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1. Introduction 

Frontotemporal lobar degeneration (FTLD) comprises diseases with a very diverging 
spectrum in regards to clinical presentation, genetics, and neuropathology. In 1892 Arnold 
Pick published the case of 71-year old male with progressive symptoms of aphasia, apathy, 
and dementia (Pick 1892). The pathological examination revealed cortical atrophy with 
emphasis on the left temporal lobe (Pick 1892). Pick described another case of a 60-year old 
male with progressive signs of negligence, apathy, apraxia, and dementia (Pick 1906). This 
patient had bilateral frontal cortical atrophy on pathological examination (Pick 1906). Both 
cases demonstrate the main clinical and pathological spectrums while at the same time 
pointing at the clinical and pathological heterogeneity. Leading clinical symptoms were 
language deficits and behavioral changes. Both cases showed selective cortical atrophy of 
the left temporal lobe and both frontal lobes while relatively sparing the parietal and 
occipital lobes. 
The frontal lobes harbor the prefrontal cortex with its three distinct parts that differ in 
phylogeny, assembly, connectivity and function: 
1. dorsolateral convexity 
2. medial part: anterior gyrus cinguli 
3. limbic orbito-frontal cortex 
The dorsolateral convexity is important for the executive functions, i.e., anticipatory, 
analytical and imaginative thinking, as well as cognitive flexibility. The medial part is 
involved in attention, motivation, empathy, and emotion. The orbito-frontal cortex plays an 
important role in controlling impulses, emotions, and social behavior. The prefrontal cortex 
is closely connected with the sensory association cortices, the limbic system, and the basal 
ganglia. 
In the first part of this chapter, focus will be on clinical symptoms, diagnostics including 
neuropsychological and neuroimaiging findings, and therapy, while the second and third 
part will highlight recent findings in neurogenetics and neuropathology, respectively. 

2. Clinical presentation 

FTLD is the second most common cause for dementia before 65 years of age. Mean age of 
onset is around 45 to 60 years. However, FTLD may also contribute to a high degree in older 
patients (Seelaar, Kamphorst et al. 2008; Hodges, Mitchell et al. 2010). Up to 50% have a 
positive family history of FTLD (Stevens, van Duijn et al. 1998; Neary, Snowden et al. 2005). 
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In the early stage of the disease, changes in behavior and/or deficits in language may 
indicate FTLD. The onset of the disease is usually subtle and slowly progressive. Typically, 
no signs of impairment in memory or visiospatial function may be evident. The pronounced 
changes in behavior and/or language may lead to the diagnosis of FTLD in the early stage 
of the disease, differences to other variants of FTLD itself but also to Alzheimer’s disease 
may even out at later time points. The various forms of FTLD merge into a later stage 
characterized by apathy, severely impaired intellectual function, echolalia, and mutism. The 
duration of the illness and the decline is variable and ranges between 2 and 20 years 
(Hodges, Davies et al. 2003).  

2.1 Clinical variants 

FTLD is clinically defined according to the consensus criteria by Neary and colleagues 
(Neary, Snowden et al. 1998). The site of focal cerebral atrophy, i.e., frontal and/or temporal, 
left and/or right determines the clinical presentation. Behavioral variant FTLD (bvFTLD) is 
associated with usually a symmetrical frontal dysfunction. The language variants progressive 
non-fluent aphasia (PNFA) and semantic dementia (SD) are subsumed under the clinical 
syndrome of primary progressive aphasia (Mesulam 2001) and show involvement of the left 
anterior temporal lobe.  

2.1.1 Behavioral variant FTLD 

BvFTLD is the most common subtype of FTLD. Patients with bvFTLD show progressive 
personality and behavioral changes. Deficits in executive function, social interpersonal 
conduct, loss of insight (anosognosia), emotional blunting, stereotyped verbal output, 
hyperorality, dietary changes with weight gain, mood changes including irritability, 
depression, fatuous euphoria, tactlessness, loss of concern for feeling for others, lack of 
empathy, reduced emotional engagement, utilisation behavior, obsessive behavior, and 
neglect of personal hygiene all encompass the wide spectrum of clinical symptoms in 
bvFTLD.  
BvFTLD can be subdivided into an (1) dorsolateral/medial type with an apathetic profile, 
and (2) basal type with pronounced behavioral changes (Snowden, Bathgate et al. 2001). 
Parkinsonian features like rigidity and bradykinesia can be associated with bvFTLD. In 
many FTLD patients with Parkinsonism, a genetic linkage to chromosome 17 (tau, PGRN) 
was found, and these cases were termed FTDP-17. 
Incontinence, orthostatic dysregulation, and the presence of frontal signs (saccadic eye 
movements, disturbed upward gaze, paratonia, inexhaustible blink reflex, abnormal Luria 
sequence) on neurological examination may be present. 
CT or MRI may be normal early in the course, but symmetrical atrophy frontal atrophy and 
involvement and atrophy of the prefrontal cortex, the paralimbic areas anterior cingulum 
and frontal insula, and thalamus (Grimmer, Diehl et al. 2004). At later stages, atrophy may 
be observed of the temporal and parietal cortex (Diehl-Schmid, Grimmer et al. 2007). [F18]-
FDG-PET and HMPAO-SPECT are useful to establish the clinical diagnosis and show the 
typical involvement of the frontal and temporal lobes (Mendez, Shapira et al. 2007; Mosconi, 
Tsui et al. 2008). 

2.1.2 Progressive non-fluent aphasia 

PNFA patients show apraxia of speech and agrammatism. Sentence repetition may be 
impaired. Later in the disease, PNFA may present with mutism, alexia, and agraphia. Word 
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comprehension and object knowledge are initially spared. Behavioral changes and 
anosognosia are uncommon in the disease, but may develop later in the course. On CT or 
MRI scan, left-sided atrophy of the inferior frontal lobe and anterior insula is often 
appreciated.  

2.1.3 Semantic dementia 

Typical signs of patients with SD are anomia and loss of word meaning. Albeit still having 
fluent speech, the content of speech is empty and semantic paraphasias can be detected. 
Semantic memory progressively becomes impaired. Patients with SD may not recognize 
faces or objects. Writing may be spared and figures may be copied. In contrast to PNFA, SD 
are more prone to develop behavioural changes and anosognosia early in the disease. 
Neuroimaging studies with CT or MRI of SD show bilateral atrophy of the anterior and 
inferior temporal lobes. The left temporal lobe is usually more affected than the right. 
Progression of lobar atrophy can be automatically observed over a short period of time 
(Frings, Mader et al. 2011). 

2.2 Associated diseases with FTLD 
2.2.1 FTLD-ALS 

FTLD may be associated with amyotrophic lateral sclerosis (ALS), termed FTLD-ALS. Signs 
of motor neuron disease can be found in a small subset of patients with FTLD (Hodges, 
Davies et al. 2003; Mitsuyama and Inoue 2009). Affection of upper motoneurons is 
characterized by fasciculations, hyperreflexia, and positive Babinski signs whereas affection 
of lower motoneurons by muscle atrophy and weakness. Dementia, typically behavioral 
changes and/or PNFA, is usually rapid and patients have a very short disease duration with 
only about three years (Hodges, Davies et al. 2003). It has been reported that 5-15% of 
patients diagnosed with ALS also show signs of deficits in executive function, suggesting 
that these patients may belong to the FTLD-ALS subtype (Ringholz, Appel et al. 2005). 
FTLD-ALS is pathologically characterized by TDP-43 positive neuronal cytoplasmic 
inclusions (Mackenzie, Baborie et al. 2006; Sampathu, Neumann et al. 2006). A genetic 
linkage to chromosome 9p has been established for some cases of FTLD-ALS. 

2.2.2 CBD and PSP 

Corticobasal degeneration (CBD) and progressive supranuclear palsy (PSP) belong into the same 
clinical, genetic, and pathological spectrum of FTLD (Kertesz and Munoz 2004; Josephs, 
Petersen et al. 2006).  
Patients with CBD present as atypical Parkinson’s disease with strong asymmetry of 
rigidity and unilateral apraxia (sometimes “alien limb” phenomenon). Sometimes 
dystonia, myoklonus, sensory deficits, and early speech disturbance like dysphasia can be 
observed. Behavioral and personality changes are subtler than in FTLD patients early in 
the course of the disease. Later, apathy, disinhibition, irritability, and subcortical 
dementia can be present. On neuropathological examination, focal, asymmetrical cortical 
atrophy and degeneration with loss of pigment of the substantia nigra can be noticed. 
Because CBD is characterized by the accumulation of tau protein in neurons and glia, it is 
classified as a tauopathy. 
PSP also belongs to the group of tauopathies. Clinically, impaired upward and especially 
downward gaze and frequent falls indicate a diagnosis of PSP. Decreased verbal fluency 
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with loss of speech later in the course, apathy, behavioural changes and pseudobulbar palsy 
may contribute. Macroscopic examination reveals focal atrophy of the midbrain and pontine 
tegmentum. Microscopically, neuronal and glial accumulation of tau protein can be 
appreciated. 

2.2.3 Rare forms associated with FTLD 

Neuronal intermediate filament inclusions disease (NIFID), basophilic inclusion body disease 

(BIBD), and inclusion body myopathy with Paget’s disease and frontal dementia (IBMPFD) are 
very rare diseases. They share clinical and pathological similarities with FTLD (Kertesz and 
Munoz 2004; Josephs, Petersen et al. 2006). 
NIFID is characterized as early-onset sporadic bvFTLD with affection of the pyramidal and 
extrapyramidal motor systems. Neuronal inclusions observed on microscopic examination 
show immunoreactivity for class IV intermediate filaments and accumulation of the FUS 
protein (Josephs, Holton et al. 2003; Cairns, Grossman et al. 2004; Neumann, Roeber et al. 
2009). BIBD is characterized pathologically by basophilic inclusions on haematoxylin and 
eosin staining. These inclusions are immunoreactive for FUS (Munoz, Neumann et al. 2009). 
Clinically, symptoms vary and can present as bvFTLD, ALS or combination of both. 
IBMPFD is caused by mutations in the VCP gene. Accumulation of TDP-43 can be 
appreciated on microscopic examination (van der Zee, Pirici et al. 2009). Adult-onset 
proximal/distal muscle weakness, spine or hip pain and deformity and enlargement of long 
bones, as well as signs of FTLD characterize IBMPFD. 

2.3 Neuropsychological assessment 

Standard neuropsychological tests do not provide high sensitivity and specificity for the 
diagnosis of FTLD, in particular to differentiate form Alzheimer’s disease (Walker, Meares 
et al. 2005; Hutchinson and Mathias 2007). But maybe the most important aspect of 
neuropsychological assessment is not the test battery itself but the accurate observation of 
the patient during testing. General appearance, motor activity, speech, and linguistic content may 
already be suggestive for FTLD. Patients with bvFTLD often grasp at objects during testing, 
although they were not asked to do so. This phenomenon can be frequently observed and is 
called utilisation. Patient also imitate persons verbally and/or gestural. E.g., they repeat 
words or sentences (echolalia). High distractibility, low flexibility, indifference, rule breaking 
behavior, stereotype behavior, impaired drive and motivation, and missing cooperation during 
testing are indicative of frontal lobe dysfunction. Disturbed social behavior and anosognosia 
may be seen as well.  
Patients often perform normal on the Mini mental status examination (MMSE). Recall of 
learned verbal and figural information are often without pronounced deficits. Sometimes 
many false positive answers are given on the recognition part of verbal memory. Copying of 
figures can be impaired, and bvFTLD patients often draw bizarre pictures.  
Tests assessing impairment of executive function including planning, organisation, 
judgement, problem solving, mental flexibility in FTLD patients may support the diagnosis 
of FTLD. Usually, memory, visual perception, and spatial skills are relatively well preserved 
(Hodges, Patterson et al. 1999; Mendez, Shapira et al. 2007; Wittenberg, Possin et al. 2008). 
Because of impaired executive function and motivation, FTLD patients can score strikingly 
low in the verbal fluency test. Patients are asked to name as many words (e.g., animals, 
words that begin with the letter “S”) as he can within 60 seconds. The five-point test may 
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also help to identify patients with executive dysfunction and tests figural fluency. 5 points 
are given (4 in the rectangle and 1 in the middle), and participants are required to draw as 
many patterns by connecting at least 2 points within three minutes. Visual attention and 
task switching may be also checked by performing Trail Making A and B. 
More time consuming is the Wisconsin card sorting test (WCST) tests the cognitive 
flexibility of the patient. Here, the participant has to match cards either to color, design, or 
quantity. During the course of the test, the matching rules are changed. Another test for 
cognitive flexibility and selective attention is the stroop color word test. Here, the 
participant has to suppress a habitual in favour of a novel response. In this experiment the 
participant is required to say the color of the word, not what the word says. 
A test that requires advanced planning and strategical thinking are the tower of London and 
tower of Hanoi tests. The participant has to arrange different discs and stacks onto other 
racks in order to come from one starting position to a certain defined end. 
Deficits in speech and language are characteristic for primary progressive aphasia. 
Spontaneous speech, fluency, comprehension, sentence repetition, naming, and reading 
need to be evaluated. 

2.4 Differential diagnosis 

Patients with FTLD can be distinguished from Alzheimer’s disease (AD) early in the course 
of the disease because of remarkable changes in their behavior, personality changes, poor 
motivation, and/or severe language impairment. AD manifests with early deficits in short-
term memory, visuo-spatial deficits. In AD, mediobasal temporal atrophy with enlargement 
of the temporal horns of the ventricle can be observed on CT and MRI scan. SPECT and PET 
studies can reveal hypoperfusion and hypometabolism temporo-parietal in AD patients. In 
FTLD patients, memory is usually not impaired, and normal test values can be found in the 
MMSE or CERAD. CSF markers (abeta, p-tau) are very sensitive for AD. 
Patients with progressive supranuclear palsy also demonstrate executive dysfunction, which 
may precede the typical motor symptoms of PSP, characterized by vertical eye movement 
paralysis and frequent falls. Another movement disorder may mimic cardinal features of 
FTLD, corticobasal degeneration with unilateral rigidity, bradykinesia, apraxia, dystonia 
(Lang, Bergeron et al. 1994; Jendroska, Rossor et al. 1995). 
Other differential diagnoses are listed in the table 1. 

2.5 Pharmacotherapy 

Therapeutic options for FTLD are limited and primarily aim at the treatment of somatic and 
psychiatric symptoms. A disease modifying therapy is not available yet.  
A cholinergic deficit has not been observed in FTLD (Procter, Qurne et al. 1999). Treatment of 
FTLD patients with acetylcholinesterase-inhibitors such as galantamine and donepezil did not 
improve cognition (Mendez, Shapira et al. 2007; Kertesz, Morlog et al. 2008). However, 
rivastigmine was able to attenuate behavioral symptoms in an open label study (Moretti, 
Torre et al. 2004). 
NMDA-receptor antagonist memantine may be promising in the treatment of behavioral 
disturbances (Swanberg 2007; Diehl-Schmid, Forstl et al. 2008; Vossel and Miller 2008; 
Kavirajan 2009; Chow, Graff-Guerrero et al. 2011 ).  
The serotonergic and dopaminergic neurotransmitter systems seems to be affected in FTLD  
(Procter, Qurne et al. 1999; Yang and Schmitt 2001; Franceschi, Anchisi et al. 2005). Selective  
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Differential diagnosis Diagnostic work up 

Dementia 

• Alzheimer’s disease 
• Primary progressive aphasia-logopenic
• Vascular dementia 
• Normal pressure hydropcephalus 

 
Lumbar puncture (Abeta, tau), 
SPECT/PET (parietal and temporal lobes 
bilaterally) 
Language and memory deficits early in the 
disease 
CT/MRI 
CT/MRI, spinal tab 

Affective disorders 

• Depression 
• Mania 

 
Past history, response to antidepressive 
medication 
Past history, response to mood stabilizers 

Schizophrenia Past history, response to antipsychotics 
Morbus Wilson CT/MRI, coeruloplasmin 
Huntington’s disease Genetic testing 
Lues Syphilis serology 
Brain tumors CT/MRI 
Alcohol and drug abuse Past History, blood work (MCV, liver 

enzymes) 

Table 1. 

serotonin-reuptake inhibitors (SSRI) such as paroxetin, fluvoxamine, and trazodone have been 
shown to be efficious in the treatment of obsessive behaviour, agitation, irritability, and 
depression (Swartz, Miller et al. 1997; Litvan 2001; Perry and Miller 2001; Moretti, Torre et 
al. 2003; Lebert, Stekke et al. 2004; Huey, Putnam et al. 2006). E.g., paroxetin improved 
anxiety, and perseveration (Chow and Mendez 2002), however, conflicting results have been 
reported (Deakin, Rahman et al. 2004). The monoamine-oxidase B inhibitor selegiline 
improved cognition (Moretti, Torre et al. 2002). 
The usage of antipsychoctics should be contained especially when parkinsonian symptoms 
such as bradykinesia are present (Pijnenburg, Sampson et al. 2003).  

2.6 Summary 

FTLD should be suspected in younger patients, who present with progressive 
behavioral/personality changes or language/naming impairment. A positive family history 
may support the diagnosis. Relatives or caregivers should accompany the patient to the 
hospital in order to give a detailed history. Physical examination may reveal signs of 
frontal/executive deficits and parkinsonism. A neuropsychological assessment should be 
done. Here, MMSE, verbal fluency, verbal and figural memory should be tested and special 
attention is needed to observe behavior during testing. Imaging studies such as CT or MRI 
can reveal focal frontal and/or temporal atrophy. However, atrophy may be absent early in 
the course of the disease. If FTLD is suspected, SPECT/PET should be performed. No 
specific lab or CSF marker are available yet, but should be performed to exclude differential 
diagnosis.  
A disease-modifying therapy has not been discovered. Main focus lies on the treatment of 
psychiatric symptoms. 
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3. Genetics 

The overall frequency of positive family history for dementia in a German FTLD patient 
cohort was 24 % (Schlachetzki, Schmidtke et al. 2009). This proportion is below reported 
frequencies in several earlier series with a positive family history of up to 40-50% of FTLD 
cases (Neary, Snowden et al. 2005) (Stevens, van Duijn et al. 1998). The possibility remains 
that the true proportion of dominantly inherited cases is obscured by instances of early 
death of mutation carriers in the parental generation, siblings that carry mutations but are 
yet undiagnosed, or illegitimate descent. 
30-50 % of patients with bvFTLD have a positive family history. Patients presenting 
clinically with SD or PNFA show a lower frequency (Seelaar, Kamphorst et al. 2008; Chow, 
Miller et al. 1999;  (Stevens, van Duijn et al. 1998; Rohrer, Guerreiro et al. 2009). 
Mutations in microtubule associated protein tau (MAP) and progranulin (PGRN) can be found in 
the majority of cases, whereas mutations in valosin containing protein (VCP), charged 
multivesicular body protein 2B (CHMP2B), TDP-43 are rare. In about 30 % of FTLD patients 
with a positive family history, no mutations have been found so far.  
The number of mutations and families of each gene can be found at 
http://www.molgen.ua.ac.be/admutations/default.cfm?MT=1&ML=0&Page=ADMDB. 

3.1 MAPT 

MAPT gene is located on chromosome 17q21.1 and encodes for the protein tau. It contains 
11 exons. Exons 2,3, and 10 are alternatively spliced, allowing for 6 isoforms. In 1998 
mutations in the MAPT gene were identified in patients presenting clinically with FTLD 
with Parkinsonism linked to chromosome 17 (FTDP-17) (Hutton, Lendon et al. 1998; 
Poorkaj, Bird et al. 1998; Spillantini, Crowther et al. 1998). This hereditary tauopathy is a rare 
clinical syndrome, described in around 120 families worldwide and shows a great intra- and 
interfamilial clinical heterogeneity. More than 40 different MAPT mutations have been 
described and could be classified into two groups: (i) mutations that change the biochemical 
properties of tau, and (ii) that alter the alternative splicing of tau mRNA. FTDP-17 cases 
usually present clinically with behavioral changes associated with motor deficits later in the 
course of the disease, mainly PSP or CBD like symptoms. FTDP-17 is autosomal dominantly 
inherited. On pathological examination FTDP-17 cases with MAPT mutations have (i) a 
predominant symmetric atrophy of the frontal and temporal lobes, accounting for the 
observed behavioral changes, and (ii) of the basalganglia and brainstem nuclei, that explain 
the parkinsonism observed in these cases (Ghetti, Spina et al. 2008). The microscopic 
examination reveals cytoplasmic neuronal and/or glial inclusions with immunoreactivity 
against hyperphosphorylated tau. Depending on the type of MAPT mutation, distribution 
and amount of neurofibrillary tangles, neuropil threads, and glial inclusions composed of 
insoluble tau vary. 
Pathological changes in MAPT include missense mutations in exons 9 to 13 (e.g., G272V, 
P301L and R406W) and mutations in the 5’ splice site of exon 10. Missense mutations in exon 
9 to 13 impair the function of tau to promote microtubule assembly, organization, and 
stabilization. The splice site mutation of exon 10 increases the proportion of 4R tau (four 
microtubule-binding repeats) in neurons and glia by the increased transcription into tau 
mRNA that includes exon 10 (Hutton, Lendon et al. 1998).  
The rate of whole brain atrophy seems to be bigger in patients with MAPT mutations 
(Whitwell, Weigand et al. 2011). 
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3.2 PGRN 

PGRN gene is located on chromosome 17 in close vicinity to MAPT locus. At present, PGRN 
mutations exceed the number of MAPT mutations in patients with FTLD. Pathogenic 
mutations include missense and nonsense mutations, or small insertions or deletions in the 
exons or introns of the gene (Gass, Cannon et al. 2006). Most of the mutations lead to 
frameshift and premature stop codons. E.g., point mutations were identified in two cases of 
a German cohort of 79 patients (Schlachetzki, Schmidtke et al. 2009). Pathogenic mutations 
in PGRN invariably lead to mutant mRNA transcripts, which undergo nonsense-mediated 
decay, thereby resulting in haploinsufficiency (Baker, Mackenzie et al. 2006; Cruts, 
Gijselinck et al. 2006).  
Overall, the frequency of PGRN mutations is similar to that of mutations in MAPT (Rosso, 
Donker Kaat et al. 2003). Prevalence of mutations in PGRN is suggested to account for 1-15 
% of all cases with FTLD (Bruni, Momeni et al. 2007; Gass, Cannon et al. 2006; Le Ber, van 
der Zee et al. 2007; Schlachetzki, Schmidtke et al. 2009), but up to 26 % of familial cases 
(Pickering-Brown, Baker et al. 2006; Cruts, Kumar-Singh et al. 2006; Bronner, Rizzu et al. 
2007). In a large series from the USA, mutations were found in 10 % of all patients with 
FTLD and 23 % in cases of familial FTLD (Gass, Cannon et al. 2006). Several other studies 
from France, Italy, the Netherlands, the UK, Belgium, Finland, and the USA have reported 
lower frequencies of on average 5 % in unselected FTLD groups and 4-10 % in groups of 
cases of familial FTLD (Le Ber, Camuzat et al. 2008; Le Ber, van der Zee et al. 2007; Bruni, 
Momeni et al. 2007; Borroni, Archetti et al. 2008; Bronner, Rizzu et al. 2007; Pickering-Brown, 
Rollinson et al. 2008; Cruts, Gijselinck et al. 2006; Gijselinck, van der Zee et al. 2008; Gass, 
Cannon et al. 2006; Huey, Grafman et al. 2006). The differences in the reported frequencies 
may be due to differences in the mode of ascertainment of patients, in ethnic variations as 
well as to founder effects. 
Mean age at onset of FTLD patients with PGRN mutations is around 60 years. The majority 
of patients with PGRN mutations show the behavioural-variant phenotype with apathy and 
social withdrawal as prominent characteristics (van Swieten, Stevens et al. 1999). PGRN 
mutations have also been found in patients who present with language impairment early in 
the course of the disease, diagnosed as primary non-fluent progressive aphasia (PPA) (Gass, 
Cannon et al. 2006; Huey, Grafman et al. 2006; Josephs, Ahmed et al. 2007; Snowden, Neary 
et al. 2007; Mesulam, Johnson et al. 2007). Patients from different families with the same 
mutation do not necessarily show the same clinical phenotype or age at onset (Huey, 
Grafman et al. 2006). 
On microscopic examination, all cases with PGRN mutations share a common subtype, 
characterized by NCIs and irregular dystrophic neurites in the neocortex and subcortical 
nuclei (Josephs, Ahmed et al. 2007; Gass, Cannon et al. 2006; Behrens, Mukherjee et al. 2007; 
Lopez de Munain, Alzualde et al. 2008; Mackenzie, Baker et al. 2006; Snowden, Pickering-
Brown et al. 2006; Spina, Murrell et al. 2007). This subtype is referred to as type A 
(Mackenzie, Neumann et al.). Former classifications used different numbers: type I by 
Mackenzie et al. and type 3 by Sampathu and co-workers (Mackenzie, Baker et al. 2006; 
Sampathu, Neumann et al. 2006).  
Mutations in PGRN may also present clinically also with symptoms of parkinsonism (FTDP-
17) (Benussi, Binetti et al. 2008; Boeve and Hutton 2008; Ghetti, Spina et al. 2008; 
Gabryelewicz, Masellis et al. 2010; Di Fabio, Tessa et al. 2010). First findings may lead to 
new therapeutic approaches. Inhibitors of vacuolar ATPase like bafiomycin A1 and 
alkalizing molecules like amiodarone have been shown to significantly increase the 
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concentration of progranulin intra- and extracellularly in an animal model (Capell, 
Liebscher et al. 2011). This may prevent progranulin-mediated neurodegeneration and may 
be a feasible therapeutic option. These agents could increase PGRN levels in the serum, 
plasma or CSF. Concentrations of progranulin in plasma, serum, and CSF are predictive in 
mutation carriers with and without symptoms (Sleegers, Brouwers et al. 2009; Ghidoni, 
Benussi et al. 2008; Finch, Baker et al. 2009). Thus, genetic screening could then be 
performed in patients with altered PGRN levels in plasma or serum. 

3.3 VCP 

VCP is located on chromosome 3 and contains 5 exons. VCP encodes for the VCP (VCP/p97) 
protein, which is a member of the ATPase associated with a variety of activities protein 
family. VCP is a ubiquitously expressed and is involved in numerous cellular processes 
including proteasomal ubiquitin-dependent protein degradation. VCP regulates 
autophagosome maturation under basal conditions and in cells challenged by proteasome 
inhibition, but not in cells challenged by starvation, suggesting that VCP might be 
selectively required for autophagic degradation of ubiquitinated substrates. 
VCP mutations are a rare cause for FTLD with a variable penetrance and are mainly 
autosomal-dominant inherited. The first mutation in the VCP gene was described in 2004 
(Watts, Wymer et al. 2004), since then more mutations have been identified in familial cases 
(Haubenberger, Bittner et al. 2005; Gidaro, Modoni et al. 2008; Djamshidian, Schaefer et al. 
2009; Bersano, Del Bo et al. 2009). A mutation has also been described in a sporadic case 
(Bersano, Del Bo et al. 2009). There is no evidence, that common variants in VCP confer a 
strong risk to the development of sporadic FTLD (Schumacher, Friedrich et al. 2009). Only 
missense mutations have been described so far. The mutations are located mainly within the 
ubiquitin-binding domain, suggesting that the pathological accumulation of TDP-43 may be 
due to problems within the protein degradation system. 
VCP mutations can be found in patients with IBMPFD. About 1/3 of these patients actually 
present with bvFTLD (Kimonis, Fulchiero et al. 2008). A high degree of clinical 
heterogeneity has been described within families but also among unrelated families bearing 
the same VCP mutation. 
On neuropathological examination, mutant VCP cases are characterized by neuronal nuclear 
inclusions containing ubiquitin (Schroder, Watts et al. 2005) and TDP-43 (Neumann, 
Mackenzie et al. 2007). Phosphorylated TDP-43 was detected only in insoluble brain extracts 
from affected brain regions. Identification of TDP-43, but not VCP protein, within ubiquitin-
positive inclusions supports the hypothesis that VCP gene mutations lead to a dominant 
negative loss or alteration of VCP function culminating in impaired degradation of TDP-43 
(Neumann, Mackenzie et al. 2007). TDP-43 positive Intranuclear inclusions and dystrophic 
neurites are characteristic (van der Zee, Pirici et al. 2009; Watts, Thomasova et al. 2007) and 
are referred to as FTLD-TDP pathology type D (Mackenzie, Neumann et al. 2011). Inclusions 
are also present in muscle and heart and are immunoreactive for TDP-43 and beta-amyloid 
(Watts, Thomasova et al. 2007; Kimonis, Fulchiero et al. 2008). Presently, the link between 
TDP-43 and VCP is unsolved. Transgenic mice with VCP mutations have been described 
which mimic the three cardinal symptoms of the disease. E.g., it has been shown that 
mutant VCP may result in enhanced activation of the NF-kappaB signaling cascade (Custer, 
Neumann et al. 2010). In addition, impaired autophagy has been shown (Ju, Fuentealba et al. 
2009; Badadani, Nalbandian et al. 2010). It was shown in cell culture models, that mutations 
in the VCP gene relocate TDP-43 from the nucleus into the cytosol, decreases proteasome 
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activity, induces endoplasmic reticulum stress and thereby impairs cell viability (Gitcho, 
Strider et al. 2009). In a drosophila model, mutant VCP leads to a redistribution of TDP-43 to 
the cytoplasm and thereby induces cytotoxicity, thus implying a toxic gain of function of 
TDP-43 (Ritson, Custer et al. 2010). 

3.4 CHMP2B 

CHMP2B is located on chromosome 3, and contains 6 exons. It encodes for the protein 
charged multivesicular protein 2B. CHMP2B protein is a member of ESCRT-III (endosomal 
sorting complex required for transport III) and is involved in vesicular fusion events within 
the endosome – lysosome compartments plays an important role in the process of 
degradation via autophagy. Mutations in this gene are very rare (Cannon, Baker et al. 2006; 
van der Zee, Urwin et al. 2008) and have been first described in a Danish family (Skibinski, 
Parkinson et al. 2005). Pathogenic mutations described so far lead to a partial truncation of 
the C-terminal region. Patients present clinically with bvFTLD and show pyramidal and 
extrapyramidal signs later in the course of the disease (Gydesen, Brown et al. 2002) and have 
an autosomal – dominant family history. Missense mutations in the CHMP2B gene 
causative for FTLD have not been identified so far and seem to be unlikely (Ferrari, 
Kapogiannis et al. 2011). 
On neuropathological examination, inclusions are ubiquitin-positive but negative for tau, 
TDP-43, and FUS. Thus, the protein within the inclusion bodies still needs to be determined. 
CHMP2B cases are classified as FTLD-UPS (ubiquitin – proteasomal system). It is 
noteworthy, that FTLD-UPS also includes cases without CHMP2B mutation, suggesting that 
the full complement of FTLD pathologies is yet to be elucidated. 
CHMP2B is involved in the protein degradation system, and mutations CHMP2B could 
cause inclusion bodies and disruption of endosome-lysosome fusion by a defective protein 
degradation system (Urwin, Authier et al. 2010). 
In addition, CHMP2B mutant animal showed disrupted integrity of dendritic spines and 
synapses (Belly, Bodon et al. 2010). 

3.5 Linkage to chromosome 9p13.2-21.3 
A linkage to chromosome 9p13.2-21.3 has been suggested in many autosomal-dominant 
families with bvFTLD or FTLD-ALS (Morita, Al-Chalabi et al. 2006; Vance, Al-Chalabi et al. 
2006; Valdmanis, Dupre et al. 2007; Luty, Kwok et al. 2008; Le Ber, Camuzat et al. 2009; 
Gijselinck, Engelborghs et al. 2010; Shatunov, Mok et al. 2010). Genome – wide linkage 
studies verified an association familial bvFTLD, FTLD-ALS, and ALS cases with the 
chromosomal locus 9p13.2-21.3 (van Es, Veldink et al. 2009; Laaksovirta, Peuralinna et al. 
2010; Shatunov, Mok et al. 2010). However, the responsible gene could not be identified so 
far. These data confirm that FTLD and amyotrophic lateral sclerosis (ALS) share a common 
genetic risk factor on chromosome 9p (Rollinson, Mead et al. 2011). 
On pathological examination, cases with linkage to chromosome 9p13.2-21.3 show a TDP-43 
proteinopathy, classified to type B with moderate neuronal cytoplasmic inclusions and few 
dystrophic neurites in all layers (Mackenzie, Neumann et al. 2011; Cairns, Neumann et al. 
2007). Recently, a hexanucleotide GGGGCC repeat in intron 1 of C9ORF72 has been 
identified to be the cause of chromosome 9p13.2-21.3-linked FTLD-ALS (Dejesus-
Hernandez, Mackenzie et al. 2011; Renton, Majounie et al. 2011). The function of the 
C9ORF72 encoding protein has not been characterized yet. It has been suggested that the 
repeat expansion may imply loss-of-function and gain-of-function mechanisms by affecting 
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transcription and causing the formation of nuclear RNA foci (Dejesus-Hernandez, 
Mackenzie et al. 2011).  

3.6 TARDBP 

TARDBP encodes the protein TDP-43. It includes 7 exons. In 2008 mutations in the TARDBP 
gene on chromosome 1 encoding TDP-43 were first described in ALS patients with a 
positive family history but also in cases of sporadic ALS (Gitcho and Baloh 2008; Kabashi 
2008; Sreedharan 2008). A mutation in TARDBP is found in about 4% and 1.5% of patients 
with sporadic and familial ALS, respectively. After these findings, an extensive search 
begun to identify mutations in TARDBP gene of patients with FTLD. In contrast to ALS, 
TARDBP mutations may be only a rare cause of FTLD. Mainly missense mutations have 
been described in patients with bvFTLD (Borroni, Bonvicini et al. 2009), FTLD-MND 
(Benajiba, Le Ber et al. 2009; Borghero, Floris et al. 2011), and FTLD with supranuclear palsy 
and choreatic movements (Kovacs, Murrell et al. 2009). Most missense changes involve exon 
6, which encodes a Gly-rich region and the C-terminus. This may lead to a toxic gain-of 
function as well as loss of function of TDP-43 by interfering with protein-protein-
interactions due to increased propensity to aggregate and by alteration of the 
phosphorylation site (Kabashi, Lin et al. 2010). In one family with FTLD-ALS a variant in the 
3'-untranslated region (3'-UTR) of the TARDBP gene has been described and showed FTLD-
TDP pathology on neuropathological examination (Gitcho, Bigio et al. 2009). 

3.7 FUS 

Mutations in the FUS gene on chromosome 16 were first identified to be responsible in a few 
cases with familial ALS (Kwiatkowski, Bosco et al. 2009; Vance, Rogelj et al. 2009). 
Altogether, FUS mutations account only for a minority of familial ALS patients (4%) and 
roughly 1% in sporadic cases. One missense mutation in a patient with bvFTLD and 
negative family history was described (Van Langenhove, van der Zee et al. 2010). No 
autopsy data is available for this proposed case of FTLD-FUS, so it remains uncertain 
whether FUS mutations truly cause FTLD. 

3.8 Summary 

30 to 50% of patients with bvFTLD have a positive family history. The frequency for familial 
PNFA and SD as well as FTLD-ALS is very low. Taken together, general genetic screening 
for patients presenting with symptoms suggesting FTLD cannot be recommended at this 
point. So far, testing for mutations in PGRN and MAPT may be plausible for FTLD patients 
with a positive family history. Most importantly, it is essential to obtain a thorough family 
history by asking the relatives or caregivers during several visits for family members that 
showed signs of personality changes or language impairment, as well as signs of movement 
disorders. The clinical subtype may also hint at a candidate gene. So far, patients with 
familial bvFTLD may contain mutations in the MAPT or PGRN genes, patients with PNFA 
in the PGRN gene. For SD and FTLD-MND, genetic screening cannot be recommended. 
In sporadic cases, PGRN mutations may be found, but here again, genetic screening will not 
be of great value. 
Despite a great effort to find genetic risk factors for FTLD, none has been surely identified so 
far. At the moment, not all gene mutations have been identified in patients with familial 
FTLD. 
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Gene Location Protein 
Clinical 

Phenotype 
Families Mutations 

MAPT 17q21.1 
Microtubule 
associated 
protein tau 

bvFTLD, FTDP 134 44 

PGRN 17q21.31 Progranulin 
bvFTLD, PNFA, 

CBD 
231 69 

VCP 9p13.3 
Valosin-

containing 
protein 

IBMPFD 41 17 

CHM2B 3p11.2 
Charged 

multivesicular 
Body Protein 2B 

bvFTLD with 
movement 

deficits 
5 4 

TARDBP 1p36.2 

TAR DNA-
binding protein 
of 43 kDa (TDP-

43) 

bvFTLD, FTLD-
ALS 

92 34 

Not 
determined 
(C9ORF72) 

Linkage to 
chromosome 
9p13.2-21.3 

Not determined 
(C9ORF72: 

uncharacterized)

bvFTLD, FTLD-
ALS 

  

Table 2. 

4. Neuropathology 

The pathological hallmark of FTLD is the presence of intracellular protein aggregates. These 
inclusions are immunoreactive for ubiquitin. In the last couple of years it has become clear 
that FTLD encompasses a vast spectrum of neuropathological features. The protein tau was 
the first protein identified as the main component of intraneuronal inclusions in around 40 
% of cases with FTLD. For over a decade other associated disease proteins in cases positive 
for ubiquitin but negative for tau could not be identified. Subsequently, these cases were 
termed FTLD-U. Then in 2006 and 2009, TDP-43 and FUS were identified to be the main 
components in many ubiquitin-positive, tau-negative inclusions, and the terms FTLD-TDP 
and FTLD-FUS were introduced, respectively. Up to date, the associated protein in most 
cases has been identified, with the exemption of cases with CHMP2B mutations.  
In other pathological cases with FTLD, no clear pathology could be identified and was 
termed „dementia lacking distinctive histology“ (DLDH). DLDH may be very rare, and it 
has been suggested that lack of sensitivity for ubiquitin immunostaining may account for 
the failure to find specific pathology (Mackenzie, Shi et al. 2006). 
In the following section, an overview over the three key disease associated proteins, namely 
tau, TDP-43, and FUS, will be given. 

4.1 Tau 
Tau is physiological localized to the axon in order to stabilize microtubules, filaments of  
the cytoskeleton apparatus (Goedert, Wischik et al. 1988). Tau is a phosphoprotein with  
high numbers of serine and threonine residues; thereby tau serves as a substrate by many 
kinases. Tau is crucial for the neuronal metabolism including signal transduction and 
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intracellular transport as well as neuronal plasticity. Six isoforms of tau are known and are 
generated by alternative mRNA splicing. The isoforms differ in the number of amino acids 
in the protein chain, the presence of three (3R tau type) or four (4R tau type) domains 
responsible for binding to microtubules, and one or two inserts containing from 29 to 58 
amino acids. The isoforms are modified posttranslational by hyperphosphorylation, 
glycation, or oxidation, which can change the protein's properties and disturb its normal 
function. 
Under pathological conditions, tau becomes posttranslational modified through enhanced 
phosphorylation at its serine and threonine residues as well as at additional sites. 
Hyperphosphorylated tau then dissociates from microtubules, causing them to 
depolymerize. Tau then is deposited in aggregates and can now also be found in dendrites. 
Hyperphosphorylated inclusions can be found in the soma and neurites of neurons 
(neurofibrillar tangles), as well as in astroglia (“astrocytic plaque”), and oligodendrocytes 
(“coiled bodies”). In glia, tau can be found predominantly in its 4R isoform. One common 
hypothesis is that soluble rather than insoluble tau is neurotoxic.  
Tau inclusions can be found within frontal and temporal cortex, as well as hippocampus 
and subcortical neurons, but also sometimes in midbrain, brainstem, cerebellum, and spinal 
cord.  
Mutations have been identified in the MAPT gene, leading mainly to a clinical phenotype of 
FTLD with parkinsonism. 
PSP and CBD are considered a tauopathy as well and are thought to be within the clinical, 
genetical, and pathological spectrum of FTLD. Here also, tau aggregates can be found 
within glial cells. 

4.2 TDP-43 

TDP-43 is highly conserved, abundantly expressed protein in neurons and glia, and 
predominantly localized to the nucleus (Buratti, Dork et al. 2001; Wang, Wang et al. 2004). 
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TDP-43 is involved in transcription and splicing regulation (Buratti and Baralle 2008; Lagier-
Tourenne, Polymenidou et al. 2010). In addition, TDP-43 may have an effect on microRNA 
biogenesis, apoptosis, stabilisation of mRNA, and cell division (Strong, Volkening et al. 
2007; Buratti and Baralle 2008). The protein TDP-43 is encoded by the gene TARDBP located 
on chromosome 1p36.2. TARDBP contains 5 coding and one non-coding exon. TDP-43 is 
composed of 414 amino acids and has a molecular weight of 43 kDa. TDP-43 consists of two 
RNA-recognition motif domains, and a Gly-rich C-terminal site for binding to single-
stranded DNA, RNA, and protein. In addition it possesses a nuclear localization signal and 
a nuclear export signal, so TDP-43 shuttles between the nucleus and cytoplasm (Buratti, 
Dork et al. 2001; Wang, Wang et al. 2004; Buratti, Brindisi et al. 2005; Ayala, Misteli et al. 
2008; Winton, Igaz et al. 2008). Transient redistribution from the nucleus to the cytoplasm 
following neuronal injury indicates that TDP-43 is involved in repair mechanisms (Sato, 
Takeuchi et al. 2009). TDP-43 may regulate neuronal plasticity and maintenance of dendritic 
integrity (Wang, Wu et al. 2008; Lu, Ferris et al. 2009). 
In FTLD, TDP-43 undergoes post-translational modifications, i.e., hyperphosphorylation, 
ubiquitination, and N-terminal truncation (Neumann, Sampathu et al. 2006; Hasegawa, Arai 
et al. 2008; Igaz, Kwong et al. 2008). In FTLD, staining against TDP-43 localized to the 
cytoplasm and neurites in the frontotemporal cortex and the dentate granule cells of the 
hippocampus. TDP-43 positive inclusion bodies are not restricted to neurons, but were 
identified in glia as well (Mackenzie, Baborie et al. 2006; Sampathu, Neumann et al. 2006).  
Nevertheless, TDP-43 can be distinguished according to their subcellular location and 
proportion into four patterns (Mackenzie, Baborie et al. 2006; Sampathu, Neumann et al. 
2006; Mackenzie, Neumann et al. 2011). Here, the harmonized classification system for 
FTLD-TDP pathology is used (Mackenzie, Neumann et al. 2011).  
Type A presents mainly cases with bvFTLD and PNFA; TDP-43 is highly expressed in 
neuronal cytoplasmic inclusions and dystrophic neurites in cortical layer 2. Type A 
represents all cases with PGRN mutations. Type B is associated with bvFTLD and FTLD-
ALS, and TDP-43 is mainly located in cytoplasmic inclusions. Type C presents with SD and 
with TDP-43 in dystrophic neurites. Type D is found only in patients with VCP mutations 
with high neuronal intranuclear TDP-43 inclusions. 
The pathogenesis of TDP-43 proteinopathy is unclear. The subcellular redistribution of TDP-
43 from the nucleus into the cytoplasm in neurons with inclusion bodies suggests a loss-of 
function mechanism. This is supported by in vitro studies in human cell lines, in which 
knock-down of TDP-43 induced impaired neurite outgrowth and increased cell death 
(Ayala, Misteli et al. 2008; Iguchi, Katsuno et al. 2009).  
It is noteworthy that TDP-43 can present with each clinical subtype, i.e., bvFTLD, SD, and 
PNFA. TDP-43 proteinopathies can be found associated with genetic mutations in GRN, 
linkage to chromosome 9p, and VCP. 
Other disorders with TDP-43 pathology were reported in Perry Syndrome (Wider, Dickson 
et al. 2009), Guamanian ALS-parkinsonism-dementia complex (Hasegawa, Arai et al. 2007), 
but also in some cases of Alzheimer’s disease and dementia with Lewy bodies (Arai, 
Mackenzie et al. 200;  Higashi, Iseki et al. 2007). TDP-43 has not been described in inclusion 
bodies in Parkinson’s disease so far.   

4.3 FUS 

In 2009, FUS (fused in sarcoma) protein was identified in cases of ubiquitin-positive, tau-
negative and TDP-43 negative cases (Neumann, Rademakers et al. 2009). Up to 10% of 
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FTLD- ubiqutin positive, tau and TDP-43 negative cases are immunoreactive for FUS 
(Mackenzie, Neumann et al. 2011).  
 

Neuropathological subtypes of FTLD-TDP (Mackenzie, Neumann et al. 2011) 
Classification Pathology Disease association 

Type A 
Abundant NCI and DN 

Variable NII 
bvFTLD, PNFA 

PGRN mutations 

Type B Few NCI and DN 
bvFTLD, FTLD-ALS with 
linkage to chromosome 9p 

Type C Abundant DN, few NCI SD, bvFTLD 

Type D 
Abundant NII 

Abundant DN, few NCI 
IBMPFD with 

VCP mutations 
NCI – neuronalcytoplasmic inclusions 
DN – dystrophic neurites 
NII – neuronal intranuclear inclusions 

Table 3. 

FUS protein is comprised of 526 amino acids, ubiquitously expressed, and is located to the 
nucleus and cytoplasm (Andersson, Stahlberg et al. 2008). Its precise function is scarcely 
deciphered but it may be involved in cell proliferation, transcription regulation such as 
regulation of RNA splicing, and RNA and microRNA processing (Lagier-Tourenne, 
Polymenidou et al. 2010). FUS was originally discovered as a part of the fusion oncogenes in 
human cancers (Law, Cann et al. 2006). It contains an RNA recognition motif, a zinc finger 
motif and possesses a non-classical nuclear localization signal at its C-terminus (Law, Cann 
et al. 2006; Zakaryan and Gehring 2006).  
Pathologically, FUS positive inclusions are found in neuronal and glial cells. Albeit to a 
lesser degree, like TDP-43 there is redistribution from the nucleus to the cytoplasm. No 
disease-associated modifications of this protein like truncation, phosphorylation have yet 
been identified. 
Cases with FTLD-FUS on neuropathological examination show a more or less characteristic 
clinical phenotype. Patients had an early-onset bvFTLD, and showed motor symptoms 
including mild rigidity and/or intermittent hyperkinesias. FUS pathology is abundant in the 
frontal and temporal lobe, as well as hippocampus and maybe in the striatum and brainstem 
(Neumann, Rademakers et al. 2009; Neumann, Roeber et al. 2009). Most cases show 
inclusions in the lower motor neuron, despite missing clinical features of motor neuron 
disease. FUS show intranuclear inclusions with vermiform filaments that can be found in 
dentate granule cells (Neumann, Rademakers et al. 2009; Neumann, Roeber et al. 2009). 
On neuroimaging studies, caudate atrophy may be indicator of FTLD-FUS, since the volume 
is smaller than in patients with FTLD-tau and FTLD-TDP (Josephs, Whitwell et al.). 
Neuronal intermediate filament inclusion disease (NIFID) is characterized microscopically 
by neuronal inclusions for all class IV intermedate filaments like α-internexin and FUS 
(Neumann, Roeber et al. 2009). FUS pathology is also seen in cases with BIBD (Munoz, 
Neumann et al. 2009). 

4.4 Summary 

FTLD is characterized by focal atrophy of the frontal and/or temporal lobes with relative 
sparing of the parietal and occipital. Neuronal loss is mainly observed within layer 2. 
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Abnormal protein aggregates are located mainly in the cytoplasm. These inclusions stain 
positive ubiquitin. Tau, TDP-43, or FUS were identified as the ubiquitinated pathological 
protein in most cases. However, some ubiquitin-positive, tau-negative, TDP-43-negative and 
FUS-negative cases are still open and are termed FTLD-UPS. Some of these cases carry a 
CHMP2B mutation, but the pathological protein is not yet identified.  
Tau, TDP-43, and FUS all undergo post-translational modification, but the exact toxic 
species has not been identified. 
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