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1. Introduction 

The gastrointestinal tract is a unique organ that cooperates with commensal flora to 
maintain physiological homeostasis. A layer of mucosa forms the interface between the host 
and the luminal contents where an elaborate immune system allows co-existence of diverse 
microorganisms and dietary antigens. The mucosal immunity regulates tolerance to 
commensal microorganisms while inducing effector immunity to pathogens through a fine 
interplay between innate and adaptive immune responses. In this process, innate immunity 
is responsible for recognition of microorganisms and initiation of effector and/or regulatory 
adaptive immune responses. Therefore, innate immunity is crucial for regulation of luminal 
microorganisms to maintain mucosal homeostasis.  

Within the gastrointestinal mucosa, the effector and regulatory immune responses to 
commensal microorganisms are normally induced simultaneously, and constantly maintain 
mucosal immune homeostasis. Loss of this balance may cause uncontrolled mucosal 
inflammation, the state often seen in inflammatory bowel disease (IBD). IBD is a group of 
chronic inflammatory disorders in the gastrointestinal tract mainly classified into two types: 
ulcerative colitis and Crohn’s disease. Although the etiology of IBD remains obscure and 
thus a curative therapy has not been established, genetic and immunological studies have 
provided cues for therapeutic targets of IBD based on the molecular pathogenesis of the 
disease. Because the central pathogenesis of IBD lies in abnormal mucosal immune 
responses to commensal flora, elucidation of immune regulation in gastrointestinal mucosa 
will help establish more effective strategies for treatment of IBD.    

The initial step of the innate immunity is sensing pathogen-associated molecular patterns 
(PAMP)s through pathogen recognition receptors (PRRs), which induces a variety of gene 
expression via distinct intracellular signaling pathways. Different types of PRRs induce 
distinct sets of signaling pathways in response to the pathogens. Because different PRRs 
within a host cell can simultaneously recognize several molecular patterns of a pathogen, 
each pathogen triggers a unique combination of signaling pathways. In addition, different 
cell types may induce different responses to a pathogen, which increases host capacity to 
establish organized immune responses to a variety of pathogens. Diverse pathogen patterns 
are precisely recognized by TLRs, nucleotide-binding oligomerization domain (NOD)s and 
other PRRs including RIG-like helicases and C-type lectins (Table. 1). TLRs are expressed on 
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the plasma membrane or endosomes, and NODs are expressed within the cytosol of the 
most cell types in intestinal mucosa (Abreu et al., 2005; Inohara et al., 2005; Kawai and Akira, 
2006). Interestingly, several reports have demonstrated up-regulation or down-regulation of 
certain TLR expression in intestinal epithelial cells and mucosal antigen-presenting cells in 
patients with IBD (Cario and Podolsky, 2000; Hausmann et al., 2002). Genome-wide 
association studies have also linked mutations within the genes encoding NODs and TLRs 
with development of IBD (Franchimont et al., 2004; Hugot et al., 2001; Ogura et al., 2001; 
Pierik et al., 2006). These findings suggest that signaling of NODs and TLRs may be potent 
targets for the treatment of IBD.  

 

PRRs Ligands Sauces 

TLRs TLR1 Triacyl Lipoproteins Mycobacteria 

 TLR2  Peptidoglycan, Lipoteichoic 
acid  

Gram-positive bacteria 

 TLR3 Double Stranded RNA, poly I:C Viruses 

 TLR4 Lipopolysaccharide Gram-negative bacteria 

 TLR5 Flagellin Bacteria 

 TLR6 Diacyl LipopeptidesZymosan MycobacteriaFungi 

 TLR7 Single Stranded RNA Viruses 

 TLR8 Single Stranded RNA Viruses 

 TLR9 CpG-ODN Bacteria and viruses 

 TLR10 Unknown Bacteria and Fungi 

 TLR11 Uropathogenic bacteria Uropathogenic Escherichia coli 

 TLR12 Unknown Unknown 

 TLR13 Unknown Unknown 

NLRs NOD1 meso-lanthionine, meso-DAP Bacteria 

 NOD2 Muramyldipeptide Bacteria 

 NLRCs Flagellin. etc.  Bacteria 

 NALPs Muramyldipeptide, Bacterial 
RNA, crystals 

Bacteria, Viruses, Uric acid 
crystals 
Maitotoxin 

RNA 
helicases 

RIG-1 Cytoplasmic dsRNA Viruses 

 MDR5 Cytoplasmic dsRNA Viruses 

Other C-type 
lectins 

Various Bacteria, Viruses, and Fungi 

Table 1. PRRs and their respective ligands. 

Several TLR agonists and antagonists have been developed. Some TLR and NOD2 agonists 
have been shown to ameliorate murine IBD (Cario et al., 2007; Fort et al., 2005; Krieg et al., 
1995; Vijay-Kumar et al., 2007a; Watanabe et al., 2008). Defective immune responses to the 
NOD2 ligand have been reported in individuals homozygous for the major Crohn’s disease-
associated NOD2 mutation (Girardin et al., 2003; Inohara et al., 2003). Decreased mucosal 
expression of TLR3 has been observed in patients with Crohn’s disease (Cario and Podolsky, 
2000). Restoring the respective innate immune pathways may be a therapeutic strategy for 
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patients carrying these innate immune defects. By contrast, blocking certain TLR signaling 
may be another possibility for treating IBD since some TLRs are up-regulated in IBD 
mucosa. Therefore, combination strategies of agonists and antagonists that target individual 
innate immune signaling may need to be considered for future treatment to obtain more 
effective therapeutic strategies.  

2. Role of innate immunity in the pathogenesis of IBD – clinical findings. 

The innate and adaptive immunities are the two major immune systems of our body. Innate 
immunity confers an immediate response to microbial pathogens, which is antigen non-
specific and normally completed within several hours (Mahida and Rolfe, 2004). In this 
process, PRRs play a crucial role in recognition of pathogens and initiation of respective 
signaling pathways (Figure. 1).  

 

TLR signaling is initiated through the interaction of Toll/Interleukin-1 receptor (TIR) domains of the TLRs 
and recruited adaptor molecules. Depending on the adaptor molecule, TLR signaling may induce one of 
the two major downstream pathways, i.e., the MyD88-dependent and TRIF-dependent pathways. Most 
TLRs induce the MyD88-dependent pathway except for TLR3. In the MyD88-dependent pathway, tumour-
necrosis-factor-receptor-associated factor 6 (TRAF6) is recruited and activated by phosphorylation and 
ubiquitylation to induce sequential phosphorylations of MAP kinases and IB. These cascades lead to the 
activation of the transcriptional factors AP-1 and NF-B, respectively. Activated AP-1 and NF-B 
translocate to the nucleus and induce the expression of multiple pro-inflammatory genes including pro-IL-
1. The MyD88-dependent pathway may also induce Type I interferons (IFNs) through transcriptional 
factor IRF7 activation, when it is induced by TLR7, TLR8 or TLR9. The TRIF-dependent pathway can be 
induced directly by TLR3 and indirectly by TLR4 via recruitment of an adapter molecule TRAM (TRIF-
related adaptor molecule), which results in the expression of the type I IFNs through activation of IRF3. 
NLRs induce signaling pathways through interaction of their Caspase recruitment domains (CARD)s with 
other CARD-containing molecules in the cytoplasm. NOD1 and NOD2 recruit a CARD-containing RICK 
resulting in NF-B activation. NALPs form a complex of CARD-containing molecules called 
inflammasome, which activates Caspase-1. Activated Caspase-1 processes pro-IL-1 into mature IL-1. 

Fig. 1. Pathogen recognition receptors and their signaling pathways. 
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2.1 Innate immune function in the intestine 

The rapid response of innate immunity to pathogens induces the production of 
antimicrobial peptides, phagocytic microbial killing and expression of cytokines, 
chemokines, and reactive oxygen species, leading to the recruitment of acute inflammatory 
cells to establish localized inflammation. Therefore, a defect in innate immunity may result 
in increased susceptibility of the host to pathogenic invasion even to commensals. In 
addition, proper induction of innate immunity is important to initiate an adaptive immune 
response that is antigen-specific and has an ability to temper ongoing inflammation through 
induction of regulatory immune properties. Abnormal innate immune signaling thus leads 
to inadequate induction of adaptive immunity that may result in disorganized immune 
responses to luminal pathogens.    

2.2 Innate immune abnormalities in the pathogenesis of IBD 

Clinical and basic science studies have indicated that etiology of IBD is associated with a 
disregulated adaptive immune response characterized by an aggressive T cell response to 
commensal flora, which is triggered by environmental factors particularly in genetically 
susceptible individuals (Packey and Sartor, 2008). Both environmental factors and the 
genetic alterations seen in patients with IBD vary, further making identification of exact 
etiology of IBD difficult. What is interesting in the pathogenesis of IBD is that any 
combination of environmental triggers and genetic alterations still result in aggressive T cell 
response to commensal flora forming chronic inflammation in gastrointestinal mucosa. On 
the other hand, several reports have demonstrated abnormal innate immune functions as an 
important pathogenesis of IBD (Latella et al., 2010). The expression of mucosal TLRs, 
especially in epithelial cells and lamina propria antigen-presenting cells, is normally down-
regulated, presumably to avoid inducing an excessive immune response to commensals 
(Melmed et al., 2003; Otte et al., 2004; Smythies et al., 2005). However, several reports have 
shown increased expression of TLR4 and TLR2 in intestinal epithelial cells as well as lamina 
propria antigen-presenting cells in patients with both Crohn’s disease and ulcerative colitis 
(Cario and Podolsky, 2000; Frolova et al., 2008; Hausmann et al., 2002; Szebeni et al., 2008). 
Increased expression and in vitro cytokine responses of TLR2, TLR4, and TLR9 in peripheral 
blood mononuclear cells or dendritic cells have also been reported in IBD patients 
(Baumgart et al., 2005; Baumgart et al., 2009; Canto et al., 2006; Jyonouchi et al., 2010). 
Although increased TLR expression in peripheral blood cells has been found even in IBD 
patients in remission, up-regulation of these TLRs might not be a primary event in the 
pathogenesis of IBD, because expression of TLR4 and TLR2 is transcriptionally induced by 

inflammatory cytokines such as IFN- (Abreu et al., 2002; Lin et al., 2000; Rehli et al., 2000). 
Similarly, NOD2 expression in intestinal epithelial cells is induced by inflammatory 
cytokines and increased in patients with IBD (Hisamatsu et al., 2003; Rosenstiel et al., 2003). 
Nevertheless, these findings strongly suggest a substantial involvement of innate immune 
abnormalities in the pathogenesis of IBD.     

2.3 Genetic links between innate immunity and IBD pathogenesis. 

Genome-wide association studies have demonstrated that most genetic alterations 
associated with IBD susceptibility relate to host mucosal barrier or anti-microbial functions, 
especially those involved in innate immune responses (Abraham and Medzhitov, 2011; 
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Vermeire et al., 2011). For example, variants of the genes involving mucosal permeation and 
clearance of bacterial toxins such as mucin gene 19 (MUC19), organic cation transporter 
(OCTN) 1/2, multidrug resistance-1 (MDR1), have been reported to be associated with IBD 
(Barrett et al., 2008; Ho et al., 2005; Russell et al., 2006; Waller et al., 2006). Crohn’s disease 
susceptibility genes NOD2, autophagy related protein 16-like 1 (ATG16), and immunity-
related GTPase family M (IRGM) are involved in production of anti-microbial peptides and 
intracellular bactericidal functions (Hampe et al., 2007; Hisamatsu et al., 2003; McCarroll et 
al., 2008; Rioux et al., 2007; Wehkamp et al., 2005). Moreover, TLR4 gene variants have been 
associated with both Crohn’s disease and ulcerative colitis (Browning et al., 2007; 
Franchimont et al., 2004; Ouburg et al., 2005; Torok et al., 2004b). Polymorphisms in TLR1, 2, 
and 6 (TLR2 forms heteromeric receptor complexes with TLR1 or TLR6 to induce signal 
transduction) have been associated with greater disease extension in both ulcerative colitis 
and Crohn’s disease (Pierik et al., 2006). Polymorphisms in regulatory gene elements of 
TLR5 (stop codon) and TLR9 (promoter region) have also been associated with Crohn’s 
disease (Hawn et al., 2003; Torok et al., 2004a).  

Most of the IBD associated gene variants are loss-of-function type alterations. Therefore, in 
the pathogenesis of IBD, chronic inflammation due to aggressive T cell responses to 
commensal flora may be a result from the host’s defective ability to maintain burdens of 
commensals and/or elimination of invading microbes and microbial toxins, rather than T 
cell function itself.  

3. Role of innate immunity in the pathogenesis of colitis – animal studies 

Mouse models of colitis are invaluable tools to determine the involvement of individual 
molecules in the pathogenesis of colitis. Gene recombination technology has provided ways 
to investigate the roles of individual PRRs in the pathogenesis of IBD by applying targeted 
gene knockout mice to animal models of IBD. Although none of the current murine models 
of IBD perfectly reproduce the human disease, each model has distinctive advantages to 
investigate a particular aspect of IBD pathogenesis. Most murine models of IBD require 
commensal flora to develop colitis, indicating that host response to commensal flora may 
play an important role in initiation of intestinal inflammation. However, the dextran sulfate 
sodium (DSS)-induced colitis, which is one of the well-established murine models of IBD, 
demonstrates more severe manifestations of colitis when depleted with the commensal flora 
(Kitajima et al., 2001; Rakoff-Nahoum et al., 2004). Since the underlying mechanism of DSS-
induced colitis is associated with chemical damage of mucosal epithelium, this finding 
suggests a possible contribution of commensal flora to the protection of mucosa from 
damages induced by the noxious stimuli. This section details the roles played by the 
individual PRRs in induction and/or resolution of colitis based on knowledge obtained 
through studies in murine models of IBD.   

3.1 Spontaneous colitis observed in PRR-deficient mice 

Many knockout mice have been generated by targeting individual PRRs. Among them, only 
TLR5 and retinoid acid-inducible gene-I (RIG-I: a RNA helicase that recognizes intracellular 
RNA viruses) deficient mice develop spontaneous colitis, suggesting their regulatory roles 
in mucosal inflammation in the context of host-microbial interactions. Despite their 
importance in host defense against pathogens, most other PRR knockout mice do not 
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develop spontaneous colitis in the presence of commensal flora. Therefore, some 
compensatory mechanisms may exist involving both host and microbial factors. For 
instances, many pathogens carry multiple PAMPs. Host antigen-presenting cells can 
recognize surface PAMPs of a bacterial pathogen by TLR2 (and TLR1 or TLR6), TLR4, or 
TLR5, and the same pathogen can be recognized by TLR9 or Nod-like receptors after being 
digested in the cytoplasm. Importantly, these PRRs share several key innate immune 

signaling pathways including NF-B and MAP-kinases. This redundancy of the pathogen 
recognition system may be reasonable to reduce the risks of outbreaks of pathogens that 
acquire evolutional changes to evade host immune responses. Cross regulations between 
PRRs exist as TLR4 deficiency protects TLR5-/- mice from developing spontaneous colitis 
(Vijay-Kumar et al., 2007a). What we need to take into account is that the roles of PRRs 
during mucosal damage or inflammation may differ from their roles in homeostatic 
maintenance of mucosal integrity. Therefore, the lack of intestinal spontaneous phenotypes 
in the PRR knockout animals does not simply negate their contribution to the pathogenesis 
of IBD.  

3.2 Role of PRRs in acute murine colitis 

Consistent with the finding in germ-free mice, most TLR knockout mice demonstrate 
increased susceptibility to DSS-induced acute colitis. For example, deficiency in TLR2, TLR4, 
TLR5, and TLR9 has been individually associated with the increased susceptibility to DSS-
induced colitis (Fukata et al., 2005; Ivison et al., 2010; Lee et al., 2006; Rakoff-Nahoum et al., 
2004). Mice deficient in MyD88, a major downstream molecule of most TLRs except for 
TLR3, also demonstrated more severe disease than WT mice in this colitis model suggesting 
the importance of MyD88-dependent TLR signaling in protection against chemically 
induced mucosal damage (Fukata et al., 2005; Rakoff-Nahoum et al., 2004).  

3.3 Role of PRRs in chronic murine colitis 

TLR signaling may act differently during chronic colitis where sustained inflammation 
exists. Unlike their increased susceptibility to the acute DSS model, most TLR-deficient mice 
are protected in the chronic models of colitis. For example, TLR9-deficient mice demonstrate 
less severe manifestations of chronic colitis induced by four cycles of DSS treatments 
compared to WT mice (Obermeier et al., 2005). As I mentioned earlier, TLR9-deficient mice 
should be more susceptible to each cycle of DSS treatment than WT mice, while mechanism 
inducing chronic inflammation may differ from acute mucosal damage in this model. 
MyD88 deficiency protects mice from development of chronic colitis in several IBD models 
including the IL-10-/- model (Rakoff-Nahoum et al., 2006). IL-10-/- mice are known to 
develop spontaneous colitis due to uncontrolled pro-inflammatory cytokine production in 
the presence of commnesal flora (Berg et al., 1996; Kuhn et al., 1993).  

There are conflicting data in IL-10 x TLR4 double knockout mice demonstrating either 
increased or reduced colitis compared to IL-10-/- mice depending on the facilities (Biswas et 
al., 2011; Gonzalez-Navajas et al., 2010). In the presence of Helicobacter hepaticus, IL-10 x TLR4 
double knockout mice generate atypical regulatory T cells which possess pro-inflammatory 
properties (Matharu et al., 2009). Therefore, TLR4 deficiency may be colitogenic or protective 
in the IL-10-/- model depending on the presence or absence of H. hepaticus. Regulatory T 
cells are indispensable for termination of ongoing inflammation, and TLR4 has been 
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suggested to foster the recruitment and/or proliferation of regulatory T cells in the intestine 
during colitis (Heimesaat et al., 2007).  

3.4 Compartmental specificities of the role of PRRs in intestinal inflammation 

Since TLRs are expressed by most cell types in intestinal mucosa, the complexity of their 
function during chronic colitis may be due to the distinct roles played by TLR signaling in 
different cell types in the pathogenesis of chronic colitis. Compartmental differences of the 
role of TLR signaling in chronic colitis have been examined mainly in the MyD88 pathway 
(Asquith et al., 2010; Fukata et al., 2008; Gong et al., 2010). Intestinal inflammation induced by 
H. hepaticus infection has been shown to be myeloid cell MyD88 dependent. In this 
infectious model, RAG2 x MyD88 double knockout mice as well as RAG2-/- chimeric mice 
that carry MyD88-deficient bone marrow demonstrate no intestinal inflammation but 
succumb to the infection, while MyD88 sufficient RAG2-/- counterparts show chronic colitis 
with splenomegaly but are protected from mortality (Asquith et al., 2010). On the other 
hand, epithelial specific deletion of MyD88 results in spontaneous chronic inflammation in 
the small intestine (Gong et al., 2010). These findings indicate that the MyD88 pathway in the 
myeloid compartment is necessary to induce intestinal inflammation against luminal 
pathogens and sufficient to block invasion of H. hepaticus at the mucosal interface.  

Although there is a conflicting report, we and others have shown a defective colitogenic 
function of MyD88-/- T cells in an adoptive T cell transfer model of colitis, in which MyD88-
/- naïve T cells have less ability to induce chronic colitis compared to MyD88 sufficient T 
cells after transfer to RAG-/- mice (Fukata et al., 2008; Tomita et al., 2008). In addition, we 
have shown that MyD88-/- regulatory T cells are unable to sufficiently suppress T cell 
mediated colitis, indicating that TLR signaling in T cells is important to elicit the full 
suppressive activities of regulatory T cells (Fukata et al., 2008).  

Ligation with TLR2 in combination with T cell receptor stimulation has also been reported 
to expand regulatory T cells in a MyD88-dependent manner, while it induces transient loss 
of their suppressive function (Sutmuller et al., 2006). Therefore, TLR signaling in T cells 
seems to act as a co-stimulatory factor. Although antigen-presenting cells are thought to be a 
major cell type expressing TLRs, their TLR signaling is normally down regulated in the 
intestine (Rescigno and Matteoli, 2008; Smith et al., 2005). Nevertheless, There unique roles 
for TLRs in individual cell types in intestinal inflammation may be revealed with future 
exploration.      

3.5 Animal studies of phenotypic testing of disease susceptibility genes in human IBD 

Testing the phenotype of individual susceptibility genes in IBD using mouse models is one 
of the priorities in the field of IBD research. Most IBD susceptible genes carry loss-of-
function mutation, but by now we have not seen spontaneous intestinal inflammation in any 
mouse models that carry a functional deletion of the disease candidate gene. NOD2 deficient 
mice and those with an insertion of the human disease-associated mutation 3020insC do not 
demonstrate spontaneous intestinal inflammation but are more susceptible to DSS-induced 
colitis (Kobayashi et al., 2005; Maeda et al., 2005). ATG16L1 hypomorphic mice have 
abnormal Paneth cell granules and defective cryptdin production similar to Crohn’s disease 
patients with ATG16L1 mutation, but these mice do not develop spontaneous colitis 
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(Cadwell et al., 2008). The phenotypic discrepancies in these IBD susceptibility genes 
between human and mouse may be due to differences of species, but these results remind us 
the fact that the pathogenesis of IBD is complex of abnormalities of genetic, immunological, 
and environmental factors.  

4. Challenges manipulating innate immunity (stimulate or suppress)  

Manipulation of a particular immune pathway especially within a targeted organ is 

challenging. In this regard, manipulating an innate immune response as a therapeutic target 

of IBD has some advantages and disadvantages. The major advantage includes the non-

specific nature of the innate immune responses, which provides broader effects than 

targeting adaptive immune responses which are antigen-specific. The rapid responses in 

both induction and resolution of innate immune signaling imply that exogenous control 

may be relatively easy. On the other hand, the multiple effects that can be induced by 

activation of a PRR may be a difficult point to enhance or suppress a specific function of the 

innate immune responses. In this section, possible targets in the innate immunity that may 

be utilized to treat or prevent intestinal inflammation and their potential pitfalls will be 

discussed through reviewing previously reported challenges in murine models of IBD 

(Table 2).  

 

PRRs Agonist / Antagonist Model of IBD used Major effect 

TLR2 Agonist (Pam3CSK4) Acute DSS colitis 

Chronic MDR1-/- 

Prevention and treatment. 
Strengthen epithelial barrier. 
Increase TFF3.  

TLR3 Agonist (poly I:C) Acute DSS colitis Prevention. 
Involvement of Type I IFN? 

TLR4 Antagonist (1A6) 
 
Antagonist (CRX-526) 

Acute DSS colitis 
 

Chronic MDR1-/-T 
cell transfer colitis 

Prevention. 
Blocking acute inflammatory 
infiltrate. 
Blocking cytokine responses. 

TLR5 Agonist (flagellin) Acute DSS colitis Prevention if it is administered 
intraperitoneally. 

TLR9 Agonist (CpG-ODN) 
 
 
 
Antagonist (AV-ODN) 

Acute DSS colitis 
TNBS colitis 
 
 
Chronic DSS colitis 
IL-10-/-, T cell transfer 
colitis 

Prevention. Anti-apoptotic 
effect. Immuno-modulatory 
effect. Induction of tolerance. 
 
Blocking host response to 
luminal bacterial CpG. 

NOD2 Agonist (MDP) Acute DSS colitis 
TNBS colitis 

Down-regulation of multiple 
TLR responses. 

Table 2. Therapeutic challenges of PRR manipulation for murine models of IBD. 
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4.1 TLR2 

Oral administration of a TLR2 agonist Pam3CSK4 has been suggested to have therapeutic 
potential in DSS-induced colitis (Cario et al., 2007). The protective effect of the TLR2 
agonist is associated with preservation of epithelial tight junctions and reduced apoptosis, 
and largely depends on the expression of the gap-junctional protein Connexin 43 in 
epithelial cells (Cario et al., 2007; Ey et al., 2009; Podolsky et al., 2009). TLR2 stimulation 
also increases the colonic production of trefoil factor (TFF) 3 that facilitates wound healing 
and blocks apoptotic signaling (Podolsky et al., 2009). Moreover, oral TLR2 agonist has 

been shown to delay induction of spontaneous colitis in MDR1-/- mice (Ey et al., 2009). 

The central pathogenesis of MDR1-/- colitis is an impaired epithelial barrier function 
(Collett et al., 2008). Therefore, the TLR2 agonist can be a cytoprotective rather than 
immunomodulatory strategy for acute as well as chronic phases of colitis. TLR2 agonists 
have not yet entered clinical trials for human diseases. Conversely, a TLR2 antagonist 
(OPN-305) has been developed, but its effects have not been tested on murine colitis 
(Hennessy et al., 2010).   

4.2 TLR3 

Interesting data has been reported regarding the preventive effect of a TLR3 agonist on 

murine models of IBD (Vijay-Kumar et al., 2007b). Pre-treatment of mice with a synthetic 

TLR3 ligand, polyinosinic:polycytidylic acid (poly I:C) protected mice from development of 

DSS-induced acute colitis (Vijay-Kumar et al., 2007b). Similar effects of poly I:C treatment 

were observed in IL-10-/- mice. In this report, poly I:C was subcutaneously injected and the 

oral application did not show any protective effect on the colitis probably due to 

degradation of poly I:C by abundant RNAse in the gastrointestinal lumen. Although the 

exact mechanism underlying poly I:C-mediated preventive effect on colitis has been 

obscure, type I interferons which are predominantly induced by TLR3 signaling may have 

an immuno-regulatory capacity. Since intraperitoneal administration of high dose poly I:C 

(about ten times more than the dose in the former report) has been reported to cause 

mucosal destruction in the small intestine, we have to adjust the dose and route of poly I:C 

administration before clinical application (Zhou et al., 2007a; Zhou et al., 2007b). Because 

TLR3 expression has been shown to be significantly down regulated in the inflamed and 

non-inflamed mucosa of Crohn’s disease as well as the mucosa of ileal pouches in patients 

with ulcerative colitis, stimulating TLR3 may restore an immunological defect caused by its 

down regulation (Cario and Podolsky, 2000; Heuschen et al., 2007; Toiyama et al., 2006). The 

existence of clinically tested poly I:C analogue (poly I:C12U: Ampligen) is advantageous for 

the development of a TLR3 stimulation strategy (Nicodemus and Berek, 2010). Ampligen 

has been proven to have less toxicity than poly I:C and completed a phase III clinical trial for 

chronic fatigue syndrome (Nicodemus and Berek, 2010). Several antagonists for TLR3 

signaling has been reported, but have not been developed as a therapeutic strategy for 

colitis (Bunting et al., 2011; Cheng et al., 2011).  

4.3 TLR4 

TLR4 is one of the most studied PRRs as a therapeutic target of IBD. A TLR4 antagonist 

(CRX-526; a synthetic lipid A mimetic molecule) has been shown to prevent the 
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development of acute (DSS-induced) and chronic (MDR1-/-) colitis (Fort et al., 2005). We 

have further detailed the effect of a specific TLR4 antagonist monoclonal antibody on 

induction and resolution of acute DSS-induced colitis (Ungaro et al., 2009). Consistent with 

the former report, our TLR4 antagonist antibody suppressed induction of acute 

inflammatory infiltrate by blocking the expression of several chemokines in the large 

intestine when administered prior to DSS treatment (Ungaro et al., 2009). However, blocking 

TLR4 signaling after colitis was established delayed mucosal healing from the DSS-induced 

injury (Ungaro et al., 2009). These results indicate that there are multiple roles of TLR4 

signaling in the pathogenesis of DSS-induced colitis; it is responsible for acute inflammatory 

infiltrate through induction of chemokines during induction of colitis, but also contributes 

to mucosal repair during resolution of colitis. The mechanism underlying the contribution 

of TLR4 to mucosal repair is associated with TLR4-dependent induction of 

cyclooxygenase 2 and following production of prostaglandin E2 in response to mucosal 

damage (Fukata et al., 2006). In addition, the therapeutic effect of the TLR4 antagonist 

antibody was not found in chronic model of T cell transfer colitis (Ungaro et al., 2009). 

Therefore, blocking TLR4 may be beneficial in interfering with a particular aspect of 

colitis pathogenesis i.e., acute inflammatory infiltration, and thus combination therapies 

with cytoprotective agents may be required to proceed to the clinical stage using this 

strategy to treat colitis patients.   

4.4 TLR5 

Since deficiency of TLR5 results in spontaneous development of colitis, the targeting 

strategy of TLR5 has been focused on stimulating TLR5 signaling for treatment of colitis. 

There are conflicting data on the use of the TLR5 agonist flagellin as a therapeutic agent of 

acute DSS-induced colitis. Intraperitoneal injection of purified flagellin has been reported to 

be protective in acute DSS-induced colitis (Vijay-Kumar et al., 2008). By contrast, rectal 

administration of flagellin has been reported to aggravate DSS-induced colitis (Rhee et al., 

2005). The discrepancy of the flagellin effect may be due to administration route (systemic 

vs. topical), but a recent report has suggested that flagellin-mediated aggravation of colitis is 

independent of TLR5 signaling as the exacerbation of DSS colitis by flagellin is also 

observed in TLR5-deficient mice (Ivison et al., 2010). TLR5 agonist has been under pre-

clinical stage, but further screening of its efficacy and adverse effects using different mouse 

models of colitis may be required in addition to clarifying the effector component of 

flagellin and optimization of their administration route.  

4.5 TLR9 

Augmentation and suppression of TLR9 signaling have been challenged in multiple mouse 

models of colitis. Unmethylated cytosin-guanosin dinucleotide (CpG) dinucleotides, the 

immunostimulatory components of bacterial DNA, are known to be a TLR9 ligand (Bauer 

and Wagner, 2002; Krieg et al., 1995). Administration of CpG oligodeoxynucleotides (CpG-

ODNs) has been shown to prevent the induction of DSS-induced colitis, but this treatment 

aggravates colitis when CpG-ODNs are administered after the onset of DSS colitis 

(Obermeier et al., 2002; Obermeier et al., 2003; Rachmilewitz et al., 2002). The mechanism of 

these opposing effects of CpG-ODNs is associated with an anti-apoptotic effect and 

www.intechopen.com



 
Innate Immunity: A Potent Target for Management of Inflammatory Bowel Disease 

 

187 

immunostimulatory effect of CpG-ODNs, respectively. Since abundant bacterial ODNs 

naturally exist in the colorectal lumen that play a part of inflammatory stimuli in the setting 

of mucosal damage, pretreatment with CpG-ODNs has been suggested to induce host 

immune tolerance against endogenous bacterial ODNs (Obermeier et al., 2003). Preventive 

effect of CpG-ODNs on induction of colitis has also been shown in other models such as 

2,4,6-trinitrobenzene sulfonic acid (TNBS) colitis and can be achieved by oral administration, 

making this strategy further relevant (Rachmilewitz et al., 2002). Although CpG-ODNs are 

generally thought as immunostimulative, CpG-ODN stimulation suppresses TNF- and IL-

1 expression in ex vivo colonic mucosa taken from active UC patients (Rachmilewitz et al., 

2006). A subset of patients with ulcerative colitis responds to Type I INF therapy through a 

yet unknown mechanism (Jacobs et al., 2000; Madsen et al., 2001; Nikolaus et al., 2003). Since 

TLR9 signaling may induce Type I interferons which may act as immunomodulatory 

property during intestinal inflammation, emphasizing this aspect of TLR9 signaling may be 

another therapeutic target in the management of IBD (Katakura et al., 2005).  

Suppression of TLR9 signaling has also been beneficial for treating chronic murine colitis. 
Intraperitoneal as well as oral administration of adenoviral-ODN (AV-ODN) known to 
block the effect of bacterial CpG-ODN effectively suppressed intestinal inflammation during 
chronic DSS colitis (Obermeier et al., 2005). The protective effect of AV-ODN was also 
observed in other chronic colitis models such as IL-10-/- and T cell transfer colitis models 
(Obermeier et al., 2005). The protective effect of blocking TLR9 signaling during chronic 
colitis is consistent with the fact that TLR9-deficient mice have reduced severity of chronic 
colitis (Obermeier et al., 2005). These results indicate that bacterial CpG-ODN abundantly 
existing in colorectal lumen is one of the indispensable factors inducing intestinal 
inflammation during chronic colitis.      

4.6 NOD2 

NOD2 signaling is a plausible therapeutic target as NOD2 mutations are associated with 
susceptibility to Crohn’s disease. The mutations are known to be loss-of-function type 
mutations and thus the backup of this signaling is a reasonable idea. The use of NOD2 
knockout models is consistent with the human disease setting. NOD2 transgenic mice are 
resistant to TNBS colitis (Yang et al., 2007). In addition, intraperitoneal injection of a NOD2 
ligand MDP protected mice from induction of acute colitis in DSS and TNBS models 
(Watanabe et al., 2008). The mechanism underlying MDP-mediated protection is associated 
with down regulation of multiple TLR responses by NOD2 stimulation, as pretreatment of 
dendritic cells with MDP has been shown to inhibit cytokine responses induced by TLR 
stimulation. One concern is that the NOD2-deficient mice introduced NOD2 construct with 
a CARD15 frame-shift mutation were not protected from colitis by MDP (Watanabe et al., 
2008). Nevertheless, development of NOD2-stimulation strategy is advantageous because 
MDP has already been applied to several clinical trials of cancer treatments (Meyers et al., 
2008).  

5. Conclusion and future direction 

We discussed the unique aspects of innate immunity in the context of intestinal homeostasis 

and the pathogenesis of colitis. It is important to understand intestinal-specific innate 
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immune functions as host interactions with commensal flora are a crucial part of intestinal 

homeostasis. PRRs recognize microorganisms and thus play major roles in the regulation of 

the intestinal-specific innate immune functions. Since abnormal host immune responses to 

commensal microorganisms is thought to be a center of the pathogenesis of IBD, PRRs can 

be potent targets of therapeutic intervention. Despite our high excitement, recent studies in 

murine models of IBD have demonstrated the complexity of intestinal PRR signaling as 

therapeutic target of IBD. Much of the complexity lies in the fact that signaling of PRRs is 

not only involved in the induction of intestinal inflammation but also it is indispensable for 

maintenance of mucosal homeostasis. For instance, PRR signaling that contributes to the 

induction of colitis may be required for the mucosal repair process during resolution of 

inflammation; blocking a particular PRR signaling may suppress intestinal inflammation but 

may delay mucosal healing. The involvement of individual PRRs may also differ in different 

phases of colitis. Therefore, we may need to select phases of colitis to manipulate the 

selective PRRs to achieve more effective strategies. For example, TLR4 antagonists and TLR9 

agonists appear to prevent intestinal inflammation if given prior to induction of colitis. By 

contract, TLR2 agonists and TLR9 antagonists may be more beneficial if they are given after 

the induction of or during the chronic phase of colitis. Nucleotide sensing PRRs may have a 

specific application in IBD therapy because of their potential immunomodulatory properties 

through induction of type I IFNs. Understanding of cell-type specific differences of PRR 

expression and responses and targeting their individual signaling pathways in intestinal 

mucosa may provide more practical strategies to utilize PRR signaling for the treatment of 

IBD. 
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