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1. Introduction 

Spatial interpolation, i.e. the procedure of estimating the value of properties at unsampled 
sites within areas covered by existing observations (Algarni & Hassan, 2001), appears 
various models using local/global, exact/approximate and deterministic/geostatistical 
methods. As being an essential tool for estimating spatial continuous data which plays a 
significant role in planning, risk assessment and decision making, interpolation methods 
have been applied to various disciplines concerned with the Earth’s surface, such as 
cartography (Declercq, 1996), geography (Weng, 2002), hydrology (Lin & Chen, 2004), 
climatology (Attorre et al, 2007), ecology (Stefanoni & Ponce, 2006), agriculture and 
pedology (Wang et al, 2005; Robinson & Metternicht, 2006), landscape architecture (Fencik & 
Vajsablova, 2006) and so on. 
Since spatial interpolation is based on statistics, there are inevitably a certain assumptions 
and optimizations. As a result, errors introduced by spatial interpolation and their 
propagation in analysis models will certainly influence the quality of any decision-making 
supported by spatial data. This has been one of the hot issues of geographical information 
science in recent years (David et al, 2004; Shi, W. Z, et al, 2005; Weng, 2006). There are many 
factors affecting the performance of spatial interpolation methods. The errors are mainly 
generated from sample data density (Stahl et al., 2006), sample spatial distribution (Collins 
and Bolstad, 1996), data variance (Schloeder et al., 2001), grid size or resolution (Hengl, 
2007), surface types (Zimmerman et al., 1999) and interpolation algorithms (Weng, 2006). 
However, there are no consistent findings about how these factors affect the performance of 
the spatial interpolators (Li & Heap, 2011). Therefore, it is difficult to select an appropriate 
interpolation method for a given input dataset. 
With the increasing applications of spatial interpolation methods, there is a growing concern 
about their accuracies and evaluation measures (Hartkamp et al., 1999). The previous 
studies have greatly focused on individual evaluation methods of spatial interpolation 
(Weber & Englund, 1992 & 1994; Erxleben et al, 2002; Chaplot, 2006; Weng, 2006; Erdogan, 
2009; Bater & Coops, 2009). It is necessary to explore comprehensive evaluation methods of 
interpolation accuracy. Two fundamental issues related to assessment measures of 
interpolation are addressed here as follows. 
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1. Comparison results: most commonly used methods for evaluation of spatial 
interpolation models compare the measured data with the interpolated data. However, 
it is no doubt that measured data are always unsatisfactory. This leads to unknown 
errors inherent in measured data (Zhou & Liu, 2002). The results may not always keep 
consistent and even get some controversial conclusions. For example, Laslett et al. 
(1987), Javis & Stuart (2001) and Erdogan (2009) thought Thin Plate Spline interpolation 
model can give better interpolated results, while Bater & Coops (2009) argued that 
Nature Neighbour Interpolation is with more accurate interpolated value. Meanwhile, 
some researchers (Hosseini et al., 1993; Gotway et al., 1996; Zimmerman et al. 1999; 
Erxleben et al., 2002; Vicente-Serrano et al., 2003; Attorre et al, 2007; Piazza et al, 2011) 
found that Kriging is the best one among all the existing interpolation models. Another 
phenomenon should be mentioned is that the frequency of interpolation methods 
compared varies considerably among methods and different studies have compared a 
suite of different methods, which makes it difficult to draw general conclusions. 

2. Assessment indices: there are two typical assessment indices, i.e. statistical measures 
and spatial accuracy measures. The statistical measures such as Root Mean Squared 
Error (RMSE), Standard Deviation (SD) and Mean Error (ME) are most frequently used 
(Weber & Englund, 1994; Weng, 2002; Vicente-Serrano et al., 2003; Hu et al., 2004; 
Weng, 2006; Tewolde, 2010), whereas incapable of describing the spatial pattern of 
errors. Then the morphological accuracy measures such as accuracy surface and spatial 
autocorrelation (Weng, 2002; Weng, 2006; Tewolde, 2010) are employed. However, in 
order to obtain full evaluation of the interpolations, following problems should be 
further addressed: (1) most of the evaluations are still concentrated on the statistical 
measures, while the spatial accuracy ones are likely to be ignored relatively; (2) the 
maintenance of integrity of an interpolated surface has attracted little attention and a 
suitable quantitative index is still lack; (3) without consideration of the robustness of 
interpolation algorithms to data errors. 

To overcome the above-mentioned problems, the author (2002, 2003 & 2004) developed a 
quantitative, data-independent method to evaluate algorithms in Digital Terrain Analysis. 
With this method, six slope/aspect algorithms and five flow routing algorithms were 
evaluated properly. Here we hope to employ this method to comprehensively evaluate 
spatial interpolation models and identify a set of accuracy measures. 

2. Unified interpolation models 

So far, more than ten spatial interpolation models have been developed in different fields. 
Here eight commonly used interpolation algorithms are examined and discussed, e.g. 
Inverse Distance Weighted (IDW), Kriging, Minimum Curvature (MC), Natural Neighbor 
Interpolation (NNI), Modified Shepard's Method (MSM), Local Polynomial (LP), 
Triangulation with Linear Interpolation (TLI) and Thin Plate Spline (TPS). According to the 
range of interpolation, these interpolations can be classified as global interpolation, block 
interpolation and point-by-point interpolation. While in view of mathematical mechanism, 
they can also be grouped into deterministic algorithms and geostatistical algorithms. 
Although there are various spatial interpolation algorithms with diverse functions, they 
share the same essential factors, i.e. on the basis of describing the relationships between data 
points, and computing the values of unmeasured points through different function 
combinations of sample points. In another word, the relationships depict the spatial 
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correlations between the known points, while the combined functions are the performance 
of interpolations in mathematics, both of which constitute the commonality of interpolation 
functions in mathematics and physics. Therefore, they can be unified as one general 
interpolation model, just as follows: 

          1 1 2 2Z ...p n nw Z w Z w Z m WZ m           (1) 

where Zp is the estimated value of an interpolated point P(x , )p py , iZ  denotes a sample 

point with wi indicating its corresponding weight, m presents a constant, and n is the total 

number of sample points. 
In this united model shown as Formula 1, any interpolation function can be regarded as a 
linear combination of sample points, with the difference of rules for weight allocation. In other 
words, the determination of the weight vector W is essential and critical for interpolations. For 
example, IDW determines its weight according to the distance between sample points directly, 
while NNI employs Thiessen polygons and Kriging uses semivariable functions instead. As 
for the moving curved surface fitting interpolation, though, the weight function is not obvious, 
surface-fit functions are employed to allocate weights, implying the spatial relationships of 
data points. The united interpolation models of the eight interpolation algorithms discussed in 
this study have been separately listed in Tab. 1. 
It has been proved in Tab. 1 that in spite of various interpolation algorithms and models, 
they have the same intrinsic interpolation mechanism, and any common interpolation 
method can be transformed into a united model. From the mathematical mechanism, any 
spatial interpolation is actually a process of assigning weights to sample points, and  
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Interpolation 
models 

Interpolation functions Weight vector(W) Constant (m)
Parameter 

Specification 
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* In this study, the power parameter k of IDW function is set as 2, as well as MSM; the 
quadratic polynomial is applied in LP interpolation. 

Table 1. Unified interpolation models of common spatial interpolation algorithms 
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different interpolation models have different patterns of weight allocation. While 

concerning the meaning of geography, the essence of interpolations lies in the spatial 

correlations between unmeasured points and sample points, reflected during the course of 

weight allocation. Both sides of mathematics and geography mentioned here can not only 

give a hypostatic explanation for the spatial interpolation physical mechanism, but can 

also provide certain guidance for further analysis and evaluation of spatial interpolation 

models. 

3. Methods and procedures 

In order to achieve the objectives proposed above, a data-independent experiment has been 

carried out, which allowed us to quantitatively analyze and evaluate different spatial 

interpolation models. Fig. 1 shows the flowchart of the whole process employed for our 

experiment. More specific procedures are illustrated as follows: (1) Constructing a 

mathematical surface with a known-formula; (2) Discretizing the mathematical surface and 

then randomly sample N points from those discrete ones; (3) Adding errors with varying 

levels to the randomly sampling points, so that we can get discrete points with the same 

distribution but varying error-levels; (4) Making interpolated operations separately on the 

sampling points without errors and the ones with varying error-levels, using the eight 

interpolation models mentioned above; (5) Analyzing and evaluating the results acquired 

from different interpolation algorithms according to different evaluation indices.  

It is noted that all of the eight interpolation algorithms applied in this study are fulfilled by 

Surfer 8.0, a powerful contouring, gridding and 3D surface mapping package. Another 

aspect should be indicated is about the parameter-setting during interpolation. The 

parameters here mainly consist of three kinds: (1) a search neighhood including its search 

radius and the number of sampling points, which should be set for the local interpolation 

methods such as LP, IDW, MSM and TPS; (2) the maximum residual and the maximum 

number of cycles when gridding with MC method; (3) variogram models like linear, 

gaussian and logarithmic models for Kriging interpolator. Except variogram models used in 

Kriging interpolation, the parameters in the others interpolation methods are control 

parameters and can be set as default of Surfer 8.0, for they have no effect on weight 

allocation. While for Kriging, the choice of variogram models has a close connection with 

weight allocation and may affect the results of interpolation. Through repeated tests and 

validations, the linear model is selected in this study. 

3.1 Design of mathematical surfaces 
In this study, we took the similar approach as reported by Zhou and Liu (2002, 2003 & 

2004) by employing pre-defined standard surfaces for testing and comparing selected 

algorithms. As a result, the ‘true’ attribute value of any point on the standard surfaces 

which are pre-defined by known mathematical formulas can be acquired without errors. 

Our focus is on the difference between the values calculated by interpolation methods and 

the ‘true’ valuesto compare these interpolation algorithms objectively. According to the 

complexity of the surfaces, three surfaces have been selected for test, namely a simple 

surface, a more complex surface and a Gauss synthetic surface, which are defined by the 

equations below: 
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Fig. 1. Flowchart of the scheme to analyze and evaluate the spatial interpolation models 
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20
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Then the three selected surfaces are separately scattered into discrete points, from which one 
thousand points were randomly sampled. All of the three simulated mathematical surfaces 
are showed in Tab. 2, as well as the distribution of their randomly sample points. After that, 
add different errors with the same mean 0 but varying Root Mean Square Errors (RMSE), 
which are in turn 0.5, 1, 1.5, 2, 4, 6, 8, 10, to these sample points, making their errors with the 
same distribution but different levels of values. 
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 Surface 1 (S1) Surface 2 (S2) Surface 3 (S3) 

Mathematic
al surfaces 

 

Randomly 
sample 
points 

 

Table 2. Mathematical surfaces and distribution of randomly sample points 

3.2 Design of evaluation indices  
The interpolation result can be regarded as an original surface recovered by sample points. 

It has two implications, i.e. one is to reflect the closeness between the original surface and 

the recovered one on the value, and the other one is to recover the structural features of the 

original surface. It means that the interpolated surface should as far as possible keep the 

characteristics of the original surface both on statistics and structures, which should be 

considered for the accuracy assessment of the interpolation results as well.  

The evaluation indices about statistical features mainly include RMSE (Root Mean Square 

Error), ME (Mean Error) and spatial autocorrelation. In this study, RMSE and ME are 

selected to describe the quality of the interpolation functions. For following the first law of 

geography (Tobler, 1970), the original surface itself has a strong spatial autocorrelation, so as 

to the whole interpolated surface. As a result, the surface acquired by interpolations should 

keep the spatial autocorrelation measured by Moran’I here, or else leading to a meaningless 

result with an almost randomly interpolated surface. What’s more, another two spatial 

indices, volume and surface area are chosen to reflect the maintenance of overall 

performance after interpolation. The volume stands for the room above a datum plane and 

under an original surface or an interpolated surface whose area is measured by surface area.  

Structural characteristic is the other important evaluation method. It can be regarded as the 

skeleton of a surface, determining its geometric shape and basic trend, on which the 

interpolated surface should be in accord with the original one. For the integrity of the 

structural characteristic, so far there is lack of a suitable quantitative index. In this study, a 

method of contour-matching has been applied to compare and analyze different 

interpolations qualitatively, by means of overlaying the contours generated from an 

interpolated surface and the original one. If these overlaid contours match generally without 

great deviation or distortion, it can be induced that the structural characteristic of the 

surface has been kept well after being interpolated, or the structural characteristic will be 

lost leading to a fault result. 
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4. Results and discussion 

4.1 RMSE and ME 
As the RMSE statistics of the interpolated results from the three surfaces shown in Tab. 3, it 
is not difficult to identify that all of the three interpolated surfaces present similar variation 
tendency as a whole. The RMSEs of the interpolated surfaces keep pace with the increasing 
errors of the original surface, leading to a decreasing interpolated accuracy. 
 

 S1 S2 S3 

 0 1 10 0 1 10 0 1 10 

IDW 0.13 0.46 1.38 1.14 1.19 1.72 0.25 0.50 1.30 

Kriging 0.02 0.65 2.13 0.11 0.65 1.99 0.01 0.67 1.98 

MC 0.07 0.83 2.79 0.29 0.90 2.53 0.06 0.88 2.51 

NNI 0.03 0.62 2.02 0.27 0.67 1.91 0.05 0.64 1.88 

MSM 0.02 1.07 3.62 0.29 1.07 3.22 0.01 1.11 3.28 

LP 0.22 0.25 0.43 2.51 2.49 2.50 0.56 0.58 0.69 

TLI 0.03 0.70 2.31 0.26 0.76 2.17 0.05 0.72 2.14 

TPS 0.02 0.84 2.86 0.07 0.87 2.58 0.01 0.90 2.56 

* 1) 0, 1, 10 are the RMSE added to the original sample points; 2) For the interpolation methods of NNI 
and TLI cannot deal with the boundary problem well, therefore their boundary values which are 
replaced with the maximum have been excluded when calculated in statistics. 

Table 3. RMSE statistics of the interpolated results from the three surfaces 

As shown in Tab.3, Fig. 2 and Fig. 3, when sample points have no errors, the RMSEs of the 
interpolated results for different methods have an decreasing sequence as LP > IDW, MC > 
NNI, TLI > Kriging, MSM, TPS. However, the interpolated results vary with the augment of 
data errors. When the RMSE of sample points increases to 10, the RMSE of the surface 
interpolated by MSM achieves the maximum, with the minimum gained by LP and the 
sequence of RMSE for different interpolations changes to MSM > TPS, MC > TLI, Kriging, 
NNI > IDW > LP. The results show that if the original data has a better quality, the methods 
of TPS, MSM and Kriging can get a high precision for the interpolated results, while the 
quality of the original data becomes poorly, the result of LP turns to be relatively reliable.  
 

 

Fig. 2. RMSE statistics of interpolated results from S1 

www.intechopen.com



Quantitative Evaluation of Spatial Interpolation  
Models Based on a Data-Independent Method 

 

61 

 

Fig. 3. Changes in RMSEs of the three surfaces before and after adding errors 

Actually, it is not difficult to explain the results. When sample points have no errors or small 
errors, these sample points themselves can portray the characteristics of the original surface 
in a relatively accurate degree. Using semi-variogram, the geostatistical method of Kriging 
recovers the spatial correlation of the original surface exactly, while TPS and MSM are 
means of finding a proper way to allocate weights to sample points according to the 
distance between known points and interpolated points. With the increasing of sample data 
errors, the surface generated by sample points starts to deviate from the original surface, 
meaning the sample surface can no longer describe the characteristics of the original surface 
completely. No matter Kriging or TPS, the surfaces they want to depict or recover are just 
sample surfaces. For LP, although not all of the sample points are strictly passed through, 
this interpolated method can make a certain restraint on the original data errors, showing a 
role of peak-clipping and valley-filling for the interpolation. Furthermore, the restraining 
effect can also reflect the variation tendency of the surfaces created by sample points, 
bringing about a higher interpolated precision. The interpolated results for the three 
surfaces with different complexity levels have been showed by Fig. 3. On the whole, the 
changing tendencies of these three surfaces present a roughly consistent pace, that is to say 
the largest change of RMSE before and after adding errors belongs to MSM with the 
minimum belonging to LP, and an ascending order between the two extremes are as 
follows: TPS, MC, TLI, NNI and IDW. It has been further proved that the interpolated 
method of LP is less vulnerable to data errors appearing a superior resistance to errors, 
while MSM is extremely sensitive to data errors showing a worst error-resistance. 

4.2 Moran’I index  
The Moran’I statistics of S1 with no data-errors and higher data-errors acquired from 

different interpolation methods have been compared in Fig. 4 and Fig. 5. For the data 

without errors, the Moran’I of Kriging 0.9980 reaches the topmost showing the best spatial 

correlation, then followed by LP, TPS and IDW with a better spatial correlation, and the 

lowest Moran’I belongs to MC whose spatial correlation is the worst (refer to Fig. 4). 

However, with the increasing of the sample data errors, the Moran’I of LP, 0.9977, changes 

to the highest with the optimal spatial correlation and by contrast, MSM turns to the lowest 

as shown by Fig. 5. The other two surfaces present a similar variation regularity or tendency 

for the entire, although there are a few differences among individual interpolation methods. 

In order to further interpret the impact caused by the increasing data-errors on spatial  

www.intechopen.com



 
Advances in Data, Methods, Models and Their Applications in Geoscience 

 

62

 

Fig. 4. Moran’I statistics of S1 (RMSE = 0) 

 

 

Fig. 5. Moran’I statistics of S1 (RMSE = 10) 

 

 

Fig. 6. Comparisons of Moran'I reductions among three surfaces 

correlation, Fig. 6 reveals the overall variations of the three surfaces. Though Moran'I 
reductions of the three surfaces have a few differences, they share the same changing 
tendency. No matter what surface it is, the Moran'I reductions caused by interpolation LP is 
the smallest with its spatial correlation kept best, while MSM loses most. And the increasing 
sequence between LP and MSM is listed as follows: IDW, Kriging, NNI < MC, TLI, TPS, which 
is nearly in accordance with the statistical results of RMSE and ME given in Section 4.1. 

4.3 Volume and surface area  
To further analyze the maintenance of overall performance after interpolation, the absolute 
differences between the ‘true’ volume and volumes calculated by surfaces interpolated by 
different models have been compared, except NNI and TLI for their boundary effect. Still 
taking the first surface for example, the absolute volume difference showed in Fig. 7 stands 
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for the difference of the ‘true’ volume and the volume between an interpolated surface and 
the datum plane whose elevation is 0. All of the results are calculated by Surfer 8.0.  
As shown in Fig. 7, when the original data has no error, the absolute volume differences of 
MSM, TPS and Kriging are smaller, and by comparison, LP, MC and IDW are relatively 
larger, with the minimum belonging to MSM and the maximum belonging to LP. However, 
their relationships make changes after adding a certain errors, similar as the variation of 
RMSE in Section 4.1. Aside from LP, the absolute volume differences of other interpolation 
methods are increased with mounting errors, keeping a consistent sequence of LP < IDW < 
Kriging < TPS < MC < MSM. Beyond doubt, the above analysis results are approximately 
accordant with the results of RMSE, ME and Moran’I. Moreover, judging from the variation 
tendency, MSM changes greatest with LP changing least, which has demonstrated the 
powerful robustness of LP to data errors again. Similar conclusions as volume index can be 
got from Fig. 8, which presents the absolute differences of the ‘true’ surface area and 
different interpolated surfaces areas. 
 

 

Fig. 7. Absolute volume differences of S1 

 

 

Fig. 8. Absolute surface area differences of S1 

4.4 Contour matching 
Comparison between the contours of the original surface and those of the interpolated 

surfaces will be discussed in this section. Fig .9 takes the second surface for instance to 

present the comparisons when the original data is without errors. As shown in Fig. 9, the 

contours generated by Kriging, MSM and TPS perform preferably smooth, matching with 

contours of the original surface well. For NNI and TLI, the inside shapes of the contours 

maintain well with smooth lines, however, some abnormalities like figure losses appear on 

the boundary, further verifying their boundary effect mentioned above. Though the shapes  

of contours produced by LP keep well too, it is easy to notice that their positions shift on the 
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whole. On the contrary, the contours of IDW and MC display evident deformation and 

distortion, especially an obvious bull’s eye effect appears for IDW. By contrast, contours of 

MSM which shares a similar interpolation theory as IDW maintain a better shape without 

the bull’s eye effect, for its improvement in the weight function. As a result, it has been 

proved again that weight allocation and its corresponding spatial relationship between 

interpolated points and known points are the ultimate causes for the results of different 

interpolation methods. 

 

 

S2 IDW Kriging 

 

MC NNI MSM 

 

Fig. 9. Contour comparison among different interpolated surfaces from non-error original 
data (cell size = 1m) 
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When RMSE of sample points rises to 8, the contours produced by the same eight 
interpolation methods have been showed in Fig. 10, most of them deforming or distorting 
drastically except LP. More specifically, the shape or distribution of the deformed contours 

can be divided into two cases: as for IDW, Kriging, MC, MSM and TPS, the bull’s eye effect 
appears in the regions with high errors, and for TLI and NNI, their contours display as 
roughly fold-lines with an uneven intensity. Compared with other methods, the contours of 
LP, though, are not that smooth as the original ones, their shape and distribution are both 

kept relatively intact, showing a powerful robustness to errors. 
 

 

S2 IDW Kriging 

 

MC NNI MSM 

 

Fig. 10. Contour comparison among different interpolated surfaces when RMSE of original 
data is 8 (cell size = 1m) 

www.intechopen.com



 
Advances in Data, Methods, Models and Their Applications in Geoscience 

 

66

4.5 Comprehensive evaluation 
Combing the various evaluation indices discussed above, Tab. 4 gives a comprehensive 

evaluation for various interpolation models. The levels of interpolation accuracy are defined 

as: lowest, lower, high, higher and highest, while the levels of robustness to errors are set as: 

weakest, weaker, strong, stronger and strongest. When the original data has no errors, the 

interpolation accuracy of TPS is the highest, followed by MSM, and MC is the lowest. After 

higher errors being added to the original data, the interpolation accuracy of TPS changes 

from the highest to the lowest, while the precision of LP alters from lower to the highest. As 

a result, the strongest robustness to errors is LP, and the weakest is MSM by contrast. As for 

MC, regardless of the original data with errors or not, its interpolation accuracy always 

keeps lower.  

 

Models 
Accuracy with  
non-error data 

Accuracy with  
error data 

Robustness 

IDW lower higher stronger 

Kriging high higher strong 

MC lowest lower weaker 

NNI high high stronger 

MSM higher lowest weakest 

LP lower highest strongest 

TLI high lower weaker 

TPS highest lower weaker 

Table 4. Comprehensive Evaluation for interpolation models 

5. Conclusions 

From the mechanism of spatial interpolation, weight allocation and its corresponding spatial 

relationship between interpolated points and known points, this article proposes an 

evaluation and analysis approach of spatial interpolation in GIS based on data-independent 

method, with the construction of mathematical surfaces without errors to objectively reflect 

the precision of different interpolation algorithms and with the addition of varying degree-

errors to examine their robustness to errors. Based on our study, following conclusions can 

be given: (1) when the quality of original data is relatively well, TPS and Kriging can acquire 

more reliable results; (2) when the quality of original data becomes worse, for its resistance 

to data errors, LP can maintain a preferable interpolated precision, showing a powerful 

robustness to errors; (3) the validity of weight function and its corresponding spatial 

relationship are the kernel for design and analysis of weight function; (4) a kind of data 
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smooth process or data precision improvement method can be an effective way to advance 

the interpolated accuracy. 

In order to further quantitatively depict the differences of morphological characteristics 

between original surfaces and interpolated surfaces, further studies will be focused on 

developing a visually quantitative index, such as an area enclosed between homologous 

contours (two level contours separately derived from an original surface and an interpolated 

surface). The real-world tests will also be conducted to compare with the findings by the 

theoretical analysis and a set of high-accuracy data should be needed for test.  
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