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1. Introduction 

The quasi-stationary Stokes approximation (Frenkel, 1945; Happel & Brenner, 1965) is 

used to describe viscous flows with small Reynolds numbers. Two-dimensional Stokes 

flow with free boundary attracted the attention of many researches. In particular, an 

analogy is drawn (Ionesku, 1965) between the equations of the theory of elasticity 

(Muskeleshvili, 1966) and the equations of hydrodynamics in the Stokes approximation. 

This idea allowed (Antanovskii, 1988) to study the relaxation of a simply connected 

cylinder under the effect of capillary forces. Hopper (1984) proposed to describe the 

dynamics of the free boundary through a family of conformal mappings. This approach 

was later used in (Jeong & Moffatt, 1992; Tanveer & Vasconcelos, 1994) for analysis of 

free-surface cusps and bubble breakup.  
We have developed a method of flow calculation, which is based on the expansion of 
pressure in a complete system of harmonic functions. The structure of this system depends 
on the topology of the region. Using the pressure distribution, we calculate the velocity on 
the boundary and investigate the motion of the boundary. In case of capillary forces the 
pressure is the projection of a generalized function with the carrier on the boundary on the 
subspace of harmonic functions (Chivilikhin, 1992). 
We show that in the 2D case there exists a non-trivial variation of pressure and velocity 
which keeps the Reynolds stress tensor unchanged. The correspondent variations of 
pressure give us the basis for pressure presentation in form of a series. Using this fact and 
the variation formulation of the Stokes problem we obtain a system of equations for the 
coefficients of this series. The variations of velocity give us the basis for the vortical part of 
velocity presentation in the form of a serial expansion with the same coefficients as for the 
pressure series. 
We obtain the potential part of velocity on the boundary directly from the boundary 

conditions - known external stress applied to the boundary. After calculating velocity on the 

boundary with given shape we calculate the boundary deformation during a small time 

step.  

Based on this theory we have developed a method for calculation of the planar Stokes flows 

driven by arbitrary surface forces and potential volume forces. We can apply this method 

for investigating boundary deformation due to capillary forces, external pressure, 

centrifugal forces, etc.  
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Taking into account the capillary forces and external pressure, the strict limitations for 
motion of the free boundary are obtained. In particular, the lifetime of the configurations 
with given number of bubbles was predicted. 

2. General equations 

2.1 The quasi-stationary Stokes approximation 

The equations of viscous fluid motion in the quasi-stationary Stokes approximation due to 
arbitrary surface force f and the continuity equation in the region 2G R  with boundary 
  have the form  

 0
p

x









, (1) 

 0
v

x









, (2) 

where 
vv

p p
x x


 

 
 

 
       

 is the Newtonian stress tensor; v  are the components 

of the velocity; p  is the pressure;   is the coefficient of the dynamical viscosity, which is 

assumed to be constant. The indices ,   take the values 1, 2.  Summation over repeated 

indices is expected. The boundary conditions have the form 

 ,p n f    x  (3) 

where n  and f  are the components of the vector of outer normal to the boundary and the 

surface force. Let 0 be the outer boundary of the region; ( 1,2,..., )k k m  - the inner 

boundaries (boundaries of bubbles); 
0

m

k
k

 


  - see Fig.1. 

 

 

Fig. 1. Region G  with multiply connected boundary   
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The free boundary evolution is determined from the condition of equality of the normal 
velocity nV  of the boundary and the normal component of the velocity of the fluid at the 
boundary: 

 ,nV v n   x  (4) 

In case of a volume force F acting on G, the equation of motion takes the form 

 
p

F
x







 


 (5) 

If the volume force is potential 
U

F
x





 


 one can renormalize the pressure p p U   and 

present (3), (5) in the form  

 0
p

x









 (6) 

 ,p n f    x  (7) 

where f f Un     is the renormalized surface force.  

2.2 The transformational invariance of the Stokes equations 

Let’s point out a specificity of the quasi-stationary Stokes approximation (1), (2). This system 
is invariant under the transformation 

 v v V e x        (8) 

where V  and  are constants, e  is the unit antisymmetric tensor. Therefore, for this 
approximation the total linear momentum and the total angular momentum are indefinite. 
These values should be determined from the initial conditions. 

2.3 The conditions of the quasi-stationary Stokes approximation applicability 

The Navier-Stokes equations 

 ,
pv v

v F
t x x

 
 

 

   

       
 (9) 

where  is the density of liquid, lead to the quasi-stationary Stokes equations (5) if the 
convective and non-stationary terms in (9) can be neglected. The  neglection of the 
convective term leads to the requirement of a small Reynolds number Re VL  , where V  
is the characteristic velocity, L is the spatial scale of the region G , and   is the kinematic 
viscosity. The non-stationary term in the equation (9) can be omitted if during the velocity 
field relaxation time 2T L   the shape of the boundary changes insignificantly, namely 
VT L  which again leads to the condition Re 1 . The change of the volume force F  and 
the surface force f during the time T  should also be small: 
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 , ,a a
fF

T F T f
t t

 
 

   (10) 

For the forces determined by the region shape (like capillary force or centrifugal force) the 
conditions (10) lead to Re 1  again. 
The neglection of the non-stationary term is a singular perturbation of the motion equation 
in respect of the time variable. It leads to the formation of a time boundary layer of duration 
T , during which the initial velocity field relaxates to a quasi-steady state. The condition of a 
small deformation of the region during this time interval 0 0V T L  is ensured by the 
requirement of a small Reynolds number 0Re  constructed from the characteristic initial 
velocity 0V and the initial region scale 0L . 
Let’s integrate the motion equation (5) over the region G  and use the boundary condition 
(3). As a result we obtain the condition  

 0.F dG f d 
      (11) 

The equations of viscous fluid motion in the quasi-stationary Stokes approximation (5) 
have the form of local equilibrium conditions. Correspondingly, the total force   which 
acts on the system should be zero. The same way, using (5) and (3) one can obtain the 
condition 

 0.M e x F dG e x f d    
      (12) 

where e  is the unit antisymmetric tensor. Therefore, the total moment of force M acting 
on the system should be zero. 

2.4 The Stokes equations in the special noninertial system of reference 

Conditions (11) and (12) are the classical conditions of solubility of system (2), (5) with 
boundary conditions (3). Let’s show that these conditions are too restrictive. For example, 
for a small drop of high viscous liquid falling in the gravitation field the total force is not 
zero, but equal to the weight of the drop. Therefore, we cannot use the quasi-stationary 
Stokes approximation to describe the evolution of the drop’s shape due to capillary forces. 
But in a noninertial system of reference which falls together with the drop with the same 
acceleration, the total force is equal to zero.  

In a general case, the total force   and total moment of force M  acting on the system are 
not equal to zero. The Newton's second law for translational motion has the form  

 ,
d v

S
dt


   (13) 

where S is the area of the region, 
1

v v dG
S

   is the average velocity of the system, and 

 is the total force. Let’s choose the center-of-mass reference system K instead of the initial 

laboratory system K . The velocity and coordinate transformations have the form 

 , ,v v v x x x           (14) 
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where 
1

x x dG
S

    is the coordinate of the center of mass in the initial system K , 

d x
v

dt


  . In the new system the surface force is the same as in the initial system 

f f   , but the volume force transforms to F F      and total force is equal to zero: 

0   . So, we eliminated the total force   using a noninertial center-of-mass reference 

system K .  
The total moment of force in the new system stays unchanged: M M  .To eliminate the 
total moment of force M  we switch from the system K  to the rotating reference system 
K : 

 ,v v e x        (15) 

where is the angular velocity of the rigid-body rotation 

 ,
d

I M
dt


  (16) 

 where I x x dG      is the moment of inertia of our system. In the new system the surface 
force is the same as in the initial system f f   , but the volume force transforms to: 

 22 ,F F e x e v x         
 

        
 

 (17) 

and the total moment of force is equal zero: 0M  . In case of a small Reynolds number, the 
Coriolis force 2 e v    is small compared with the viscous force. 
So in case of the total force   and total moment of force M  not equal to zero we can 
eliminate them using the noninertial reference system with the rigid-body motion due to the 
force and moment of force.  

3. Pressure calculation 

Let   and   be smooth fields in the region G  related by 

 2 .
x x




 





 

 
 (18) 

Multiplying the equation of motion (1) by  , integrating over G , and using (2), (3), (18), we 
obtain 

 
1

2
p dG f d       (19) 

In the special case when 1  the expression (18) gives us x   and, according with (19),  

 
1

2
pdG f x d      (20) 
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see (Landau &  Lifshitz, 1986 ). In a general case, according with (18),   is an arbitrary 
harmonic function and 1 2i     is the analytical function associated with  as 

  d i dz     (21) 

where   is a harmonic function conjugate to  .   
The expressions (18) and (19) are basic in our theory. There is also an alternative way to 
derive them. The equations of motion (1), continuity (2) and the boundary conditions (3) can 
be obtained from the variation principle (Berdichevsky, 2009). 

  21
2 0

4
p p p dG f v d    


 

   
 

   (22) 

or 

  1
2 0

2
p p p p dG f v d      


     (23) 

Since (23) is valid for arbitrary variations of pressure p  and velocity v  we choose them  
such that  p  is left unchanged:  

 0.
vv

p p
x x


 

 

   
 

         
 (24) 

In this case (23) gives us 

 
1

0.p pdG f v d   


    (25) 

We introduce the one-parameter family of variations ,
2

v p



   


  . Then (24) and 

(25) take the form (18) and (19). 

Suppose Nx R . Then it follows from (18) that  

  
2

2 0.N
x x 


 

 
 (26) 

Therefore, in the three-dimensional case  is a linear function. Only in the two-dimensional 
case   can be an arbitrary harmonic function. Formulating in terms of (3.5), only in the two-
dimensional space there exists a non-trivial system of pressure and velocity variations 
providing zero stress tensor variation.  
The complete set of analytical functions k in the region G with the multiply connected 

boundary   consists of functions of the form  ,
k

o
k mz z z


 , where o

mz are fixed points, each 

situated in one bubble. The complete set of harmonic functions k  can be obtained in the 

form of Re k and Im k . 
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According with (1), (2) the pressure p  is a harmonic function. We present it in the form  

 .k k
k

p p   (27) 

Using the expression (19) we obtain the algebraic system for coefficients kp : 

   1
, 0,1,...

2
k n k n

k

dG p f d n          (28) 

4. Velocity calculation 

The stress tensor, expressed in terms of the Airy function , 

 
2 2

,p
x x x x

 
   

   
 
   

 (29) 

satisfies the equation of motion (1) identically. The boundary conditions (3) take the form 

 
2

, ,e f x
x x

  
 

 
  

 
 (30) 

where  are the components of the unit tangential vector to the boundary, its direction 
being matched to the direction of circulation. Integrating (30) along the component 
boundary k from a fixed point to an arbitrary one we obtain 

 , .k ke f d x
x

 


  
 

   (31) 

Using (1), (29) and the explicit form of the stress tensor, we get 

 2 , ,d dv d x G
x

 


  
 

   
 

 (32) 

where  

     1 2
1 2

2 1

, ,
v v

d i p i
x x

    
  

     
  

 (33) 

 is a harmonic function conjugate to p , 

 2 .p
x x




 





 

 
 (34) 

Therefore 

 ,n n
n

p    (35) 
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where kp are the coefficients of the pressure expansion (27). These coefficients are the 
solution of the system (28). According with (32) the velocity in the region G can be presented 
in the form 

 
1

, .
2

v x G
x

 


 

 

   
 

 (36) 

The first term in the right-hand part of (36) is the potential part of velocity; the second term 
is the vortex part. 
The gradient of the Airy function on the boundary was calculated in (31). Then we can 
calculate the velocity on the boundary as 

  1
, .

2
k kv e f d x     


    (37) 

The expression (37) gives us the explicit presentation of the velocity on the boundary.  

5. Limitations for the motion of the boundary 

5.1 The rate of change of region perimeter 

The strong limitation for the motion of the boundary is based on a general expression 
regarding the rate of change of perimeter L . To obtain this expression we use the fact 
(Dubrovin at al, 1984) that 

 ,
d

v n Hd
dt

 


   (38) 

where 
n

H
x









 is the mean curvature of the boundary. In the 2D case  is the perimeter 

of the region, and in the 3D case  is the area of the boundary. We introduce the operator 

of differentiation along the boundary D n n
x x

  
 

 
 

 
. Then we can write (38) in the 

form  

 .
dL

v D n d
dt

      (39) 

Using the identity 

 0,D d    (40) 

where  is an arbitrary field which is continuous on the boundary, and also the equation of 
continuity (2) and the boundary conditions  (3) we can write (39) in the final form  

 .
2

d p f n
d

dt
 





   (41) 
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This expression is valid for any flow of incompressible Newtonian liquid (without Stokes 
approximation), generally speaking, with variable viscosity. We will use it for a 2D flow 
(  =L is the perimeter of region), in case of constant viscosity: 

  1
.

2

dL
p f n d

dt
  


    (42) 

5.2 The dynamics of bubbles due to capillarity and air pressure 

Let’s take into account the capillary forces on the boundary, the external pressure 0p  and 
the pressure inside of the bubbles , 1,2,...,k bp p k m  , equal in every bubble. Then the 
boundary force has the form 

 , ,k k

n
f n p n x

x


  


 


   


 (43) 

where   is the coefficient of surface tension. Using (42), (43) we get 

    0 0
1

2 1 ,
2

b b
dL

pd p L p L m
dt

 

         (44) 

where 0L  and bL  are the perimeter of external boundary and the total perimeter of the 
bubbles correspondingly. 
Using (20) we obtain 

  0 0 ,
2

b bpdG p S p p S L


     (45) 

where S  and bS  are the area of region and the total area of  the bubbles. 
For ,p      , the expressions (19), (34), (37) give us  

 
   

 

2 2 2 2
0 0 0 0

0

2

.

b b b b

b
b

p dG p L p L pd p S p p S

dS
p p

dt

 



      

 

 
 (46) 

Using (44) - (46) and the inequality  22 1
p dG pdG

S
   we obtain the differential inequality 

 

 

   

   

0

0 0

2
2

0
1

1 .
2

b
b

b b b b

b b

dSdL
p p

dt dt

p p L p p S

p p S L m
S

 



 

     
       

       

 (47) 

This expression gives us the possibility to obtain the strict limitations for the motion of the 
free boundary in some special cases. 
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5.3 The influence of capillary forces only 

In this case the inequality (47) may be simplified: 

  
2

2 1 .
2 2

dL L
m

dt S

 

 

    
  

 (48) 

where m  is the number of bubbles. Let 2L S   be the asymptotic value of the perimeter 

and let 
2

t

S

 


  be the dimensionless time. Then, according with (48),     ,upL L   

 

 
 

 

  
 

0

0

0
0

0

0

0

, 0 ,

, 1,

1 1 1
, 2 .

1 1

up

up

up

L L th
L m

L L th

L L
L L L m

L L

m L L m tg m
L m

m tg m









 













 



  


   
 

  

 (49) 

where  upL   is the upper limitation for time dependence of the perimeter - see Fig.2. 
The perimeter of system L lies in the interval  upL L L    . 
 
 

 

Fig. 2. The upper limitation for the time dependence of the perimeter for various number of 
bubbles m . 

Therefore, if we have no bubbles in the region, the characteristic dimensionless time of 

relaxation of the boundary to the circle 0 1  . In case of one bubble  1m  ,  upL L  at 

the time 1 01 L L     . The system with this topology can exist in this time period only. 

The bubble must collapse or break into two bubbles in time * 1  . In case of 2m   bubbles, 

such configuration will exist during the time  
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 

 
0

0

11
.

11
m

m L L
arctg

L m Lm
  



  
       

 (50) 

5.4 Bubbles in an infinite region 

The outer boundary of the region is a circle with a large radius R . The bubbles are localized 
around the center of the circle. Using the expressions 2 , 2b bR S S L R L     , we can 
see that the inequality (47) in the limit R   takes the form 

   2
0 ,b

dW
p p W m

dt
      (51) 

where  0b b bW L p p S   . Therefore, at 0 0bp p   

 
2 2

0

0 0

(0) exp .b

b b

p pm m
W W t

p p p p

 


   
           

 (52) 

Because 0W  , this configuration exists without change of the number of bubbles during 
the time  

       0
02

0

ln 1 0 0 .b
b b b

b

p p
t L p p S

p p m

 

       

 (53) 

6. Motion of the boundary due to capillary forces 

6.1 Calculation of pressure and velocity 

In case of capillary forces action 

 ,
n

f n x
x


 


 


  


 (54) 

and expression (19) takes the form 

 ,
2

p dG d
     (55) 

or 

 ,
G G

p p    (56) 

where  

 
1 1

, , .
2GG

f fdG f fd P
S L S

     (57) 

The expression (56) is valid for any harmonic function . Let’s apply p  . Then we obtain 

 

2 ,
GG

p p p 
 (58) 
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It can be seen from (58) that  

 .p p   (59) 

Introducing the generalized function (simple layer) 

  ( ) ,s dl   yx x y  (60) 

we see that p is the projection of s  onto the subspace of harmonic functions. 
Introducing in G  a complete system of orthonormal harmonic functions   0k k

 
  which 

obey the orthogonality condition k n knG
   , we obtain from (56) the following 

expression for the pressure 

 
0

.k kG
k

p p


 



   (61) 

In case of capillary forces the expression (37) takes the form 

  1
, .

2
v n x    


    (62) 

6.2 Relaxation of a small perturbation of a circular cylinder 

Consider a small perturbation of the circular cylinder boundary, given by  ,r R h t  , 
h R . Then we have from (62) 

  exp ,
2

k
k

h
k ik h

t R

 







 

   (63) 

    
2

0

( ) exp , (0)exp ,
2 2

k k

k td
h t ik h t h

  
 

 
    

 
  (64) 

in agreement with (Levich, 1962). According with (64), a small boundary perturbation of 

characteristic with a R  and amplitude H a  has a characteristic decay time ~
a


. 

6.3 The capillary relaxation of an ellipse 

Let’s test our theory on an example of a large amplitude perturbation. We calculate the capillary 

relaxation of boundary with initial shape 
2 2
1 2
2 2

1
x x

a b
   in two ways - using the numerical 

calculation based on (6.4) and the finite-element software ANSYS POLYFLOW (see Fig. 3 and 
Fig.4). These methods of calculation give us the same results with discrepancy about 1%.  

6.4 The collapse of a cavity 

Let’s now consider a large amplitude perturbation in the shape of a cavity (Fig. 5). By 

symmetry, the pressure must be an even function with respect to 2x , i.e. 

   1 2 1 2, ,p x x p x x  . 
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Fig. 3. Computational domain used in finite-element calculation of ellipse relaxation. 

 

Fig. 4. Relaxation from ellipse to a circle in finite-element calculation. 

We introduce a space of two-variable harmonic functions which are even with respect to the 
second argument, and choose in it the complete system of functions in the form 

 cosn
n r n   ( r  and   are the polar coordinates in the 1 2,x x  plane). Since the width   

is small 2

2( 1)
n mn

m n g
R

n

  


. Then the complete system of orthogonal harmonic 

functions in this space is  

  2( 1) cos .
n

n
r

n n
R

     
 

 (65) 

Inserting (65) in (61) and summing the series yields 

 
 2 2

1 2 1
Re ,

H R H
p

R R zR R R H R




             
 (66) 
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Fig. 5. Cavity perturbation. 

whence, using (35), we have  

 
 

 

2
2

1 ln .
R R H zH z

R R R H R
 

 

               
 (67) 

In spite of the logarithm, (67) is a single-valued analytical function in G , because the 

boundary perturbation constitutes a branch cut. If we insert (67) in (62), we find that the 

normal velocity of the cut edges 
2

V



 (in the zero approximation with respect to the small 

parameter  
H


). The edges close up after a time 




 . Although capillary forces generally 

tend to flatten the boundary perturbation, in this case they produce the opposite effect. 

Acting to reduce the length of the cut, the capillary forces generate a flow of scale H  in the 

region. The velocities along 1x  and 2x  have the scales H  and  , respectively. If we equate 

the work of surface-tension force with the rate of energy dissipation by viscous forces, we 

find that 

2
2H

H H
H

 
 

   
 

  or H



    ; this conforms to the rigorous result we 

obtained before. 
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7. Conclusion 

We presented a method to calculate two-dimensional Stokes flow with free boundary, based 

on the expansion of pressure in a complete system of harmonic functions. The theory forms 

the basis for strict analytical results and numerical approximations. Using this approach we 

analyse the collapse of bubbles and relaxation of boundary perturbation. The results 

obtained by this method are correlating well with numerical calculations performed using 

commercial FEM software. 
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