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1. Introduction 

Rheumatoid arthritis (RA) is an autoimmune disease characterised by chronic joint 

inflammation. The precise aetiology of this autoimmune process remains unclear. Soluble 

factors produced by infiltrating synovial cells play an important role in driving the 

inflammatory process that leads to inflammatory cell migration and proliferation in the 

synovial tissue. These soluble factors consist mainly of cytokines that either promote or 

suppress inflammation.  

A number of cytokines have been identified in synovial fluid and the synovial membrane. 

Cytokines such as TNF, IL-1 and IL-6 stimulate T-cells and induce subsequent cartilage 

and bone erosion (Kang et al., 2009). Along with IL-18, these cytokines are produced by 

synovial macrophages and synovial fibroblasts. IL-18 causes joint inflammation and 

subsequent bone destruction by facilitating T-cell activation and stimulating B-cell 

production of autoantibodies. Deletion of the IL-18 gene in mice has been shown to result in 

a significant reduction in the incidence of joint inflammation and bone destruction (Wei et 

al., 2001).  

CD4+ T-cells proliferate in inflamed synovial joints through stimulation of IL-15. Inhibition 

IL-15 results in a significantly lower production of TNF and IL-1. As such, IL-15 blockade 

abolishes severe joint inflammation in collagen induced-arthritis mouse models (Ruchatz et 

al., 1998). In the CD4+ T-cell population, Th17 has been demonstrated as a pathogenic T-cell 

that produces IL-17 to induce neutrophil migration (Shibata et al., 2009). IL-17 is known to 

stimulate receptor-activator of nuclear factor kappa-B ligand (RANKL) production by 

osteoblast cells to promote osteoclastogenesis in RA bone erosion (Joosten et al., 2003). Th17 

development is governed by TGF, IL-1 and IL-23 (Paradowska-Gorycka et al., 2010; 

Santarlasci et al., 2009). Higher concentrations of IL-23 (a member of the IL-12 family 

cytokines) are detected in the serum and synovial fluid of patients with greater severity of 

RA (Melis et al., 2010). IL-23 can also be produced by osteoblast cells after stimulation with 

TNF (unpublished data).  

 It is possible that remission of joint inflammation in RA patients can occur spontaneously. 

The fluctuation in inflammation within the joint results from auto-inhibition through the 

production of anti-inflammatory cytokines via regulatory T (Treg) cells (Raghavan et al., 
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2009) and other regulatory mechanisms. Treg cells encompasse CD4+ T-cells and produce 

anti-inflammatory cytokines – such as IL-10, TGF and IL-35 – to suppress Th17 and other T 

effector cells (Sabat et al., 2010). Recent studies have identified IL-35 (a member of the IL-12 

family cytokines) as a potent suppressor of Th17 cells and promoter of Treg cell expansion 

(Collison et al., 2007; Niedbala et al., 2007). Injection of recombinant IL-35 into mice with 

collagen induced-arthritis has demonstrated effective suppression of the onset of joint 

inflammation (Niedbala et al., 2007). The mechanism of this model is thought to be through 

the promotion of Treg cell activity and suppression of Th17 function (Chaturvedi et al., 

2011). Despite strong evidence from in vivo animal models demonstrating the therapeutic 

properties of IL-35 in the treatment of joint inflammation, there continues to be a lack of 

evidence from in vitro human bone inflammatory models. The efficaciousness of IL-35 as an 

immunomodulatory therapy against RA therefore remains to be proven.  

In this chapter, we will concentrate on the role of the IL-12 family cytokines – namely IL-12, 

IL-23, IL-27 and IL-35 in the development of rheumatoid arthritis. We will present, analyse 

and summarise the most recent work in our field of research. We aim to provide an up-to-

date and comprehensive overview of the compelling evidence and novel ideas paving way 

for a new generation of medical therapies against RA. 

2. T cell activation and IL-12 family cytokines 

2.1 T cell activation in rheumatoid arthritis 

The main infiltrative inflammatory T cell in the synovial joint is the CD4+ T cell. 

Dependent on cytokine production and cell linage control cell signalling, CD4+ T cells can 

be divided into 4 sub-populations – Th1, Th2, Th17 and immune regulatory T (Treg) cells. 

These sub-types differ in function and activity. Th1, Th2 and Th17 cells act mainly as T 

effector cells whereas Treg cells display an immune suppressing role. T helper (Th) cell 

differentiation and expansion is controlled by maturated dendritic cells (DC) via three 

different means of signalling. The first is antigen presentation where MHC II (present on 

the surface of DCs) relay antigens to T cell receptors (TCR) found on T cells. In RA, 

pathological auto-antigen signalling mediated by DCs and other antigen presenting cells 

lead to auto-antigen induced T cell responses. The exact cause of this remains unclear, 

however, recent evidence has identified connective tissue protein and citrullinated 

vementin as likely mediators. Both have been shown to trigger an auto-immune T cell 

response following presentation by MHC II in RA patient (Snir et al., ; van Lierop et al., 

2007). The second type of signalling is co-stimulation and is mediated via co-stimulation 

molecules found on DCs. An example of this is CD40 when it binds to T cell co-

stimulation receptor (CD40L). The final means of signalling is mediated by cytokines or a 

group of cytokines and is the most important form of signalling generated by DCs. 

Cytokines produced by activated DCs bind to receptors on naïve T cells and drive T cell 

differentiation into Th1, Th2 or Th17. In some instances, it induces differentiation into 

Treg cells and suppresses over-reactive T cells. In patients with RA, this complex system 

can result in joint inflammation that is self-limiting and accounts for the fluctuating 

nature of the disease. Despite vast amounts of research dedicated to investigating 

the precise mechanism of T cell development, in health and in disease, it remains a 

mystery. 
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Fig. 1. Schematic representation of structure of members of the IL-12 family cytokines.  

2.2 IL-12 family cytokines in inflammation 

The cytokines involved in mediating T cell development belong to the IL-12 family 
cytokines. This family of cytokines are heterodimer secreted glycoproteins. One subunit is 
an IL-6 like protein and the other an IL-6 soluble receptor like protein. They are therefore 
also named IL-6/IL-12 family cytokines. IL-12, IL-23, IL-27 and IL-35 all belong to this IL-12 
family cytokines and share certain protein subunits (Fig.1).  
IL-12 consists of a p40 subunit and a p35 subunit. IL-23 consists of the same p40 subunit but 
couples with a p19 subunit. IL-12 was the first cytokine to be identified that had the 
capability of driving Th1 development (Hsieh et al., 1993; Murphy et al., 1994).  IL-23 was 
discovered almost a decade later and was initially seen as a novel cytokine with the ability 
to aid Th1 development at the later stages of cell differentiation (Oppmann et al., 2000). 
Recent evidences suggest that IL-23 is in fact functionally very different from IL-12. Aside 
from its effects on Th1 cell development, IL-23 also stimulates production of IL-17 by Th17 
cells (Horai et al., 2000; Zelante et al., 2007). Osteoclast formation has been shown to be up-
regulated by IL-23 through its effects on macrophages (Chen et al., 2008). Unlike IL-12, IL-23 
plays more of a pathological role in inflammatory and autoimmune diseases. 
The cytokine IL-27 is composed of a p40-related protein called EBi3 (Epstein-Barr virus 
induced gene 3) and a p35-related protein known as p28. EBi3 was first identified in 1996 
following its expression during infection of B-lymphocyte with the Epstein Barr Virus. The 
gene produced was a secreted glycoprotein related to p40 (Devergne et al., 1996). p28 was 
discovered some years later in a research investigation of IL-6 homologous proteins using 
bioinformatics. The p28 protein was found only to be efficiently secreted when coupled with 
EBi3. Following this discovery, the heterodimeric protein of EBi3 and p28 was named as IL-
27 (Pflanz et al., 2002).  The function of IL-27 was again, initially, thought to be similar to IL-
12 in driving the early stages of Th1 cell development. Further study of IL-27 has shown it to 
be capable of inducing IL-10 production from Treg cells and subsequently inhibiting Th17 
responses (Murugaiyan et al., 2009). In inflammatory mouse disease models, such as 
collagen induced arthritis (CIA) mouse model, IL-27 is able to suppress inflammation 
(Niedbala et al., 2008). 
EBi3 can be coupled with the p35 subunit of IL-12 to form a heterodimeric protein 

(Devergne, Birkenbach and Kieff, 1997). The function of EBi3/p35 remained a mystery until 

relatively recently when studies used a recombinant EBi3/p35 protein in a rheumatoid 

arthritis mouse model. In these experiments, joint inflammation in CIA mice was effectively  
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Fig. 2. Diagram showing CD4+ T cell differentiation resulting from production of IL-12 
family cytokines produced by DCs. The presentation of auto-antigens by DCs and cytokine 
production result in T cell differentiation. The type of T cell response depends on the type of 
cytokine production in the inflammatory environment. Both DCs and iTr(35), a type of Treg 
cell, produce IL-35 to suppress Th1, Th17 and Th2 responses.  

resolved by the EBi3/p35 recombinant protein. It was suggested that the therapeutic 

mechanism of this recombinant protein was through induction of Treg cell development 

and IL-10 expression leading to suppression of Th1 and Th17 responses (Niedbala et al., 

2007).   

EBi3 and p35 are also highly expressed in Treg cells thus seemingly a key component of the 

immune regulating function of mouse Treg cells. Deficiency in either EBi3 or p35 gene in 

Treg cells will result in a reduced ability to suppress effector T-cell proliferation. Without 

EBi3 or p35, Treg cells are unable to resolve gut inflammation in mouse inflammatory bowel 

disease (IBD). The EBi3/p35 heterodimeric protein has since been named IL-35 (Collison et 

al., 2007). The functional effects of IL-35 in mouse models have been clearly demonstrated 

by a number of research groups. The role of this particularly cytokine in immune regulation 

of humans has now been confirmed (Chaturvedi et al., 2011).  

3. IL-12 family cytokines in joint inflammation of rheumatoid arthritis 

3.1 IL-12 and IL-23 are the critical cytokines involved in joint inflammation 

Involvement of IL-12 in joint inflammation has been demonstrated in Collagen-Induced 

Arthritis (CIA) mouse models in early studies. Injection of recombinant IL-12 into mouse 

induced severe joint inflammation in CIA mouse models. Severity was markedly increased 

with co-administration of IL-18 and IL-12 (Leung et al., 2000). In humans, IL-12p40 can be 

detected in serum of RA patients in more than 40% of cases. It is also present in 
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osteoarthritic patients and even healthy individuals but in significantly lower instances 

(Kim et al., 2000). The number of collagen type II (CII) reactive T cell in the peripheral blood 

mononuclear cell (PBMC) and synovial fluid monocytes (SFMCs) from RA patients was 

significant higher than those from osteoarthritis and health control individuals. The higher 

IFN concentration in the culture supernatant was also associated with higher IL-12 

production. This result indicated that CII reactive Th1 response is dominant  in RA patients 

(Park et al., 2001).  

Study of TNF, TNF-RI/II and IL-12 serum level in RA patients concluded that IL-12p40 

levels have a stronger association with disease than TNFlevels(Ebrahimi et al., 2009). IL-

12 binds to IL-12 receptor1 and 2 to trigger STAT4 phosphorylation in T cells. RA 
patients not only produced more IL-12p40, but are also more sensitive to IL-12 stimulation, 
which based on the fact of T cells from RA patients showed earlier onset and higher levels of 
STAT4 phosphorylation in comparison with osteoarthritis and health controls (Sun et al., 

2011). To date, anti-TNFtherapy has been proven as the most effective therapy in 
treatment of rheumatoid arthritis (Radovits et al., 2009;Salliot et al., 2011). CD4+ T cells in 
peripheral blood mononuclear cells (PBMC) of RA patient have higher frequency of IL-12 

receptor  and lower of IL-4 receptor. The frequency of IL-12R+ T cell was remarkably 

reduced with both methothotrexate (MTX) therapy and anti-TNF therapies (Herman et al., 
2011). However another clinical study showed STAT4 phosphorylation was not induced in 
CD4+ T cells from untreated RA patients by anti-CD3 and anti-CD28, but STAT4 activation 

was induced in healthy individuals and anti-TNF treated patients (Aerts et al., 2010). This 
result disagreed with previous concepts of the role of IL-12 induced Th1 responses in RA. 
Since STAT4 phosphorylation was not induced by IL-12, but anti-CD3 and CD28 in this 

experimental setting, this result may indicate anti-TNF altered T cell response in RA 
patients.  Since IL-12 is the only cytokine that strongly drives Th1 cell development and 
subsequent production of IFNγ, the role of IL-12 in RA inflammation was challenged by the 
studies in Collagen induced arthritis (CIA) mouse model with IFNγ receptor gene knockout 

or IFNγ blockade (Boissier et al., 1995; Manoury-Schwartz et al., 1997). Mice with IFN gene 

deficiency and IFN blocker did not show reduced joint inflammation but rather enhanced 
inflammation. These may suggest that IL-12 stimulates other cytokines to induce 

autoimmune joint inflammation in disease. IFN production from Th1 responses is rather 
suppressing the joint inflammation which was seen in IL-27 suppressing joint inflammation 
(see section 3.2).  
Comprehensive studies by using autoimmune disease mouse models with gene knockout 

mice have demonstrated the complexity of IL-12p40, p35 and its receptors 1 and 2 
(Airoldi et al., 2005; Gran et al., 2002; Kikawada, Lenda and Kelley, 2003; Yoshida et al., 

2009). IL-12p40 and IL-12 receptor1 gene knockout mice showed resistance to joint 
inflammation in CIA mice while IL-12p35 and IL-12RII gene knockout mice are significantly 
more susceptible to joint inflammation induced by collagen type II (Hoeve et al., 2006; 
Murphy et al., 2003). Discovery of IL-23 provided a fully explanation for the confounding 
phenotype in these gene knockout mice (Ooi et al., 2009). Knockout of the IL-23p19 subunit 
in mice showed similar levels of resistance to joint inflammation as IL-12p40 knockout 
(Hoeve et al., 2006). Given that IL-23 shares the same protein subunit of IL-12p40, it can be 
concluded that IL-23 is the key pathological cytokine in joint inflammation. To support this 
theory is the discovery of significantly higher levels of IL-23 in both serum and synovial 
fluid of RA patients (Melis et al., 2010). 
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Fig. 3. IL-23 induced joint inflammation and pathology. A) Graph showing significantly 
higher incidence and index of severe joint inflammation in mice undergoing daily injections 

of 0.5g/mouse of recombinant IL-23. B) Histology of normal and disease joints following 
injection of recombinant IL-23 injections. C)  Incidence of bone erosion. 

Results from our unpublished studies with recombinant IL-23 in CIA mice have yielded 
interesting findings. When recombinant IL-23 was injected into CIA mice severe joint 
inflammation ensued. The incidence of this was significantly higher when compared to mice 
injected with phosphate buffered saline (PBS). The degree of joint damage was also found to 
be greater in mice injected with recombinant IL-23 (Fig.3). Using ex-vivo bone slide culture 
models, IL-23 production has been found to increase in response to IL-1, TNF and LPS. 
Astonishingly, osteoblasts also seems to contribute to IL-23 production (See section 4). IL-23 
is a crucial cytokine in the Th17 response of inflammatory disorders, including RA joint 

inflammation. Th17 differentiates from CD4+ T cells in response to IL-1, IL-6 and IL-23 
combinational signaling. It is distinct from Th1 and Th2 cells. Investigations into the 
outcome of IL-23 and Th17 targeted therapies holds potential for novel therapies against 
RA.  

3.2 IL-27 is dual-functional in joint inflammation 

IL-27 (consisting of an EBi3 subunit and p28 subunit) was initially identified as a Th1 
driving cytokine (Pflanzet al., 2002). IL-27 binds to gp130 which is a common cytokine 
receptor used by many cytokines as well as growth factors [e.g. IL-6, Granulocyte 
Macrophage Colony Stimulation Factor (GM-CSF) and leukemia inhibition factor (LIF) etc] 
(Pflanz et al., 2004; Sims and Walsh, 2010). The dominant feature of IL-27 is its use of its own 
receptor (WSX-1) for cell signal transduction (Pflanz et al., 2004; Takeda et al., 2003). This 
allows it to function both as a promoter and suppressor of joint inflammation (Crabe et al., 
2009; Wong et al., 2010). IL-27 promotes development of pathology by stimulating fibroblast 
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like synoviocytes (FLS) for IL-6, chemokines and MMPs expression (Wonget al., 2010). 
However it also suppresses joint inflammation by promoting Th1 cell responses and 
suppressing Th17 cell responses (Pickens et al., 2011). Because IL-17 production by Th17 
cells induces inflammation through recruitment of neutrophils and macrophages (Ifergan et 
al., 2008; Xie, Jin and Yu, 2007), suppressing Th17 cell responses therefore results in 
protection against inflammation (Niedbala et al, 2008).  
The effect of IL-27 on joint inflammation differs depending on the animal model. IL-27 

expression was detected in the spleen and inflamed joints of proteoglycan-induced arthritis 

(PGIA) mice(Cao et al., 2008). IL-27R gene knockout mice showed more resistance to PGIA 

than wild-type control mice. This result indicates that IL-27 plays a role in promoting joint 

inflammation in mice (Caoet al., 2008). However, injection of IL-27 into onset collage-

induced arthritis (CIA) mice suppressed joint inflammation. This reduction in inflammation 

was associated with a decrease in IL-6 and IL-17 production, and an increased in IL-10 

production (Niedbala et al., 2008). IL-27 local expression by injection of adenovirus carrying 

IL-27 gene expression resulted in reduction of joint inflammation and bone erosion in CIA 

mice. This effect was associated with lower serum and joint levels of IL-17 (Pickens et al., 

2011). The discrepancy in the effect of IL-27 on these two different mouse models likely 

indicates differing disease mechanisms in these models. It is possible that the PGIA model 

induces joint inflammation via stimulation of synoviocytes whilst the CIA model provokes 

joint inflammation through initiation of T cells.  

A high concentration of IL-27 is found in the synovial fluid of RA patients and has a strong 

positive association with levels of IFNa key cytokine produced by Th1) (Tanida et al., 

2011). A negative association with IL-17 from Th17 cytokines can therefore be deduced. It 

would appear that IL-27 stimulates Th1 to suppress Th17 thereby prevents joint 

inflammation and bone/cartilage destruction (Tanida et al., 2011).  

Fibroblast like synoviocyte (FLS) is a major player in generating joint inflammation in RA 

(Cooles and Isaacs, 2011). IL-27 receptors (gp130 and WSX-1) are expressed on FLS and 

render it capable of responding to IL-27 stimulation. Such stimulation leads to cell adhering 

molecule (ICAM-1 and VCAM-1) expression and chemokine (CXCL9 and CXCL10) 

production. The IL-27 response produced by FLS is synergistic with IL-1 and TNF, both 

being key cytokines in RA pathology (Wong et al., 2010). Given the dual-action properties of 

IL-27, however, its potential in therapeutic use against RA is unappealing. 

3.3 IL-35 has great potential in therapeutic treatment of RA 

Unlike IL-27, IL-35 has great pharmaceutical potential in the treatment of RA. It is a novel 
cytokine consisting of an EBi3 subunit and IL-12p35 subunit. These two proteins are highly 
expressed in the placental trophoblast and exert an immune suppressing role during 
pregnancy to avoid foetal rejection (Devergne et al., 2001). Transfection of cells with EBi3 
and p35 expressing vectors resulted in the secretion of a heterodimeric EBi3/p35 protein 
(Devergne, Birkenbach and Kieff, 1997). A recombinant EBi3-p35-Fc fusion protein has been 
constructed. When this purified protein was injected into onset CIA mice recently, joint 
inflammation was significantly suppressed. This response was strongly associated with an 

increase in IFN and IL-10 production, and a reduction in IL-17 production (Niedbala et al., 
2007). Recombinant IL-35 also expands regulatory T cell (Treg) in vitro. The expanded Treg 
cells maintain the ability to suppress T effector cells for cell proliferation (Niedbala et al., 
2007). IL-35 effectively inhibited IL-23 induced IL-17 production by Th17 cells in vitro. When 
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compared to TNFα inhibitors, IL-35 showed greater efficacy in prevent the onset of joint 
inflammation in CIA model (Kochetkova et al., 2010; Niedbala et al., 2007). Both EBi3 and 
p35 are expressed in iTreg and contributes to its immune regulation functions (Collison et 
al., 2007). Treg cells from EBi3 and p35 gene knockout mice partially lost its immune 
suppression function in inflammatory bowel disease mice (Collison et al., 2007). Recent 
research found that IL-35 is able to induce a Foxp3–inducible regulatory T cell [iTr(35)] in 
vitro. This new type of iTr(35) plays a role immune tolerance (Collison et al., 2010). Unlike 
mice, human nature Treg (nTreg) cells do not constitutively express IL-35 (Bardel et al., 
2008). However, IL-35 expressing Treg cells are induced by rhinovirus activated DCs 
independently of Foxp3 expression (Seyerl et al., 2010). EBi3 and p35 are both expressed in 
human Treg cells and are the molecules required for contact-independent T cell suppression 
(Chaturvedi et al., 2011). Research into IL-35 has demonstrated its role in immune 
suppression. Its potential in the therapeutic treatment of RA remains to be tested. Studies so 
far have mainly focused on IL-35 producing T cells (Ning-Wei, 2010; Wei et al., 2011). IL-35 
can be produced by a variety of cell types, such as stromal cells, macrophages and DCs. 
Further research using these cells may yield great insight into the actions of IL-35.  
All members of the IL-12 family of cytokines can be expressed by DCs, with the type of 
cytokine produced dependent on the stimulus (Maroof and Kaye, 2008; van Seventer, Nagai 
and van Seventer, 2002). DCs are professional antigen presenting cells that drive CD4+ T cell 
differentiation into Th1, Th2, Th17 and Treg cells with the aid of the IL-12 family of 
cytokines (Collison et al., 2010; Xu et al., 2010). The interplay between expression levels and 
competition coupling of the IL-12 family of cytokines is complex. Alteration of this intricate 
system to promote or resolve joint inflammation in RA may prove to be tedious and tricky. 
Nonetheless, therapies that either up-regulate IL-35 production or down-regulate IL-23 
should remain at the forefront of research into the treatment of RA. 

4. Inflammation induced bone and cartilage destruction in RA 

4.1 Breaking the balance of osteoblast/osteoclast in joint inflammation 
4.1.1 Osteoclastogenesis in rheumatoid arthritis 

In health, the homeostasis between osteoclasts and osteoblasts results in constant renewal of 
bone. Osteoclasts remove old bone matter whilst osteoblasts produce new bone. This 
homeostasis is maintained and controlled by a number of factors. Osteoblasts respond to 
changes in hormone levels, calcium concentration and interact with bone matrix protein 
degradation and growth factors as well as cytokines (Clarke and Khosla, 2010; Gurlek and 
Kumar, 2001; Izu et al., 2011). Osteoblasts produce cell membrane and soluble factors in 
order to direct osteoclast differentiation and maturation. The essential factors produced by 
osteoblasts are macrophage colony stimulatory factor (M-CSF) and receptor-activator of 
nuclear factor kappa-B ligand (RANKL)  (Gori et al., 2000). M-CSF drives a myeloid cell 
linage precursor into macrophages and stimulates expression of RANK, a receptor for 
RANKL (Granchi et al., 2005). Further activation of macrophages by RANK mediated cell 
signal, on the bone surface, result in the formation of multinuclear giant cell as a result of 
macrophage fusion (Hofbauer et al., 2000). Fully matured osteoclasts are multinuclear 
tartrate resistant acitic phosphotase (TRAP) positive and express cathepsin K (Ishikawa et 
al., 2001). In vitro culturing of bone marrow macrophage or peripheral blood monocytes 
with M-CSF and soluble RANKL results in full maturation of osteoclasts with bone erosion 
properties (Chen et al., 2008; Granchi et al., 2005). In addition to the production of M-CSF 
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and RANKL, osteoblasts also produce osteoprotegerin (OPG) that acts as a decoy receptor 
for RANKL. This protein suppresses osteoclast formation by blocking RANKL activity 
(Granchi et al., 2005). Reduction of OPG expression by osteoblasts allows up-regulation of 
osteoclast formation. It is the balance between RANKL and OPG expression that regulates 
osteoclastogenesis (Fig. 3).  
In RA joints, RANKL is also produced by infiltrative T cells and FLS (Fig.4) (Dai, Nishioka 
and Yudoh, 2004; Okamoto and Takayanagi, 2011a; Takayanagi, 2009). RANKL production 
is stimulated by cytokines present in synovial fluid (Dai, Nishioka and Yudoh, 2004). 
RANKL is an essential factor in inflammation-induced bone erosion. Mice deficient in the 
RANKL gene are resistant to bone erosion in all antibody induced arthritis models (Pettit et 
al., 2001). Higher quantities of osteoclasts exist in the joint of RA and arthritis mouse models 
(Gravallese et al., 1998; Suzuki et al., 1998). Using histological staining of joint tissue, fully 
matured osteoclasts with multinuclear expression of TRAP and cathepsin K can be found at 
the pannus-bone interface and subchondral site (Gravalleseet al., 1998). Elevated soluble 
RANKL (sRANKL) are present in the synovial fluid of RA patients (Hein et al., 2008). FLS 
produces sRANKL in response to number of cytokine stimulation (Kim et al., 2007). 
Synovial T cells also produce sRANKL, however the specific subset of T cell responsible for 
this has not yet been identified. Cytokines produced by FLS and macrophages further 
stimulate sRANKL production by synovial T cells (Gracie et al., 1999). In vitro IL-18 is able to 
stimulate sRANKL production in isolated synovial T cells from a RA joint (Dai, Nishioka 
and Yudoh, 2004). 
 

 

Fig. 4. Schematic diagram showing the influence of cytokines on bone remodeling in 
synovial joint inflammation. Synovial macrophages, fibroblast like synoviocytes, T and B 
cells are the main cytokine producing cells involved in RA joint inflammation. The cytokines 
produced by these inflammatory cells influence osteoblast and osteoclast differentiation and 
function. Osteoblasts produce M-CSF, RANKL and OPG in order to control TRAP+ 
multinuclear osteoclast formation. Osteoblast maturation and function is control by 
autocrine /paracrine Wnt signaling.   
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4.1.2 Osteoblast maturation in RA 

Synergistic to enhanced osteoclastogenesis in RA joints, a reduction in osteoblast activity 
was observed in animal models and RA patients (Cejka et al., ;Walsh et al., 2009b). Roughly 
10% of RA patients on DARMs, an anti-inflammatory therapy, showed evidenced of bone 
regeneration (Ideguchi et al., 2006). Bone re-absorption provides strong stimulation for bone 
production by osteoblasts in inflamed joints (Davis et al., 2010). In RA, this response is 
significantly dampened in areas of inflammation when compared with healthy areas bone 
(Walsh and Gravallese, 2010). This indicates that cell signaling for osteoblast maturation is 
suppressed in inflammatory sites (Walsh et al., 2009). In healthy bone, osteoblast precursor 
expresses Runx2 and leads to full maturation of non-proliferative osteoblasts with 
expression of alkaline phosphatase, collagens and mineralization cell matrix proteins – such 
as osteocalcin, osteopontin and bone salioprotein (Komori, 2010).  
The canonical Wingless (Wnt) signal is vital in the control of osteoblast maturation (Tamura 
et al., 2010). Wnt proteins are a group of secreted glycoproteins. Bone Morphogenic Proteins 
(BMPs) stimulate immature osteoblasts to produce Wnt proteins (Sethi and Kang, 2011). 
Wnt protein receptors have been identified as Frizzlrd (FZD) and low density lipoprotein 
receptor-related protein 5 and 6 (LRP5/6) (Takahashi et al., 2011). Osteoblasts produce 
endogenous inhibitors, such Dickkopf1 (DKK1), to competitively bind to LRP5 and LRP6 

(Walsh et al., 2009). TNF stimulates DKK1 production and therefore suppresses osteoblast 
development (Diarra et al., 2007). Levels of DKK1 are raised in both arthritis mouse models 
and human RA synovial fluid (Diarraet al., 2007). In arthritis animal models, blockade of 
DKK1 in vivo results in enhanced bone formation (Diarraet al., 2007). Recent clinical research 
into the effects of B cell depletion using Rituximab (anti-B cell antibody) on suppression of 
inflammation in RA patients yielded interesting results. It showed that treatment with 
Rituximab resulted in a reduction of bone re-absorption as well as a marked increase in bone 
formation (Wheater et al., 2011). These findings contribute greatly to the new and fast 
developing field of osteoimmunology (study of bone remodeling in inflammation). The role 
of the IL-12 family cytokines in regulating bone turnover is currently unclear. So far, the 
majority of research in this field has focused on osteoclastogenesis. In order to understand 
osteoblast maturation in the inflammatory environment, a greater understanding of the 
mechanisms behind inflammation induced joint destruction must be achieved. 

4.2 Role of IL-12 family cytokine in regulation of inflammatory bone erosion 

In RA, two key biological processes contribute to joint destruction – synovial inflammation 
and altered bone remodelling. Synovial inflammation results from infiltration by large 
numbers inflammatory cells, such as neutrophils, macrophages and T cells. These cells 
produce proteinases to degrade cell matrix proteins in both cartilage and bone. More 
importantly, they produce large numbers of cytokines that influence bone remodelling via 
effects on osteoclast and osteoblast activities. Osteoblasts and its precursors also produce 
cytokines in response to this stimulation (Cornish et al., 2003). The IL-12 family cytokines 
stimulate T cell responses that subsequently act on osteoclast/osteoblast precursors to 
promote or suppress cell differentiation (Kamiya et al., 2011). Certain members of the IL-12 
family cytokines can also act on osteoclast precursors directly (Chen et al., 2008).  

4.2.1 IL-12 inhibits osteoclastogenesis in vitro and in vivo.  

The majority of research into the effect of IL-12 on osteoclastogenesis has been studied in in 
vitro cell culture models. Bone marrow macrophages or splenic cells have the ability to 
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differentiate into fully matured TRAP+ multinuclear functional osteoclasts in a culture with 
M-CSF and sRANKL (Chen et al., 2008). In earlier studies, IL-12 synergised with IL-18 to 
inhibit osteoclast formation (Yamada et al., 2002). Given that GM-CSF stimulation of bone 
marrow cells and splenic cells results in its differentiation into DCs, inhibition of 
osteoclastogenesis can be explained by GM-CSF production stimulated by IL-12 and IL-18 
(Horwood et al., 2001).  Bone marrow cells differentiate into macrophage 1 (M1) in response 
to GM-CSF and macrophage 2 (M2) in response to M-CSF (Krausgruber et al., 2011). M2 
expresses higher RANK and is capable of osteoclast formation in response to RANKL. M1 
and M2 are phenotypically plastic. Functional M2 cells can convert into M1 cells in a culture 
medium containing GM-CSF (Krausgruber et al., 2011). The reverse is also true. It can 
therefore be theorised that, in inflammatory joints, osteoclasts responsible for bone erosion 
cannot form if levels of GM-CSF and M1 cells exist. Osteoclastogenesis could occur as a 
result of M2 migration into inflamed joints during the inflammation resolution stage of joint 

disease. TNF can also induce osteoclastogenesis in vivo (Kitaura et al., 2006). Injection of IL-

12 and TNF results in reduced osteoclast formation and lower serum TRAP levels. This 

demonstrates that IL-12 inhibits TNF stimulation of osteoclasts (Yoshimatsu et al., 2009). 

4.2.2 IL-23 promotes bone erosion via direct and indirect mechanisms 

IL-23 promotes osteoclast formation indirectly via IL-17/Th17. IL-23 is an essential cytokine 

in the production and maintenance of Th17 cells. IL-17 induces RANKL production in both 
osteoblasts and FLS (Okamoto and Takayanagi, 2011b;Yago et al., 2007). IL-17 also 

stimulates osteoclast precursor cells to up-regulate RANK expression and subsequently 
promote osteoclast formation in the presence of RANKL. Recent experiments have 

suggested a more direct effect of IL-23 on osteoclastogenesis. In our laboratory, we have 
shown IL-23 to drive osteoclast formation independent of IL-17 production in culture. IL-23 

induces RANK expression in osteoclast precursor cells thereby sensitising the cells to 
RANKL stimulation and resulting in osteoclast development  (Chen et al., 2008). Further 

support arose from experiments investigating osteoclastogenesis using bone marrow cells 
from IL-23p19 knockout mice. The direct osteoclastogenic effect of IL-23 was evidenced by 

greatly reduced osteoclast formation in IL-23p19 gene deficient mice (Li et al., 2010). 
Experiments using FLS from RA patients found that IL-23 stimulated RANKL expression 

with subsequent up-regulation of osteoclastogenesis and bone erosion (Li et al., 2010). IL-23 
has also been suggested to stimulate GM-CSF production by T cells thereby inhibiting 

osteoclastogenesis  (Quinn et al., 2008). The contradictory roles of IL-23 in bone loss 
secondary to inflammation are perplexing and in desperate need of further 

research. Interestingly, IL-23p19 knockout mice have lower bone mass (Quinn et al., 2008). 
This suggested that, in health, IL-23 aids the function of osteoblasts in bone formation . In 

our laboratory, osteoblasts have been found to induce IL-23p19 expression (unpublished 
data). In terms of bone remodelling in RA, these results suggest that IL-23 play multiple 

roles. Not only does it contribute to the functioning of osteoblasts but it also acts as a signal 
for communication between osteoblasts and osteoclasts.  

4.2.3 IL-27 protects joint from inflammatory bone erosion.  

IL-27 has a dual-effect in the regulation of joint inflammation. In RA, IL-27 proteins can be 
detected in both serum and synovial fluid (Tanida et al., 2011). In synovial fluid, CD14+ 

mono-nuclear cells (MNC), not FLS, contribute to IL-27 production (Tanida et al., 2011). The 
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effects of IL-27 on osteoclast formation are either direct (on osteoclast precursors) or indirect 
(via T cells). IL-27 acts on osteoclast precursor cells to down regulate RANK expression and 
suppress RANKL induced cell signalling (Kalliolias et al., 2010). IL-27 inhibits 
oseteoclastogensesis through blockade of M-CSF cell signalling via STAT1 dependent 
mechanisms (Furukawa et al., 2009). CD4+ T cells produce cell surface and soluble RANKL 
to promote osteoclast formation in joint inflammation (Kamiya et al., 2011). IL-27 suppresses 
both cell surface and soluble RANKL expressions in CD4+ T cells through suppression of the 
STAT3 dependent mechanism, rather than STAT1 (Kamiyaet al., 2011). These results suggest 
that IL-27 suppress osteoclastogenesis indirectly, via T cells. 
IL-27 also acts on osteoblast cells. Osteoblasts express both receptor chains (gp130 and WSX-
1) for IL-27 signalling (Sims and Walsh, 2010). Cultures of human osteoblast cells in a 
medium containing IL-27 for 14 days showed increased production of osteoblast terminal 
markers, alkaline phosphatase and bone nodules (Cocco et al., 2010). Results published by a 
number of independent studies have shown IL-27 to protect the joint from damage in 
inflammatory joint disease of CIA mice (Niedbala et al., 2008). 
The role of IL-35 in inflammatory bone loss is poorly understood and is yet to be studied. IL-
35 is capable of suppressing IL-17 production by Th17 cells (Niedbala et al., 2007; Wei et al., 
2011). Both IL-27 and IL-35 appear to play salient roles in the protection against joint 
damage in RA. IL-35 has strong therapeutic potential in the treatment of arthritis in CIA 
mouse models. In order to further this potential, urgent attention on studies investigating 
the biological functions of IL-35 in the control of RA bone loss must be paid. 
 

 

Table 1. Summary the effects of IL-12 family cytokines in joint inflammation and bone 
remodelling of rheumatoid arthritis. 

5. Conclusion 

The changes in synovial joints with RA begin with inflammatory cell migration. T cell 
activation results in chronic inflammation and extra cellular matrix protein production by 
fibroblast-like synoviocytes. Macrophages transform into bone resorptive osteoclast cells 
and erode both joint cartilage and bone. In response to this, osteoblast cells mature and 
produce bone matrix. This leads to healing of joint destruction. IL-12 family cytokines can 

Cytokines CD4+  T cell Effects on Joint

inflammation

Osteoclast 

formation

Osteoblast 

maturation

IL-12 Th1 Promote Suppress ?

IL-23 Th17 Promote Promote ?

IL-27 Th1 Promote or 

Suppress

Suppress ?

IL-35 Treg Suppress ? ?
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influence the responses produced by T cells and fibroblast like synoviocytes, and thus 
influence bone remodelling within inflamed joints. IL-12 family cytokines also bind to 
osteoblast and osteoclast precursors to either promote or suppress bone formation and 
erosion. Although IL-12 family cytokines have protein homology, with certain members 
sharing the same protein subunits, its functions in T cell induced inflammation and bone 
loss remain distinctly different (Table 1). Unlike IL-35, which suppresses the inflammatory 
joint response in RA, IL-12, IL-23 and IL-27 promote it. The mechanisms of action behind 
some of these cytokines are known whilst others are waiting to be uncovered. IL-12 drives a 
Th1 response whereas IL-23 promotes a Th17 response. These T cell responses lead to 

chronic joint inflammation. IL-12 is also a potent inducer of IFN production. The immune 

suppression role of IFN in osteoclastogenesis deems IL-12 to have a protective role against 
joint destruction caused by RA. On the other hand, IL-23 promotes joint inflammation and 
osteoclastogensis thereby causing bone erosion. IL-27 stimulates fibroblast like synoviocytes 
to produce a number of inflammatory factors that trigger joint inflammation. IL-27 also 
suppresses Th17 and therefore prevents bone loss in RA. The discovery of IL-35 in recent 
years has spawned a new area of research. This novel cytokine suppresses T cell activation 
and has impressive therapeutic potential against joint inflammation in RA. Its role against 
bone loss is unknown and requires further investigation. The role of IL-12 family cytokines 
in the regulation of osteoblast functions is another area in need of research. Bone erosion 
and joint destruction are debilitating and irreversible consequences of RA. Further 
exploration of IL-12 family cytokines (in particular IL-35) and their role in osteoclastogenesis 
needs to be undertaken without delay. Only then will the therapeutic potential of IL-35 be 
ready and safe to test in humans. With new therapies against RA, and potentially other 
autoimmune disorders, the future looks bright in this field of research. 
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