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1. Introduction 

Biodiversity is a wide term that includes all the hierarchy of life in the Earth. However, this 

word refers to the whole biological diversity: ecosystem diversity, species diversity and 

genetic diversity. Those three levels of diversity are melt one in another. The basal level 

involves genetic diversity that includes variation within and among individuals that are 

grouped in populations. In the next level, populations may differentiate due to mutations, 

genetic drift and different environmental pressures into distinct species. Finally, ecosystems 

are characterized by different assemblages of species (Hunter, 1996).   

The biological communities observed today were formed along millions of years, although 
most of those biomes have been already affected by human activity, including many 
severally endangered regions of the world (Primack & Rodrigues, 2001). Some human 
activities that affect natural environments are as deforestation, coast occupation, 
overhunting and introduction of exotic species. Thus, nowadays, the great challenge for 
conservation of natural systems is to conciliate human activities and conservation. The 
discipline of conservation biology emerge as answer to this crisis, with multidisciplinary 
approaches that aim to investigate the human impacts on natural populations, biological 
communities and ecosystems; to developed practice to prevent the environmental 
degradation and species extinction, restoration of ecosystems and reintroduction of 
populations, to establish sustainable relationship between human communities and 
ecosystems (Rozzi et al., 1998). However, all remaining ecosystems have been previously 
affected by multiple natural impacts such as climatic changes during the Pleistocene. Then, 
conservation biology also aims to discriminate between impacts due to natural events from 
those due to anthropogenic causes affecting current biodiversity distribution. 
Biogeography, community ecology and population genetics  attempt to describe how 

biological diversity is spatially distributed at different geographic scales (Miller et al. 

www.intechopen.com



 
Ecosystems Biodiversity 

 

430 

2010, Diniz-Filho et al. 2008). Into this context, the molecular biology provides the tools to 

further investigate phylogenetic relationships among organisms, which can be associated 

with geographical distribution. With technological advances, the molecular markers have 

been increasingly applied to access genetic partitions among geographically isolated 

populations. The relationship between gene genealogies and geography can be used to 

estimate historical processes that can be responsible for contemporary geographic 

distributions of individuals and species. This new discipline, the phylogeography, is 

enabling us to understand processes of diversification, and to reconstruct the historical 

relationships considering explicit biogeographic hypotheses (Smith & Patton 1993, Patton 

et al. 1994). 

One of the oldest and likely most recognized biodiversity patterns is the latitudinal 

gradient of species richness (Rosenzweig 1995, Miller et al. 2010). The marked difference 

in biodiversity richness from regions of high and low latitudes is well documented across 

distinct taxonomic levels and constitutes a widely recognized biogeographical pattern 

(D´Horta et al. 2011, Willig et al. 2003). The description of geologic, biogeographic and 

genetic patterns along tropical ecosystems helps us to better understand the differential 

effects of evolutionary history of low latitudes in the biodiversity dynamics. In this 

context, the objective of this chapter was to review the hypotheses of diversification 

proposed to explain the current biodiversity distribution observed in Brazilian Atlantic 

Forest. We present here each hypothesis and the different studies supporting or rejecting 

them. 

The Atlantic forest is distributed along eastern and southwestern Brazil, eastern Paraguay, 

and north-eastern Argentina (Gusmão Câmara, 2003). The Brazilian Atlantic Rain Forest 

originally presented an area of 1.1 million km2 and covered a large extension of the coast. 

Given this large geographic extent, the Atlantic Forest is floristically diverse with severe 

regional forms of rainforest (ombrophilous) and semi-deciduos forest, depending  on 

rainfall regimes (Oliveira-Filho & Fontes, 2000) (Figure 1). Nowadays, this biome is 

considered one of the most important conservation hotspots of the World, because of its 

high levels of endemism and degradation. For example, although near 200 endemic species 

of birds are reported there, only 5% of its original area remain (Myers et al., 2000). The last 

estimates account for approximately 20.000 vascular plant species and over 2.300 vertebrate 

species, half of them being endemic and about 150 with threatened status (Conservation 

International do Brasil et al., 2000).Furthermore, most of the remaining forested areas are 

located in regions of steep topography, where agriculture and cattle ranching are not 

economically viable. 

The Atlantic forest biota is probably the result of a complex evolutionary history; however, 

the processes that shaped it are not well known (Mustrangi & Patton, 1997; Costa et al., 2000; 

Smith & Patton, 2001; Pellegrino et al., 2005). The knowledge of these evolutionary processes 

is extremely important for conservation purposes (Moritz, 2002). Among the hypothesis for 

diversification in Atlantic Forest, the models of Pleistocene refuges, gradient hypothesis; 

rivers as barriers and orogeny changes have been well discussed. All hypotheses are based 

in some provisional reductions gene flow among populations, which promoted divergence 

in allopatry, when the populations became different because they were somehow 

geographically isolated. 

In the following section we discuss each hypothesis. 
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Fig. 1. Original (1) and remain (2) spatial distribution of Brazilian Atlantic Forest . 
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2. Pleistocene refuges 

The refuges theory is one of the most discussed models of diversification to explain the 

origin of the diversity of the Atlantic forest. In the Neotropics, the refuge theory was 

originally proposed to explain speciation during the Pleistocene mainly in the Amazon 

basin (Haffer, 1969; Vanzolini & Williams, 1970; Brown & Ab’Saber, 1979; Haffer & 

Prance, 2001). This theory proposes that during the glaciations the rainforests were 

reduced to refuges isolated by open areas, and that organisms isolated in these refuges 

could have diverged and originated new lineages. Then, in the next interglacial period, 

the forest expanded and the new clades would be in secondary contact. Brown and 

Ab’Saber (1979) proposed that open areas dominated the Atlantic forest’s landscape 

during the maximum of Late Pleistocene glaciations, suggesting that the refuge theory can 

be important to understand the biological diversification of the biome. Taxa may have 

evolved in allopatry within refuges (rainforest relicts) due to evolutionary factors as 

genetic drift and divergent selection.  

The refuges hypothesis predicts to find evidence of high species endemism and high genetic 

diversity in the areas with high stability or forest in the past (refugial zones) and, in contrast, 

lower diversity, lower endemism and molecular signatures of recent range expansion within 

species in unstable, recently recolonized regions (non-refugial areas) (Carnaval & Moritz 

2008).  Moritz et al. (2000) and Thomé et al. (2010)  affirmed the refuges hypothesis still need 

to consider additional predictions: the presence of sister taxa in adjacent refugia, secondary 

contact zones between refugia and range expansion out of refugia area refuges areas.  

Carnaval & Moritz (2008) used climatic and forest distribution models and predicted the 

existence of a large and stable forest refuge in the state of Bahia, in the northeast of Brazil, 

and smaller refuges located along the Brazilian coast, one area north of the Paraiba river, 

called Pernambuco refuge, and possibly many small patches south of the Doce River and 

severe forest contraction south of the São Paulo state (Figure 2). Thomé et al. (2010) also 

used paleoclimatic modeling to suggest five stable areas in Atlantic Forest to Rhinella crucifer 

(toad) (1) the coastal region of north eastern Brazil, ranging from Alagoas  to Rio Grande do 

Norte, called Pernambuco region; 2) southeastern Brazil, ranging from Rio de Janeiro to 

Espírito Santo and eastern Minas Gerais; 3) coastal south-southeastern  Brazil, ranging from 

north Santa Catarina to São Paulo (called Serra do Mar); 4) the interior of the Paraná state; 

and 5) central-north Rio Grande do Sul state and western Santa Catarina state. Thomé et al. 

(2010) and Carnaval & Moritz (2008) showed many concordant refuges, with a difference 

that Tomé et al. (2010) found more areas in south Brazil due likely to specific habitat 

conditions of Rhinella crucifer (Figure 2).  

Many studies have also found the phylogeographic patterns along Atlantic Forest that are 

compatible with predictions of the refuge hypothesis. For example, D´Horta et al. (2011) 

observed that in the study of intrapopulation genetic variation of Sclerurus scansor (Rufous-

breasted Leaftosser) is compatible with that proposed by refuges hypothesis. They found 

three groups well defined, one in north of Atlantic Forest (Ceará state), another in central 

(Bahia, Minas Gerais and north São Paulo State), and a last one the south (Southern São 

Paulo, Santa Catarina and Rio Grande do Sul State). The estimate of the divergence time 

between lineages point to events during the middle and late Pleistocene, a period for which 

there are extensive records documenting change in forest distribution associated with 

climatic cycles. 
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Cabanne et al. (2007) also demonstrated demographic changes in Xyphorhynchus fuscus 
(Lesser Woodcreeper) consistent with responses to Pleistocene forest contractions and 
subsequent advances into southern areas of the Atlantic biome in responses to late 
Quaternary climate change. The same pattern was found to Conopophoga lineata (Rufous 
Gnateater), which showed data consistent with differentiation in the Pleistocene period 
(Pessoa, 2008). In some cases, those lineages showed also a secondary contact due to recent 
expansion in the Holocene period, as it has been found between south Minas Gerais  State 
and North São Paulo, for  Xynphorhynchus fuscus (Lesser Woodcreeper)(Cabanne et al. 2007) 
and Conopophoga lineata (Rufous Gnateater) (Pessoa 2008) and Sclerurus scansor (Rufous-
breasted Leaftosser) (D´Horta et al. 2011). 
Martins et al. (2009) also found two phylogroups in Desmodus rotundus (common vampire 
bat) whose estimate divergence times fall within the Pleistocene epoch, suggesting this bat 
is susceptible to forest fragmentation into refuges.  Pavan et al. (2010) studied other 
species of bat Carollia perspicilatta (Short-tailed fruit bat), also found two clades whose 
dating corroborated the vicariant event occurring in the Pleistocene, following by recent 
population expansion. Moraes-Barros et al. (2006) inferred two main phylogeographic 
groups exist in the Atlantic forest for Bradipus torquatus and Bradipus variegatus (Sloth) 
representing north (Southeastern region of Bahia State north of Minas Gerais) and south 
(Espıírito Santo and São Paulo) 
The difference between clades north and south observed in several Atlantic Forest species, 
led to the discussion about the influence of latitudinal gradient. The Atlantic Forest covers 
the 2˚ to 30 ˚S alongside the Brazilian coast, consequently presents significant differences in 
temperature and humidity, which in the past could have affected the number of refuges. 
The influence of the latitudinal gradient affecting the biodiversity is one of the oldest and 
most recognized patterns associated to species richness (Rosenzweig 1995). Because of the 
strong historical effect that Pleistocene era glaciers had on the biogeography of higher 
latitudes, it is perhaps not surprising that post-glacial expansion is usually considered 
primarily responsible for the observed genetic diversity patterns (Hewitt 1996, Miller et al. 
2010).  Vellend (2003) and Vellend and Geber (2005) noted that the same biogeographic 
conditions favorable to high species richness within community (i.e. high immigration rates 
and low extinction rates) should promote high genetic diversity within the species 
comprising that community (Miller et al. 2010). Many studies focused on temperate zone 
organisms have suggested that latitudinal patterns of within population genetic diversity 
are most likely due to a history of post-glacial poleward habitat expansion (Miller et al. 
2010). The latitudinal biodiversity gradient may reflect the distinct influence of Pleistocene 
glacial and interglacial cycles in the geographic landscape (Hewitt 2004). Because of the 
strong historical effect that Pleistocene glaciers had on the biogeography of higher latitudes, 
it is perhaps not surprising that post-glacial expansion is usually considered primarily 
responsible for the observed genetic diversity patterns (Hewitt 1996, Miller et al. 2010). In 
accordance with D´Horta et al. (2011) the latitudinal gradient hypothesis makes some 
explicit predictions: 1) populations form higher latitudes experienced more pronounced 
change in their effective population sizes and therefore exhibit signatures of recent 
demographic expansion and a lower genetic structure; 2) populations from lower latitudes 
experienced smaller or no changes in effective sizes, thus presenting higher diversity and 
genetic structure. Carnaval et al. (2009) observed that amphibians from Atlantic Forest 
showed higher levels of genetic diversity and structure of population in lower than higher 
latitudes. Some studies of mammals, birds and reptiles have found latitudinal 
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differentiation along the Brazilian Atlantic Forest, and showed an expansion signal in lower 
latitudes (Pavan et al. 2011, Grazziotion et al. 2006, Martins et al. 2009). However, these 
studies did not report higher genetic diversity in northern population (lower latitudes), as it 
would be expected under gradient hypothesis.  
 
 

 
 

Fig. 2. Summary maps of historically stable areas for the Atlantic forest definitions, obtained 
by(1) Carnaval and Moritz (2008) summing across BIOCLIM and MAXENT output grids for 
forest absence/presence under current and (2) Thomé et al. (2010) models of habitat 
distribution for current time, last interglacial period (LIG), last glacial maximum period 
(LGM),. 

3. Neotectonic hypothesis 

The Atlantic margin of the South American plate is tectonically passive (see Thomé et al. 

2010), although little changes occur, causing faults and fractures and consequently affect 

dated sedimentary deposits, regional uplifts consequently remodeling the landscape 

(Ricommini & Assumpção 1999). In the Brazilian Atlantic Forest many changes may have 

been caused by the uplift of the coastal Brazilian mountains (Serra do Mar). Those events 

possibly interrupted precipitation in southeastern Brazil by the early Pliocene at about 5.6 

Ma and therefore altered the distribution of humid and dry habitats. This period coincides 

with the transition from tropical humid to semiarid or arid conditions described by some 

authors (Simpson 1979; Vasconcelos et al. 1992). This orogenic process deeply changed the 

geomorphologic and climatic conditions of south and southeast areas of Brazil, and 

consequently fragmented Brazilian Atlantic Forest with drier areas (Grazziotini et al. 

2006). The palynological record of the Quartenary showed that between 33,000 and 25,000 

years ago, the central Brazilian region was moister than today and was covered by 

rainforest (Ledru 1993), and during the last glaciation  (18,000-12,000 years ago) the 

present day corridor of xeric vegetation was covered by extensive woodland (Prado & 

Gibbs 1993, Costa et al. 2003). It is believed that during drier periods, forest formations 
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were more likely to occur in mountain areas, because of the higher pluviometric level 

resulting from orographic effect. Such phenomenon is currently observed in north-eastern 

region of Brazil, where the occurrence of humid forests is strictly associated with areas of 

mountain ridges (D´Horta et al. 2011). 

Mountain chains often delimit Atlantic Forest distribution, but few studies have 

established geomorphological events as promoter of allopatric diversification in this 

biome (Thomé et al. 2010). Neotectonic activity has significantly remodeled the landscape 

of eastern Brazil during the Quaternary, confounding the signatures of isolation 

mechanisms along this Tertiary-Quaternary time scale. Thomé et al. (2010) found that the 

distinct phylogroups concordant with neotectonic barriers in Guapiara lineament and the 

Cubatão Shear zone in the São Paulo State, both including recent superficies ruptures 

(Ricommni and Assumpção, 1999). Although, the tectonic events in the region occupied 

by Brazilian Atlantic Forest are still poorly understood, they may be an alternative 

explanation to observed patterns. 

4. Riverine barriers 

The rivers can play an important role in biological diversification as they may act as primary 

or secondary barriers to gene flow and may have been important to model the current biota 

distribution. Siedchlang et al. (2010) suggest that the São Francisco River was an important 

barrier to  Calyptommatus (lizards), allowing speciation on opposite margins of the river, 

being responsible to present distribution of C. sinebrachiatus and C. leiolepis, as well as that of 

C. nicterus and C. leiolepis, which occurred in adjacent banks on opposite margins.  Thomé et 

al. (2010) observed that Rhinella crucifier group presents divergent lineages spatially 

concordant with Doce River systems and refute the refuges model to diversification this 

group.  Also, Lacerda et al. (2007) presented genetic data that suggested a role of the 

Jequitinhonha river and Doce river for separating populations of passeriformes 

Thamnophilus ambiguous (Sooretama). Pellegrino et al. (2005) show also that the genetic 

structure of lizards of the Gymnodactylus darwinii complex coincides with the river system in 

the northern regions of the Brazilian Atlantic Forest and that major coastal rivers in this 

region may have played a key role in its diversification 

On the other hand, D´Horta et al. (2011) suggested for Sclerurus scansor that tectonic activity 

associated with the Paraiba Valley can be congruent with the scenario that the river was 

important for the secondary contact of lineages of the south and central of Atlantic Forest, 

but not for the origin of these lineages due to phylogeography rupture, because the 

divergence time is much more recent (middle/late Pleistocene). This hypothesis  of 

secondary contact among lineages is corroborated by Cabanne et al. (2007) and Pessoa 

(2008), who also suggested Paraíba do Sul Valley as contact region of divergent 

mitochondrial lineages from Xyphorhynchus fuscus and Conopophoga lineata. Furthermore, in 

both margins of the Paranapanema river were also found two phylogroups of Bothrops 

jararaca (Grazziotin et al. 2006). 

In summary, the riverine systems seem important to differentiation between lineages and 

species, thus, are relevant to consider in the evolutionary processes related to the Atlantic 

Forest diversification, mainly the São Francisco, Jequitinhonha, Doce and Paranapanema 

(Fig 3). 
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Fig. 3. Localization of mainly rivers that influence the distribution of species at Brazilian 
Atlantic Forest. 

5. Gradient hypothesis 

The Atlantic Forest is surrounded by dry forests and forested savannas (Cerrado). Because 
of the existence of a gradual transition from humid forest to those drier biomes, many 
organisms associated to humid forests are also found intermingled in the open biomes. Each 
region, the Atlantic forest and the neighboring regions, present different characteristics, and 
therefore it is expected to find differential selective regimes that could make organisms to 
diverge between regions. This hypothesis is known as the ecological gradient hypothesis. 
Also, there are different types of forests within the Atlantic Forest that could imply 
differential selective regimes. Even though this scenario is very plausible, few studies 
addressed the problem of divergence across ecological gradients in this biome. For example, 
Lara et al.  (2005) mentions that the occurence of species of tree rat Phyllomys and of spiny 
rat Trinomys is associated with vegetation types and with humidity gradients indicate that 
evolution across gradients may be important. Bird species show distributed in different 
zone of humidity and temperature across forest types in the Atlantic forest with, which 
could suggest and important role of environmental gradients in their evolution. So far only 
one study addressed the problem of evolution across gradients in the Atlantic forest. 
Cabanne et al (in press) studied whether the plumage color in Dendrocolaptes platyrostris was 
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related to change by drift in different populations historically isolated, or by selective 
change in different forest types. They found that the plumage variation was related to 
different forest types and not to historically isolated lineages, suggesting an important role 
of selection. D. platyrostris at the open vegetation corridor was lighter and less streaked than 
at the forest habitat, a morph which is suggested to be an adaptation of woodcreepers for 
habitats with high luminosity levels, as are forests at the open vegetation corridor (Marantz, 
1997; Willis, 1992). On the other hand, rainforest  individuals  are darker and more streaked, 
what is considered to be an adaptation to live in low luminosity and very humid conditions 
(Marantz, 1997; Willis, 1992; Zink & Remsen, 1986).  
 

Era Period Epoch MYA Event Reference 

C
E

N
O

Z
O

IC
 

Q
u

a
rt

e
n

a
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Holocene 0.01
Pleistocene 1.8 Divergence lineage from  Sclerurus 

scansor (Passeriformes)
D´Horta et al. 
2011 

 Divergence of lineages of 
Xyphorhynchus fuscus 
(Passeriformes)

Cabanne et al. 
2007 

 Divergence of lineages of 
Conopophoga lineata (Passeriformes)

Pessoa 2008 

 Divergence of lineages from South 
the Gymnodectylus  darwinii (lizards)

Pellegrino et al. 
2005 

 Divergence between lineages of 
Carollia perspicillata (bat)

Pavan et al. 
2011 

 Divergence of lineages of Rhinella 
crucifier center and north Atlantic 
Forest (toad)

Thomé et a. 
2010 

 Divergence of lineages of Desmodus 
rotundus (bat)

Martins et al. 
2009 

 Divergence of lineages of Bradypus 
torquatus (Xenarthra)

Moraes-Barros 
et al. 2006 

T
e
rt

ia
ry

 

Pliocene 5.3 Divergence of phylogrops of 
Bothrops jararaca (Serpentes)

Grazziotini et 
al. 2006. 

 Divergence of lineages of North and 
south of Rhinella crucifier (toad)

Thomé et a. 
2010 

 Uplift Brazilian coast mountain
Miocene 23.0 Drainage of Parana river Grazziotin et al. 

2006 
 Neogene

sediments of the Barreiras 
Formation  Doce River

 Divergence of lineages North and 
South  Gymnodactylus darwinii 
(Lizards) 

Pellegrino et al. 
2005 

Table 1. The geological time scale and the resume of principal studies of Phylogeography in 
Atlantic Forest 
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The open vegetation corridor and its network of gallery forests and dry forests are 

contiguous with the Atlantic and Amazon forests. The results of Cabanne et al. (in press) 

supported the idea that the two plumages types of D. platyrostris may have evolved by 

divergent selection regimes between habitats. There are several other species that occur in 

both habitats and might present a similar evolutionary story. Puorto et al. (2001) found one 

clinal morphological variation to Bothrops atrox group, although did not show association 

with genetic variation, which revealed two clades concordant with division North and 

South of Forest Atlantic. 

6. Conclusions 

In conclusion, the separation of the northern and southern phylogroups observed at 

Atlantic Forest endemic  species is a pattern found for several taxa, however the 

discontinuities were observed in distinct zones of the Atlantic Forest. Some discrepancies 

can be explained by sampling bias, but others can be due to real differences in the 

dynamics of the species or the associated ecosystem. Anyway, distinct mechanisms have 

been invoked to explain the breaks, sometimes they were attributed differences are 

attributed to refuges hypothesis and another times to riverine barriers or tectonic 

activities. Silva et al. (in press) studied the panbiogeographic nodes in Atlantic Forest 

found six of the seven nodes found one node (Pernambuco) in North AF, two nodes 

(Bahia and Espírito Santo) are in Central AF, and three nodes (São Paulo, Paraná and 

Santa Catarina) correspond to South AF and concluded that the pattern of latitudinal 

subdivision of taxa distributions has originated at least since the Miocene and is more 

complex than previously thought.  The endemism areas are concordant with the stability 

areas proposal for Atlantic Forest, the great part of studies show differentiation between 

lineages in Pleistocene Epoch (Table 1). Due to the complexity of the geomorphological 

and ecological features of the Atlantic Forest, and the intrinsic complexity of the 

ecophysiology of the Atlantic Forest organisms, it seems too simplistic to imagine that one 

single diversification mechanism can explain the origin of the current biogeographical 

patterns exhibit by Atlantic Forest species (D´Horta et al. 2011).  A realist scrutiny of the 

Atlantic Forest diversity and past ecosystem dynamics should consider multiple 

mechanisms operating at different spatial and temporal scales (Thomé et al. 2010). 

The elucidating the process that acted in Atlantic forest is essential to understand the 

biodiversity present in this biome, and to conservation of lineages and species. 

Understanding the speciation process, the effects of climate oscilations will be important to 

estimate the consequence of global warming in this ecosystem. Predictions of ecological 

niche modeling to Brazil has indicated a decline of 80% of current distribution for half of the 

birds of the family Pipridae in Amazon and Atlantic Florest (Anciães & Peterson, 2006). 

Niches paleoclimate modeling combined with molecular analysis has pointed to cases of 

recent population expansion from refuges or ecologically stable areas with high diversity 

and population structure in the Atlantic in response to environmental changes in the 

Quaternary Period: amphibians, lizards (Carnaval et al. 2009, Carnaval and Moritz 2008) 

and birds (Cabanne et al., 2008). Thus, the importance of the characterization of the 

distribution of the genetic diversity of threatened and non-threatened species is important to 

future conservation plans and politics efforts. 
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