathematical model fulfils the role of a process “observer”, 
significantly improving the quality of process control. The omission of the mass and 
momentum balance equations does not generate errors in the computations and does not 
constitute a limitation of the method. The history of superheated steam mass flow is not a 
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rapidly changing one. Also taking into consideration the low density of the steam, it is 
possible to neglect the variation of steam mass existing in the superheater. Feed water mass 
flow also does not change rapidly. Moreover the water is an incompressible medium. The 
results of the proposed method are very similar to results obtained using equations 
describing the laws of mass, momentum, and energy conservation (Zima, 2001, 2004). 
The suggested in this chapter 1D model is proposed for modelling the operation of 

superheaters and economizers considering time-dependent boundary conditions. It is based 

on the implicit finite-difference method in an iterative scheme (Zima, 2007). 

 

 

Fig. 1. Analysed control volume of double-pipe heat exchanger 

Every equation presented in this section is based on the geometry shown in Fig. 1 and refers 

to one tube of the heated fluid. The Cartesian coordinate system is used.  

The proposed model shows the same transient behaviour as the existing superheater or 

economizer if: 

a. the steam or feed water tube has the same inside and outside diameter, the same length, 
and the same mass as the real one 

b. all the thermo-physical properties of the fluids and the material of the separating walls 
are computed in real time 

c. the time-spatial distributions of heat transfer coefficients are computed in the on-line 
mode, considering the actual tube pitches and cross-flow of the combustion gases 

d. the appropriate free cross-sectional area for the combustion gases flow is assumed in 
the model: 

 
 2 2

1,

4

in ocg t
cg

d dA
A

n

 
   (1) 

e. mass flow of the heated fluid is given by: 

 tm
m

n


  (2) 
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f. mass flow of the combustion gases is given by: 

 
,cg t

cg

m
m

n



 . (3) 

In the above equations: 
Acg, t  – total free cross-section of combustion gases flow, m2, 

,cg tm   – total combustion gases mass flow, kg/s, 

tm   – total heated fluid mass flow, kg/s, 

n  – number of tubes. 

The temperature  of the separating wall is determined from the equation of transient heat 

conduction: 

      1
w w wc rk

t r r r

            
, (4) 

where: 
cw  – specific heat of the tube wall material, J/(kg K), 
kw  – thermal conductivity of the tube wall material, W/(mK), 

w  – density of the tube wall material, kg/m3. 
In order to obtain greater accuracy of the results, the wall is divided into two control 

volumes. This division makes it possible to determine the temperature on both surfaces of 

the separating wall, namely cg at the combustion gases side and h at the heated medium 

side (Fig. 2). 

 

 

Fig. 2. Tube wall divided into two control volumes 

After some transformations, the following formulae are obtained from Equation 4: 

    
 

   
2 2

2
m in

m in h
w h w h w w

r r r r

r r
c rk rk

t r r

      
 

               
, (5) 

      
   

2 2

2
o m

o m cg
w cg w cg w w

r r r r

r r
c rk rk

t r r

      
 

               
. (6) 

Taking into consideration the boundary conditions: 
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      
in

in

w r r h
r r

k h T h T
r

  



   


, (7) 

    
m

cg h
w w m

o inr r

k k
r r r

  





 
, (8) 

      
o

o

w cg cg cg cg cgr r
r r

k h T h T
r

  



   


, (9) 

where: 
h and hcg – heat transfer coefficients at the sides of heated fluid and combustion gases, 
respectively, W/(m2K), 
the following ordinary differential equations are obtained: 

    d

d
h

cg h hB C T
t

       , (10) 

    d

d

cg
cg cg h cgD T E

t


      . (11) 

In the above equations: 

 
       

, , , ,
2 2

cg hm w m in o in
m m

h w h w h w h w h w h

d k d d h d
B d C

A c g A c

   
     


     

   
cg o

cg w cg w cg

h d
D

A c



  
 , 

 
   

 2 2

, ,
4

m inm w m
h

cg w cg w cg w

d dd k
E A

A c g

 

  


   and 

 2 2

4

o m

cg

d d
A

 
 . 

The transient temperatures of the combustion gases and heated fluid are evaluated 
iteratively, using relations derived from the equations of energy balance. In these equations, 
the change in time of the total energy in the control volume, the flux of energy entering and 
exiting the control volume, and the heat flux transferred to it through its surface are taken 
into consideration. 
The energy balance equations take the following forms (Fig. 1): 
- combustion gases 

      cg
cg cg cg cg cg cg cg cg cg cg o cg cg

z z z

T
zA c T T m i m i h d z T

t
  



         
  

  , (12) 

- feed water or steam 

      , , in h
z z z

T
zAc T p T p m i m i h d z T

t
  




     


  , (13) 

where: 
i – specific enthalpy, J/kg, 
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p – pressure, Pa, 

2 2
1

4
in o

cg

d d
A

 
 , and 

2

4
ind

A


 . 

After rearranging and assuming that Δt → 0 and Δz → 0, the following equations are 
obtained from (12) and (13), respectively: 

  cg cg
cg cg

T T
F G T

t z


 
   

 
, (14) 

  h

T T
H J T

t z
 

   
 

. (15) 

In the above equations: 

       
, ,

,

cg cg o

cg cg cg cg cg cg cg cg

m h d m
F G H

A T pA T A c T T


 

  
 

 and 
   , ,

inh d
J

Ac T p T p




 . 

The sign “+” in Equations (12) and (14) refers to counter-flow, and the sign “ – ” to parallel-
flow. The implicit finite-difference method is proposed to solve the system of Equations (10) 
to (11) and (14) to (15). The time derivatives are replaced by a forward difference scheme, 
whereas the dimensional derivatives are replaced by the backward difference scheme in the 
case of parallel-flow and the forward difference scheme in the case of counter-flow. 
After some transformations the following formulae are obtained: 

 , , ,

1t t t t t t t
h j h j j cg j

C B
T

K t K K
      


,        j = 1, ..., M; (16) 

 , , , ,

1t t t t t t t
cg j cg j cg j h j

D E
T

L t L L
      


,        j = 1, ..., M; (17) 

 
, , , 1 ,

1t t t t t t t
cg j cg j cg j cg j

F G
T T T

P t P z P
  

  
 

, (18) 

 
1 ,

1t t t t t t t
j j j h j

H J
T T T

Q t Q z Q
  

  
 

,         j = 2, ..., M; (19) 

where:  
M – number of cross-sections, 

1 1 1
, ,

F
K B C L D E P G

t t t z
        
   

, and 
1 H

Q J
t z

  
 

. 

In Equation (18), j = 2, . . . , M for parallel-flow (sign “−”) and j = 1, . . . , M −1 for counter-
flow (sign “+”).  
Considering the small temperature drop on the thickness of the wall (≈ 3–4 K), Equation (4) 
can also be solved assuming only one control volume. The result will be a formula 
determining only the mean temperature  of a wall (Fig. 2). 
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In this case, after some transformations, Equation (4) takes the following form: 

    
 

   
2 2

2
o in

o in

w w w w

r r r r

r r
c rk rk

t r r

      
 

               
. (20) 

Taking into consideration the boundary conditions described by Equations (7) and (9), the 
following ordinary differential equation is obtained: 

    d

d
cgU T V T

t

      . (21) 

Replacing the time derivative by the forward difference scheme, after rearranging we 
obtain: 

 ,

1t t t t t t t
j j cg j j

U V
T T

W t W W
     


, (22) 

where: 

       
, ,

2

cg o in o in
m

w w w m w w w m

h d hd d d
U V d

c g d c g d     


    and 
1

W U V
t

  


. 

The suggested method is also suitable for modelling the dynamics of several surfaces heated 
convectively, often placed in parallel in a single gas pass of the boiler. 
As an example of these surfaces it was assumed that the feed water heater and superheater 
are located in parallel in such a gas pass (Fig. 3). Additionally, the flow of combustion gases 
is in parallel-flow with feed water and simultaneously in counter-flow to steam. 
The equation of transient heat conduction (Equation 4) takes the following forms (the walls 
of steam and feed water pipes are divided into two control volumes): 
- wall of steam pipe 

    
 

   
2 2

1 1 1
1 1 1 1

2
m in

m in s
w s w s w w

r r r r

r r
c rk rk

t r r

      
 

               
, (23) 

      
   

2 2
1 1 1

1 1 1 1
2

o m

o m cg
w cg w cg w w

r r r r

r r
c rk rk

t r r

      
 

               
, (24) 

- wall of economizer pipe 

      
   

2 2

2 2
2 2 2 2 2

2 2 2 2
2

m in

m in fw
w fw w fw w w

r r r r

r r
c rk rk

t r r

      
 

               
, (25) 

      
   

2 2

2 2
2 2 2 2 2

2 2 2 2
2

o m

o m cg
w cg w cg w w

r r r r

r r
c rk rk

t r r

      
 

               
. (26) 
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Fig. 3. Analysed control volume of several surfaces heated convectively, placed in parallel in 
a single gas pass 

Substituting the appropriate boundary conditions, the following differential equations are 
obtained after some transformations: 

    1
1 1 1 1 1

d

d
s

cg s s sB C T
t


      , (27) 

    1
1 1 1 1 1

d

d

cg
cg cg s cgD T E

t


      , (28) 

    2
1 2 2 1 2

d

d

fw
cg fw fw fwF G T

t


      , (29) 

    2
1 2 1 2 2

d

d

cg
cg cg fw cgH T J

t


      . (30) 
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In the above equations: 

 
           

1
1 1 1

1 1 1 1 1 1 1 1 1

, , ,
cg ow m m s in

s w s w s w s w s w s cg w cg w cg

h dk d h d
B C D

A c g A c A c

  
        

    

 
   

 
       

21 2 2
1 1 1

1 1 1 2 2 2 2 2 2

, , ,
fw inw m m w m m

cg w cg w cg w fw w fw w fw w fw w fw w fw

h dk d k d
E F G

A c g A c g A c

   

        
    

   
 

   
2 1 12 2

1 1 1

2 2 2 2 2 2

, , ,
2

cg o s cgw m m
m

cg w cg w cg cg w cg w cg w

h d k d
H J

A c A c g

   


     


    

   2 2 2 2
2 2 2 2

2 2 1 1, , , , ,
2 2 2 4 4

m in o mfw cg in o in o
m m m s cg

d d d dd d d d
d d A A

  


   
    

 2 2
2 2

2 ,
4

m in

fw

d d
A

 
  and 

 2 2
2 2

2
4

o m

cg

d d
A

 
 . 

The energy balance equations take the following forms (Fig. 3): 
- combustion gases 

 
   
   1 2 2

cg
cg cg cg cg cg cg cg cg cg

z z z

cg o cg cg cg o cg cg

T
zA c T T m i m i

t

h d z T h d z T



   



  


     

 
 (31) 

- steam 

      1, , s
s s s s s s s s s s s s in s s

z z z

T
zA c T p T p m i m i h d z T

t
  




     


  , (32) 

- feed water 

      2 2, ,
fw

fw fw fw fw fw fw fw fw fw fw fw fw in fw fw
z z z

T
zA c T p T p m i m i h d z T

t
  




     


  , (33) 

where:  

2 2 2 2
1 2 ,

4 4 4 4
in o o in

cg s

d d d d
A A

    
     

 
,  and 

2
2 .

4
in

fw

d
A


  

After rearranging and assuming that t0 and z0, the following formulae were obtained 
(from Equations (31)–(33), respectively): 

    1 1 1 2 1
cg cg

cg cg cg cg

T T
K T L T P

t z
 

 
    

 
, (34) 
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  1 1 1
s s

s s

T T
Q T R

t z


 
  

 
, (35) 

  1 2 1
fw fw

fw fw

T T
S T U

t z


 
  

 
, (36) 

where: 

           
2

1 1 1 1, , , ,
,

cg o cg o cg s

s s s scg cg cg cg cg cg cg cg cg cg cg cg cg

h d h d m m
K L P R

A T pA c T T A c T T A T

 

  
   

 
 

       
2

1 1, ,
, , , ,

fw ins in

s s s s s s s fw fw fw fw fw fw fw

h dh d
Q S

A c T p T p A c T p T p


 

  and 
 1 .

,

fw

fw fw fw fw

m
U

A T p



 

To solve the system of Equations (27) to (30) and (34) to (36) the implicit finite-difference 
method was used. After some transformations the following dependencies were obtained: 

 1 1
1 , 1 , 1 , ,

1t t t t t t t
s j s j cg j s j

B C
T

V t V V
      


,     j = 1, ..., M; (37) 

 1 1
1 , 1 , , 1 ,

1 1 1

1t t t t t t t
cg j cg j cg j s j

D E
T

V t V V
      


,     j = 1, ..., M; (38) 

 1 1
2 , 2 , 2 , ,

1t t t t t t t
fw j fw j cg j fw j

F G
T

W t W W
      


,     j = 1, ..., M; (39) 

 1 1
2 , 2 , , 2 ,

1 1 1

1t t t t t t t
cg j cg j cg j fw j

H J
T

W t W W
      


,     j = 1, ..., M; (40) 

 1 1 1
, , 1 , 2 , , 1

1 1 1 1

1t t t t t t t t t
cg j cg j cg j cg j cg j

K L P
T T T

X t X X X z
    

   
 

,     j = 2, ..., M; (41) 

 1 1
, , 1 , , 1

1 1 1

1t t t t t t t
s j s j s j s j

Q R
T T T

Y t Y Y z
  

  
 

,     j = 1, ..., M-1; (42) 

 1 1
, , 2 , , 1

1 1 1

1t t t t t t t
fw j fw j fw j fw j

S U
T T T

Z t Z Z z
  

  
 

,     j = 2, ..., M. (43) 

In the above equations: 

1 1 1 1 1 1 1 1 1 1

1 1 1 1
, , , ,V B C V D E W F G W H J

t t t t
           
   

 

1 1
1 1 1 1 1

1 1
,

P R
X K L Y Q

t z t z
      
   

,  and  1
1 1

1 U
Z S

t z
  
 

. 
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In view of the iterative character of the suggested method, the computations should satisfy 
the following condition: 

 
, ( 1) , ( )

, ( 1)

t t t t
j k j k

t t
j k

Y Y

Y


 






  (44) 

where Y is the currently evaluated temperature in node j; ϑ is the assumed tolerance of 
iteration; and k = 1, 2, . . . is the next iteration counter after a single time step. 
Additionally, the following condition – the Courant–Friedrichs–Lewy stability condition 
over the time step – should be satisfied (Gerald, 1994): 

 1,
z

t
w

 
   , (45) 

where:  
w t

z
 



 is the Courant number. 

When satisfying this condition, the numerical solution is reached with a speed z/t, which 
is greater than the physical speed w. 

3. Computational verification 

The efficiency of the proposed method is verified in this section by the comparison of the 
results obtained using the method and from the corresponding analytical solutions. Exact 
solutions available in the literature for transient states are developed only for the simplest 
cases. In this section a step function change of the fluid temperature at the tube inlet and a 
step function heating on the outer surface of the tube are analysed.  

3.1 Analytical solutions for transient states 

The available analytical dependencies allow the following to be determined (Serov & 
Korolkov, 1981):  
- the time-spatial temperature distribution of the tube wall, insulated on the outer 

surface, as the tube’s response to the temperature step function of the fluid at the tube 
inlet, 

- the time-spatial temperature distribution of the fluid in the case of a heat flux step 
function on the outer surface of the tube. 

3.1.1 Temperature step function of the fluid at the tube inlet 

The analysed step function is assumed as follows (Fig. 4): 

  
0 for 0,

1 for 0.

t
T t

t


   

 (46) 

For this step function, the dimensionless dependency determining the increase of the tube 
wall temperature takes the following form: 

 1 0V V
T


 


, (47) 

www.intechopen.com



 
Heat Transfer – Engineering Applications 

 

270 

 

 

Fig. 4. Temperature step function of the fluid at the tube inlet 

where: 

    1 ,V e U
     , (48) 

    0 0 2V e I
    . (49) 

The  ,U    function is described by the following dependency: 

  
0 0

,
! !

n kn

n k

U
n k

  


 
 , (50) 

and the Bessel function: 

    
 0 2

0

2
!

k

k

I
k







 . (51) 

Values  and  present in Formulae (48)–(51) are the dimensionless variables of length and 

time respectively, expressed by the following dependencies:  

 
 

2 2

; ,TPt t zz

F D
 


   (52) 

where: 

   2TP

z
t z B

w
  . (53) 

Coefficients B2, D2, and F2 are described in Section 3.2. 

3.1.2 Heat flux step function on the outer surface of the tube 

A dimensionless time-spatial function describing the increase of the fluid temperature ΔT, 

caused by the heat flux step function Δq on the outer surface of the tube, is expressed as: 

www.intechopen.com



 
Mathematical Modelling of Dynamics of Boiler Surfaces Heated Convectively 

 

271 

 1 0 2
2

2

1

1
1

T t
V

c D cE q
c

 
   

 


. (54) 

In the above formula:  

c = – D2/B2; q and coefficient E2 are described in Section 3.2. 

Functions 0 and V2 are described by the following dependencies:  

 
 

2

1

0 1 001

t
c

De V V
 

    , (55) 

          2 0 1, 2 2V e U I I
            

    
 

, (56) 

where: 

    
   

2 1

2

1
0

2
! 1 !

k

k

I
k k










 . (57) 

Function V00 present in Formula (55) is expressed as: 

  
00 ,V e U c

c

        
 

. (58) 

The analytical dependencies (47) and (54) presented above allow the time-spatial 

temperature increases, Δ for the tube wall and ΔT for the fluid, to be determined for any 
selected cross-section. The results are obtained beginning from time tTP (z) = z/w, that is, 
from the moment this cross-section is reached by the fluid flowing with velocity w. For 
example, if the flow velocity equals 1m/s, then the analytical solutions allow the 
temperature changes for the cross-section located 10 m away from the inlet of the tube to be 
determined only after 10 s.  

3.2 Application of the proposed method for the purpose of verification  

In order to compare the results obtained using the suggested method with the results of 
analytical solutions for transient states, the appropriate dependencies are derived for the 
control volume shown in Fig. 5. 
Assuming one control volume of the tube wall, Equation (4) takes the form of Equation (20). 
Taking into consideration the boundary conditions: 

  
o

w
r r

k q
r








, (59) 

and 

      
in

in

w r r
r r

k h T h T
r

  



   


, (60) 
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the following differential equation is obtained: 

 2 2

d

d
D T E q

t

     . (61) 

In the above equation: 

   
2

w w m w

in

c d g
D

hd

  
 ,   2

1

in

E
h d

 ,  and   
2

o in
m

d d
d


 . 

Moreover, the heat flux step function is described as: 

 q q s   , (62) 

where: 
q – heat flux, W/m2, 
s – actual tube pitch, m. 
 

 

Fig. 5. Analysed control volume  

On the side of the working fluid the energy balance equation takes the form of Equation 

(13), in which the mean wall temperature  is used instead of h: 

      , , in
z z z

T
zAc T p T p m i m i h d z T

t
  




     


  . (63) 

Assuming that t  0 and z  0, the following equation is obtained: 

 2 2

T T
B T F

t z
 

  
 

, (64) 

where: 
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To solve the system of Equations (61) and (64), the implicit finite difference method was 
used, and after transformations we obtain: 

  2
2

2 2

t t t t t t t
j j j j

D t
T E q

D t t D
      

             
,     j = 1, ..., M  (65) 

 

2 2
1

2 2 1

t t t t t
j j j

t t
j

B F
T T

t zT
B F

t z

  



 
 
 

 

,      j = 2, ..., M. (66) 

3.3 Results and discussion 

As an illustration of the accuracy and effectiveness of the suggested method the following 
numerical analyses are carried out: 
- for the tube with the temperature step function of the fluid at the tube inlet, 
- for the tube with the heat flux step function on the outer surface. 
The results obtained are compared afterwards with the results of analytical solutions. In 
both cases the working fluid is assumed to be water. The heat transfer coefficient is taken as 
constant and equals h = 1000 W/(m2K). Because the exact solutions do not allow the 
temperature dependent thermo-physical properties to be considered, the following constant 
water properties were assumed for the computations:  = 988 kg/m3 and c = 4199 J/(kgK). 
For both cases it was also assumed that the tube is L = 131 m long, its external diameter 
equals do =  0.038 m, the wall thickness is gw = 0.0032 m, and the tube is made of K10 steel of 
the following properties: w = 7850 kg/m3 and cw = 470 J/(kgK). Satisfying the Courant 

condition (45), the following were taken for the computations: z = 0.5 m, t = 0.1 s and 
w = 1 m/s ( m = 0.775 kg/s). 

 

 

Fig. 6. Dimensionless histories of tube wall temperature increase 
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In the first numerical analysis it was assumed that water of initial temperature T = 20 oC 
flows through the tube. Also, the tube wall for the initial time t = 0 has the same initial 
temperature. Beginning from the next time step, the fluid of temperature T = 100 oC appears 

at the inlet. The temperature step function is thus T = 80 K. The results of the computations 

are presented in Fig. 6. The presented dimensionless coordinates  = 0, 2, and 4 correspond 
with the dimensional coordinates z = 0, 65.5 m, and 131 m respectively. An analysis of the 
comparison shows satisfactory convergence of the exact solution results with the results 
obtained using the presented method. 
In the second case it was assumed that the working fluid and the tube at time t = 0 take the 

initial temperature T =  = 70 oC. Starting from the next time step, the heat flux step function 

(q = qs) appears on the outer surface of the tube. The assumed heat load is the heat flux 
q = 105 W/m2 and the tube pitch s = 0.041 m. The selected results of the numerical analysis, 
comprising a comparison of the dimensionless histories of the fluid temperature increase for 
the same cross-sections as in the first case, are shown in Fig. 7. 
 

 

Fig. 7. Histories of dimensionless fluid temperature increase 

These histories begin from the time instants  = 5.04 (t = 65.5 s), and  = 10.08 (t = 131 s), 
respectively, that is, from the moment the analysed cross-sections were reached by the fluid 
flowing with the velocity w = 1 m/s. A satisfactory convergence of the results of the 
analytical solution with the results obtained using the suggested method was achieved. 

4. Experimental verification 

This section describes the experimental verification of the proposed method for modelling 
transient processes which occur in power boilers surfaces heated convectively. Transient 
state operation of the platen superheater during the start-up of an OP-210 boiler was 

analysed. The boiler capacity is 210103 kg/h of live steam with 9.8 MPa pressure and 
5
10540  oC temperature. The platen superheater (Figs. 8 and 13) consists of 14 vertical screens 
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installed with 520 mm transversal pitch. Each screen consists of 13 tubes ( 32 × 5 mm) 
placed with 36 mm longitudinal pitch. The heated surface of the superheater is 406 m2 
(n = 182 tubes) and the total free cross-section of the combustion gases flow is Acg,t = 64.5 m2. 
The tubes, each L = 26.3 m long, are made of 12H1MF steel and placed in 52 rows. As the 
analysed platen superheater is operating in cross-parallel-flow, a parallel-flow arrangement 
was assumed for numerical modelling. 
The time-spatial heat transfer coefficients for steam and combustion gases were computed in 
the on-line mode using dependencies published in (Kuznetsov et al., 1973). Moreover, based 
on the data given by (Meyer et al., 1993; Kuznetsov et al., 1973; Wegst, 2000) appropriate 
functions were created. These functions allow the thermo-physical properties of the steam, 
combustion gases and the material of the tube wall to be computed in real time.  

The platen superheater tube was divided into M = 16 cross-sections (z = 1.75 m). The time 

step of computations was taken at t = 0.1 s. 
 

 

Fig. 8. Location of platen superheater 

In order to model the dynamics of the platen superheater it is necessary to know the 
transient values of temperature, pressure, and total mass flow of steam and combustion 
gases at the superheater inlet. On the steam side, these values were known from 
measurements and are shown in Figs. 9 and 11 (curve b), whereas at the combustion gases 
side they were computed (Fig. 10). To calculate the pressure drop of the steam (in the 
direction of the steam flow), the Darcy-Weisbach equation was used. 
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The selection of a platen superheater for verification was not accidental. It is, namely, 
located in the combustion gas bridge, just behind the furnace chamber (Fig. 8). The 
computed values of combustion gases temperature and mass flow at the furnace chamber 
outlet therefore constituted the input data for modelling the platen superheater operation. 
In order to compute these transient values, the fuel mass flow should be determined first. 
To find it, a method based on the known characteristics of the coal dust feeder in function 
of its number of revolutions was used (Cwynar, 1981). The total mass flow of combustion 
gases at the furnace chamber outlet was computed using stoichiometric combustion 
equations and the known mass flow of combustion coal. The combustion gases 
temperature at the furnace chamber outlet was determined by solving the equations of 
energy and heat transfer for the boiler furnace chamber using the CKTI method 
(Kuznetsov et al., 1973). The computed values of combustion gases temperature and mass 
flow are shown in Fig. 10.  
The measurements carried out on the real object were disturbed by errors resulting from the 

degree of inaccuracy of the measuring sensors and converters. 

These errors, related to the maximum measuring ranges, were as follows: 

a.  3.3 oC in the superheated steam temperature readings (measuring range: 0–600 oC; 
level of sensor inaccuracy: 0.25; level of converter inaccuracy: 0.3), 

b.  96103 Pa in the superheated steam pressure readings (measuring range: 0–16 MPa; 
level of sensor inaccuracy: 0.6), 

c.  0.799 kg/s in the mass flow of superheated steam (measuring range: 0–69.44 kg/s; 
level of measuring orifice inaccuracy: 1; level of converter inaccuracy: 0.15). 

 

 

 

 

Fig. 9. Histories of the measured steam pressure and total mass flow at the platen 
superheater inlet 
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Fig. 10. Histories of the computed combustion gases temperature and total mass flow at the 
platen superheater inlet (at the furnace chamber outlet) 

 
 

 

Fig. 11. Comparison of the measured and computed steam temperatures at the superheater 
outlet (a) and history of the measured steam temperature at the superheater inlet (b) 
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Fig. 12. History of the computed combustion gases temperature at the superheater outlet 

When comparing the results of steam temperature measurement at the platen superheater 

outlet with the results of numerical computation, fully satisfactory convergence is found 

(Fig. 11 – curve a). The divergences visible in Fig. 11 (curve a), in the range of 0 to about 30 

min, result from the assumption in the calculation model that the initial temperature of the 

analysed steam superheating system at time t = 0 is equal to the measured steam 

temperature at the superheater inlet, that is, T = Tcg = h = cg = 359 oC. 

The computed combustion gases temperature at the platen superheater outlet (Fig. 12) can 

be used for modelling the dynamics of steam superheaters located after it (Fig. 13). The two 

stages, KPP-2 and KPP-3, of the superheater are installed parallel to each other in one gas 

pass. The superheater KPP-2 operates in counter-flow, and KPP-3 operates in parallel-flow 

to combustion gases. A comparison of the measured and computed steam temperature 

histories at the KPP-3 outlet is presented in the paper (Zima, 2003). 
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Fig. 13. Location of the analysed platen superheater and three stages of convective steam 
superheater (KPP-1, KPP-2, and KPP-3) 
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The selected results of modelling the dynamics of the economizer installed in the convective 

duct of the OP-210 boiler are presented in the paper (Zima, 2007). In the computations the 

fins were considered on the combustion gases side, and the heat transfer coefficient was 

calculated according to (Taler & Duda, 2006). The measured history of feed water 

temperature at the economizer outlet was compared with the computational results and 

satisfactory agreement was achieved. 

5. Conclusions 

The chapter presents a method for modelling the dynamics of boiler surfaces heated 

convectively, namely steam superheaters and economizers. The proposed method 

comprises solving the energy equations and considers the superheater or economizer model 

as one with distributed parameters. The proposed model is one-dimensional and is suitable 

for pendant superheaters and economizers. In this model, the boundary conditions can be 

time-dependent. The computations are carried out in the direction of the heated fluid flow 

in one tube. The time-spatial temperature history of the separating wall is determined from 

the equation of transient heat conduction. As the time-spatial heat transfer coefficients at the 

working fluids sides are computed in the on-line mode considering the actual tube pitches 

and cross-flow of combustion gases, the physics of the phenomena occurring in the 

superheaters and economizers does not change. All the thermo-physical properties of the 

fluids and the material of the separating walls are also computed in real time. In order to 

prove the accuracy and effectiveness of the proposed method, computational and 

experimental verifications were carried out. The analysis of the presented comparisons 

demonstrates fully satisfactory convergence of the results obtained using the suggested 

method with the results of analytical solutions and with measured temperature history. 

When analysing the presented comparisons it should be considered that many parameters 

affect the final result of the operation of the surfaces heated convectively (e.g. ones resulting 

from gradual fouling of these surfaces). Not all these parameters can be fully taken into 

consideration in the calculation algorithm.  
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