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1. Introduction 

Protein C is a vitamin K–dependent zymogen, discovered in 1976 in bovine plasma (Stenflo, 

1976). It is derived from the human PROC gene on chromosome 2 (2q13-q14) which contains 

9 exons (Rezaie, 1993). Post-translational modifications include -hydroxylation at Asp71, 

N-linked glycosylation at residues 97, 248, 313 and 329 and Ǆ-carboxylation of 9 glutamic 

acid residues which forms the Gla domain at the amino terminus. Human protein C is 62kD 

protein and consists of 419 amino acids. The four major moieties that make up the protein C 

molecule are a Gla domain, two epidermal growth factor (EGF)- like regions, a small 

activation peptide, and an active serine protease domain (Griffin, 2005). Mature 62 000 Da 

human protein C is cleaved by a furin-like endoprotease that releases Lys156–Arg157 before 

secretion from liver cells. Protein C is activated on the endothelial surface when thrombin 

binds to thrombomodulin and cleaves protein C’s activation peptide. This conversion to 

activated protein C (APC) is augmented by endothelial cell protein C receptor (EPCR) 

(Fukudome & Esmon, 1994). Protein C circulates in plasma at 70 nM whereas APC is present 

in much lower concentrations (40 pM  or ~ 2.3 ng/mL) (Gruber & Griffin, 1992).   

APC was  first recognized as an anticoagulant. In the presence of its cofactor, protein S, APC 

degrades the coagulation factors Va and VIIIa and inhibits thrombin generation. The light 

chain provides anticoagulant activity by having highly specific protein–protein interactions 

with factors Va and VIIIa followed by proteolytic inactivation of factor Va by cleavage at 

Arg (506) and Arg (306) and of factor VIIIa by cleavage at Arg (336) and Arg (562) (Zlokovic 

& Griffin, 2011). In addition, APC promotes fibrinolysis by binding to plasminogen activator 

inhibitor which prevents inhibition of plasminogen conversion to plasmin. The significance 

of APC as an anticoagulant is reflected by the findings that deficiencies in protein C result in 

severe familial disorders of thrombosis (Baker & Bick, 1999). Replenishment of protein 

C/APC in patients with systemic or local hypercoagulation can reverse the abnormality.   

2. Anti-inflammatory and cytoprotective functions of APC 

In addition to its anticoagulant activity, APC exerts a broad range of cytoprotective  and 

anti-inflammatory actions described below.  
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2.1 Inflammation 

Independent of its effect on coagulation, APC has potent anti-inflammatory properties 
(Joyce, 2001; Mosnier & Griffin, 2003) associated with a decrease in pro-inflammatory 
cytokines and a reduction of leukocyte recruitment. Joyce et al (Joyce, 2001) have shown that 

APC directly suppresses expression of p50 and p52 nuclear factor (NF)-B  subunits in 

human umbilical vein endothelial cells. The NF-B pathway is important for the expression 
of a wide variety of inflammatory genes including tumor necrosis factor (TNF)-ǂ and cell 
adhesion molecules that are associated with diseases ranging from inflammation to cancer 

(Li & Verma, 2002). Direct inhibition of NF-B is sufficient to block symptoms of many 
inflammatory diseases so these inhibitors have potential therapeutic value (Bell, 1915; Li & 
Verma, 2002; Calzado, 1914; Calzado, 2007). APC inhibits the expression and activation of 

NF-B in unstimulated and stimulated monocytes (White, 2000; Xue, 2007; Yuksel, 2002), 
keratinocytes (Xue, 2004), endothelial cells (Franscini, 2004). APC also suppresses 

inflammation in vivo by inhibition of NF-B (Cheng, 2006). In addition, APC has the ability 
to upregulate and activate matrix metalloproteinase (MMP)-2 (Nguyen, 2000; Xue, 2004), a 
MMP with anti-inflammatory properties (Itoh, 2002; McQuibban, 2002) and to suppress 
gelatinase B  (Cheng, 2006; Xue, 2007), a MMP associated with many inflammatory 
conditions (Itoh, 2002; Ram, 2006). During acute inflammation, plasma APC levels are 
diminished (Liaw, 2004) and inflammatory cytokines such as interleukin (IL)-1ǃ and TNF-ǂ, 
as well as endotoxin, can attenuate thrombomodulin and EPCR expression which further 
reduces the ability of endothelial cells to generate APC. Acute inflammation is exacerbated 
in mice genetically predisposed to a severe protein C deficiency (Lay, 2007).  
APC also regulates the immuno/inflammatory response. Monocytes treated with APC 

decrease the release of tissue factor (Toltl, 2008), the pro-inflammatory cytokines TNF-ǂ 

(Grey, 1994), IL-1ǃ, IL-6, and & IL-8 (Stephenson, 2006). Additionally, APC induces the 

release of the anti-inflammatory cytokine IL-10 from monocytes (Toltl, 2008). 

APC targets CD8+ dendritic cells to reduce the mortality of endotoxemia in mice (Kerschen, 

2010).  Expression of EPCR in mature murine immune cells is limited to a subset of CD8+ 

conventional dendritic cells.  Adoptive transfer of splenic CD11chiPDCA-1- dendritic cells 

from wild-type mice into animals with hematopoietic EPCR deficiency restored the 

therapeutic efficacy of APC, whereas transfer of EPCR-deficient CD11chi dendritic cells or 

wild-type CD11chi dendritic cells depleted of EPCR+ cells did not. These data reveal an 

essential role for EPCR and PAR1 on hematopoietic cells, identify EPCR-expressing 

dendritic immune cells as a critical target of APC therapy, and document EPCR-

independent anti-inflammatory effects of APC on innate immune cells. 

2.2 Cell proliferation and apoptosis 

APC induces growth of cultured human umbilical vein endothelial cells (HUVEC) (Uchiba, 

2004). In smooth muscle cells, APC elicits an increase in [(3)H]-thymidine incorporation 

(Bretschneider, 2007) and enhances proliferation and migration of human skin keratinocytes 

(Xue, 2005). Consistent with the stimulatory effects on cell growth, APC displays strong 

anti-apoptotic properties. APC decreases sepsis-induced apoptosis resulting from increased 

p21 and p53 proteins in mice (Sakar, 2007) and modulates Bcl-2 and Bax and inhibits 

caspase-3 and -8  activity which results in inhibition of apoptosis in a number of cell types 

(Joyce, 2001). During hypoxic stress of brain endothelial cells, APC inhibits p53, reduces pro-

apoptotic Bax and maintains levels of protective Bcl-2 protein, thereby preventing the 
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stimulation of the intrinsic apoptotic pathway (Cheng, 2003). In human skin keratinocytes, 

APC prevents cell apoptosis via inhibition of caspase-3 activation (Xue, 2004) and in 

podocytes, APC protects against  glucose-induced apoptosis both in vitro and in vivo 

(Isermann, 2007). APC inhibits bisphosphonate-induced endothelial cell death via EPCR-

induced inactivation of caspase-3 and NF-κB, and also suggests that APC has the potential 

to be a therapeutic drug in various vascular diseases induced by endothelial cell damage 

(Seol, 2011). 

2.3 Barrier stabilization 

Endothelial cells normally form a dynamically regulated stable barrier at the blood-tissue 

interface, and breakdown of this barrier is a key pathogenic factor in inflammatory 

disorders, such as sepsis. APC boosts the barrier via at least two different mechanisms.  

First, APC enhances sphingosine-1-phosphate (S-1-P) production, which signals through its 

G-protein coupled receptor to stabilize the cytoskeleton and reduce endothelial permeability 

(Feistritzer & Riewald, 2005; Finigan, 2005). Second, APC utilizes the angiopoietin 

(Ang)/Tie2 axis to promote endothelial barrier function (Minhas, 2010). APC significantly 

up-regulates gene and protein expression of Tie2 and Ang1 in a dose (0.01-10 µg/ml) and 

time (0.5 h – 24 h) dependent manner in HUVEC, whilst it markedly inhibits Ang2 with an 

IC50 of ~ 0.1 µg/ml. HUVEC permeability, measured using Evans blue dye transfer, is 

significantly reduced in the presence of APC and, in concordance, the tight junction 

associated protein, zona occludens (ZO)-1, is up regulated and localized peripherally 

around cells, compared to control. Smooth muscle cell migration towards APC-stimulated 

HUVEC is elevated compared to unstimulated cells. Blocking antibodies and small 

interfering (si) RNA treatment, compared to isotype or scrambled siRNA controls, show that 

APC requires three receptors, endothelial protein C receptor (EPCR), protease activated 

receptor (PAR)-1 and Tie2 to perform all these barrier stabilization functions (Minhas, 2010). 

We have shown that HUVEC produce protein C that acts through novel mediators to 

enhance their own functional integrity (Xue, 2010). When endogenous protein C or its 

receptor, EPCR, is suppressed by si RNA, HUVEC proliferation is decreased and apoptosis 

elevated. Interestingly, protein C or EPCR siRNA significantly increases HUVEC 

permeability, which occurs via a reduction of the Ang1/Ang2 ratio and inhibition of the 

peripheral localization of the tight junction protein, ZO-1. In addition, protein C or EPCR 

siRNA inhibits type IV collagen and MMP-2, providing the first evidence that protein C 

contributes to vascular basement membrane formation (Xue, 2010). Barrier stabilization is 

more effective when APC is derived endogenously and functions in an autocrine manner, 

than when the source of APC is exogenous (Feistritzer, 2006). 

The barrier protective effect of APC is also relevant to epidermal keratinocytes (Xue, 2011).  

In response to APC, Tie2, a tyrosine kinase receptor, is rapidly activated within 30 minutes, 

and relocates to cell-cell contacts. APC also increases junction proteins ZO-1, claudin-1 and 

VE-cadherin. Inhibition of Tie2 by its peptide inhibitor or small interfering RNA abolished 

the barrier protective effect of APC (Xue, 2011).   

3. APC cellular signalling  

APC exerts its anti-inflammatory, cyto-protective and barrier stabilization effects by acting 
on receptors which initiates cellular signaling, as described below. 
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3.1 EPCR and PARs 

Many of the cyto-protective actions of APC are mediated through EPCR, which itself is 
anti-inflammatory (Esmon, 2004). This receptor binds protein C and APC with similar 
affinity (Fukudome & Esmon, 1994), and protein C can be converted to APC whilst 
remaining bound to EPCR. EPCR is a type I transmembrane protein which shares 
homology with the major histocompatibility class 1/CD1 family of proteins involved in 
the immune response. EPCR was discovered on endothelial cells, however EPCR was 
subsequently found on some leukocytes (Esmon, 2004) and is strongly expressed by the 
basal layer of keratinocytes in skin epidermis as well as in cultured keratinocytes (Xue, 
2005). Recent studies show that EPCR has important physiological functions. For example, 
over-expression of EPCR protects transgenic mice from endotoxin-induced injury (Li, 
2005) and EPCR is essential for normal embryonic development as deletion of the EPCR 
gene in mice is lethal by embryonic day 10 (Gu, 2002).  
Recently, EPCR has been identified as a marker of certain stem cells in mice (Balazs, 2006; 

Kent, 2009).  EPCR is expressed at high levels within the bone marrow in hematopoietic 

stem cells (HSCs). Mouse bone marrow cells isolated on the basis of EPCR expression alone 

are highly enriched HSCs, showing levels of engraftment in vivo comparable to that of stem 

cells purified using the most effective conventional methods (Balazs, 2006). Moreover, they 

showed that hematopoietic stem cell activity is always associated with EPCR-expressing 

cells (Balazs, 2006). In addition, high EPCR-expressing cells are observed in basal-like 

tumours in breast cancer (Park, 2010).  

EPCR does not mediate cell signalling, but acts as a homing receptor to allow APC to cleave 

PAR-1 (Riewald, 2002). The PARs are G-protein coupled receptors found on most cells. The 

four known PARs are activated via proteolytic cleavage by various proteases that results in 

an intra-molecular tethered ligand that triggers activation  of a G protein and subsequent 

intracellular signalling (Coughlin, 2000). Thrombin activates PAR-1, PAR-3, and PAR-4, 

whereas other serine proteases, including APC (Riewald, 2002). but not thrombin, activate 

PAR-2. Subsequent functional activity of APC cleavage of PAR-2 is yet to be fully 

elucidated, although our experiments indicate that APC acts through PAR-2 to promote 

wound healing in mice (Julovi et al, personal communication) . While the majority of 

reports cast PAR-2 as pro-inflammatory, others show that PAR-2 agonists are beneficial in 

several mouse models that involve inflammation or ischemia (Milia, 2002). Among the 

PARs, PAR-1 is most widely expressed and has been most extensively studied. APC 

bound to EPCR can activate PAR-1 and promote the anti-inflammatory and anti-apoptotic 

actions of APC (Riewald, 2002). 

Both thrombin and APC can cleave PAR-1 at identical locations. Thrombin cleavage causes 

platelet activation, increases vascular permeability, activates NF-B and elevates 

inflammatory cytokines, all of which promote an inflammatory response. Unexpectedly, 

when APC cleaves PAR-1, its actions are directly opposite to that of thrombin. APC strongly 

inhibits vascular permeability, activation of NF-B, endothelial adhesion molecule 

expression, cytokine production and monocyte migration (Riewald, 2002).  Studies using 

endothelial cells and other cell types show that when APC activates PAR-1 in an EPCR-

dependent manner, it causes alterations in gene expression profiles and exerts direct anti-

apoptotic effects (Guo, 2004; Joyce, 2001). However, compared to thrombin, APC is 

relatively inefficient and requires ~104 higher concentration (Kuliopulos, 1999) to cleave 

PAR-1. This has raised doubts about the possibility of APC having a physiological effect by 
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acting through PAR-1. Bae et al (Bae, 2007) have partially solved this issue by showing that 

APC cleaves PAR-1 on lipid rafts in endothelial cells. They subsequently identified a novel 

pathway whereby EPCR is associated with caveolin-1 in lipid rafts in endothelial cells (Bae, 

2007). These discrete, cholesterol and sphingolipid enriched microdomains of the cell 

membrane provide a protective compartment for APC to act in isolation. When APC 

binds to EPCR in the lipid raft, caveolin-1 is replaced with PAR-1 which couples with the 

pertussis toxin sensitive Gi-protein to initiate a protective signalling pathway. In contrast, 

when thrombin cleaves PAR-1 outside the lipid raft signalling occurs via Gq and/or 

G12/13 which exert inflammatory effects.  Interestingly, if EPCR is occupied on the lipid 

raft, even thrombin, can induce activation of the Gi protein and mimic the protective 

effects of APC (Bae, 2007).  

3.2 Epidermal growth factor receptor (EGFR) and Tie2 

In normal epidermis, EGFR is important for autocrine growth of this renewing tissue, 
suppression of terminal differentiation, promotion of cell survival, and regulation of cell 
migration during epidermal morphogenesis. In wounded skin, EGFR is momentarily up-  
 

 

Fig. 1. Proposed signal pathway for APC’s protective role on barrier function in confluent 
keratinocytes. APC binds to EPCR which cleaves PAR-1. G protein transactivates EGFR 
which may further transactivate Tie2 receptor, although the mechanism of activation is 
unclear. This triple receptor action results in increased ZO-1 and phosphorylation of Akt via 
PI3K and inhibition of ERK, leading to an increase in keratinocyte survival and barrier 
function. From (Xue, 2011). 
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regulated and is a major contributor to the proliferative and migratory aspects of wound re-
epithelialization. EGFR is able to regulate cell adhesion, expression of matrix degrading 
proteinases, and cell migration to provide a vital contribution to the migratory and invasive 
potential of keratinocytes (Hudson & McCawley, 1998). APC appears to act through EGFR 
to regulate  lymphocyte migration (Feistritzer, 2006) and wound healing (Xue, 2007). When 
keratinocytes are stimulated with APC, the expression and phosphorylation of EGFR is 
markedly increased and conversely when cells are treated with protein C siRNA, the 
phosphorylated form of EGFR in cell lysates is inhibited by more than 50% (Xue, 2007). 
Using dual immunofluorescent staining, we found that both EPCR and activated EGFR are 
co-localized in basal and suprabasal keratinocytes in the epidermis, which is identical to 
protein C localization in skin epidermis (Xue, 2007).  Furthermore, APC does not activate 
Tie2 through its major ligand, Ang-1, in keratinocytes, but instead acts by binding to EPCR, 
cleaving PAR-1 and trans-activating EGFR followed by transactivation of Tie2 (Figure 1). 
When activation of Akt, but not ERK, is inhibited, the barrier protective effect of APC on 
keratinocytes is abolished. Another report has indicated that, extracellularly, APC engages 
EPCR, PAR-1, and EGFR in order to increase the invasiveness of MDA-MB-231 cells 
(Gramling, 2010). 

3.3 Other receptors 

EPCR-independent signaling components of the APC pathway have been identified in 
monocytes. Apolipoprotein E receptor 2 (ApoER2) binding of APC results in 
phosphorylation of Dab1 and activation of the PI3K and Akt pathway resulting in decreased 
tissue factor release from monocytes (Yang, 2009).  
The efficacy of APC in murine endotoxemia is dependent on integrin CD11b. Genetic 
inactivation of CD11b, PAR1, or sphingosine kinase-1, but not EPCR, abolished the ability of 
APC to suppress the macrophage inflammatory response in vitro. Using a LPS-induced 
mouse model of lethal endotoxemia, Cao et al (Cao, 2010) showed that APC administration 
reduced the mortality of wild-type mice, but not CD11b-deficient mice. 
 

Receptor Significant Finding Year Reference 

Tie2 
APC increases angiopoietin to activate 

Tie2 in endothelial cells 
APC activates PAR-1 which 

transactivates Tie2 in keratinocytes

2010 
2011

(Minhas, 2010) 
(Xue, 2011) 

CD11b APC acts through Cd11b in 
macrophages

2009 (Cao, 2010) 

ApoER2 ApoER2 acts independent of EPCR and 
PAR-1 to phosphorylate Dab-1

2008 (Yang, 2009) 
EGFR APC phosphorylates EGFR in HUVEC 2005 (Montiel, 2005) 

PAR-3 Prevention of neuronal cell apoptosis 2004 (Guo, 2004) 
PAR-2 APC bound EPCR supports cleavage of 

PAR-2
2002 (Riewald, 2002) 

EPCR/PAR-1 APC bound EPCR cleaves PAR-1 
resulting in APCs effects

2002 (Riewald, 2002) 

Table 1. Cell receptors that APC acts through to exert its anti-inflammatory and 
cytoprotective effects. 
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3.4 Intracellular signaling 

The transcription factors, NF-B and the AP-1 complex, a transcriptionally active 
heterodimer of Fos and Jun proteins, regulate the expression of genes involved in immune 
and inflammatory responses. They play a pivotal role in the regulation of inflammation 

(Carmi & Razin, 2007). APC prevents activation of NF-B and AP-1 stimulated by LPS and 
endotoxin in human monocytes. The MAP kinase pathway is a prerequisite for growth 
factor stimulated mitogenesis in many cell types. Three major downstream MAP kinase 
cascades are mitogen- activated ERK1/2 and stress/cytokine-activated p38 and c-Jun N-
terminal kinases. APC induces cell proliferation via activation of the ERK1/2 pathway in 
endothelial cells (Uchiba, 2004). Similarly, stimulation of smooth muscle cells with APC 
induces a synergistic effect on ERK-1/2 phosphorylation and DNA synthesis (Bretschneider, 
2007). In human keratinocytes, blocking protein C expression or inhibiting its binding to 
EPCR/EGFR decreases the phosphorylation of ERK1/2 but increases p38 activation. 
Furthermore, inhibition of ERK completely abolishes APC’s stimulatory effect on 
proliferation. These results indicate that keratinocyte-derived protein C promotes cell 
growth in an autocrine manner via EPCR, EGFR and activation of ERK1/2 (Xue, 2007).  
Furthermore, when activation of Akt, but not ERK, is inhibited, the barrier protective effect 
of APC on keratinocytes is abolished. Thus, APC activates Tie2, which selectively enhances 
the PI3K/Akt signalling to stimulate junctional complexes and reduce keratinocyte 
permeability (Xue, 2011). 

4. APC in inflammatory disease 

APC has therapeutic benefit in a number of other diseases, through its anticoagulant, anti-
apoptotic, anti-inflammatory activities and positive effects on cell growth, migration and 
barrier stabilization, summarized in Figure 2. The following sections detail evidence for the 
potential beneficial effects of APC in a number of disorders associated with abnormal auto-
immune/inflammatory responses. 

4.1 Sepsis 

Severe sepsis is a very serious condition characterized physiologically by an aberrant 
systemic inflammatory response and microvascular dysfunction. Low levels of endogenous 
protein C provokes endotoxic (Levi, 2003) and septic responses (Ganopolsky & Castellino, 
2004). In human sepsis, there is a reduction in circulating  APC which appears to be due to 
both decreased levels of protein C, with  protein C levels strongly inversely correlating with 
sepsis prognosis (Fisher, Jr. & Yan, 2000) and decreased activation of protein C to APC 
(Liaw, 2004). Evidence from the PROWESS and ENHANCE clinical trials suggests that 
administration of recombinant human APC (drotrecogin alfa) reduces mortality in a subset 
of patients with severe sepsis (Bernard, 2004; Bernard, 2001; Marti-Carvajal, 2003).  It is 
indicated for use in patients with sepsis involving acute organ dysfunction who have a high 
risk of death. Two recent case reports provide evidence that APC may also be useful to treat 
multi-organ failure resulting from severe malaria (Kendrick, 2006; Srinivas, 2007). However, 
there is evidence that APC may cause bleeding in some patients, especially children and 
patients who have undergone recent surgery (Marti-Carvajal, 2007). The therapeutic effect 
and controversies of APC in severe sepsis has been extensively reviewed (Griffin, 2002; 
O'Brien, 2006; Short, 2006). Commercial preparations of recombinant APC (Xigris, Ely Lilly, 
Indianapolis) are readily available and FDA approved. 
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Endogenous APC signaling is critical to protection of mice from LPS-induced septic shock 

(Xu, 2009). Many mechanisms have been described, but the exact manner in which APC 

affects sepsis patients is unclear. Therapeutic APC can regulate neutrophil migration and 

extravasation by direct engagement of ǃ1 and ǃ3 integrins (Elphick, 2009), suppress 

macrophage activation dependent on integrin CD11b/CD18 (Kerschen, 2010), control 

maturation and activation of CD8+ DCs dependent on EPCR (Kerschen, 2010), and 

neutralize late-stage inflammatory mediators by degrading nuclear histones from apoptotic 

cells (Xu, 2009).  

A recent Cochrane review suggested that APC should not be used for treating patients with 

severe sepsis or septic shock and that APC is associated with a higher risk of bleeding 

(Marti-Carvajal, 2011). Unless additional RCTs provide evidence of a treatment effect, 

policy-makers, clinicians and academics have been advised not promote the use of APC 

(Marti-Carvajal, 2011). Nonetheless, new reports continue to show that patients with septic 

shock who were treated with APC had a reduced in-hospital mortality compared with those 

not treated with APC (Sadaka, 2011). 

 

Fig. 2. The diverse biological effects of APC. APC exerts numerous molecular effects which 

lead to cellular responses which cause protective effects in a number of diseases. Ang= 

angiopoietin; EGFR= epidermal growth factor receptor; IL=interleukin; MMP=matrix 

metalloproteinase; TGF=transforming growth factor; TNF=tumour necrosis factor-ǂ; 

ZO=zona occludens; Bcl=B-cell lymphoma; BAX=Bcl-2–associated X protein.  
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4.2 Spinal cord injury (SCI)  

SCI can be induced by a physical insult resulting in an inflammatory response that leads to 
tissue destruction and life-long disabilities. Therapeutic intervention in SCI is largely being 
directed at reducing or alleviating inflammation (Okajima, 2004). In rat models, the 

inflammatory response occurs due to infiltration by neutrophils and release of TNF- 
(Taoka, 2000). Taoka et al (Taoka, 1997) demonstrated that a P-selectin mediated interaction 
between activated neutrophils and endothelial cells may be a critical step in endothelial cell 
damage leading to spinal cord injury in rats. These authors (Taoka, 1998) originally showed 
that rats subjected to compression-trauma induced SCI and treated with APC have a 
marked reduction in motor disturbances (Taoka, 1998), however, 12 years later this paper 
was retracted by the authors (2011). APC significantly reduces motor disturbances and 
micro-infarctions of the spinal cord in rats subjected to ischemia/reperfusion-induced SCI 

(Hirose, 2000). The increased tissue levels of TNF- and neutrophils in the injured part of 
the spinal cord were significantly reduced in animals that received APC. 
APC has direct neuroprotective effects, independent of its anticoagulant activity (Zlokovic, 
2005). In a rabbit model of ischemic spinal cord injury, APC eases the functional deficits and 
increases the number of motor neurons (Yamauchi, 2006). Interestingly, APC induces 
insulin-like growth factor (IGF)-1, IGF-1 receptor and the downstream p-Akt which might 
partially explain the neuroprotective effects of APC after transient spinal cord ischemia in 
rabbit. 

4.3 Brain injury and stroke 

Elevated plasma protein C levels are linked to a lower incidence of ischemic stroke in 
humans (Folsom, 1999) and conversely, lower circulating APC levels are found in patients 
with post-infection ischemic stroke compared to the control subjects (Macko, 1996). These 
data imply that the protein C pathway may protect against stroke. In a murine model of 
focal cerebral ischemia, APC significantly improved cerebral blood flow in the ischemic 
hemisphere and markedly reduced the volume of brain injury caused by middle cerebral 
vein occlusion. These effects were dependent on EPCR and PAR-1 and seemingly 
independent of APC’s anticoagulant effects  (Fernandez, 2003; Guo, 2004; Shibata, 2001). 
APC directly prevents apoptosis in hypoxic human brain endothelium through inhibition of 
p53, normalization of the pro-apoptotic Bax/Bcl-2 ratio, and reduction of caspase-3 
signalling (Guo, 2004). APC's cytoprotection of endothelial cells in vitro requires EPCR and 
PAR-1(Guo, 2004; Mosnier & Griffin, 2003).  APC can also directly protect perturbed 
neurons from cell injury and apoptosis. In vitro, APC reduces apoptosis in mouse cortical 
neurons treated with N-methyl-D-aspartate (NMDA) and staurosporine (Guo, 2004). 
Interestingly, PAR-1 and PAR-3 are required for this effect. Intra-cerebral APC infusion 
dose-dependently reduces NMDA excitotoxic injury in mice (Guo, 2004). Overall, APC 
maintains the patency of ischemic vasculature by inhibiting hypoxia-induced endothelial 
cell apoptosis and also directly protects the integrity and functionality of the neuronal 
network. 
Periventricular leukomalacia is the dominant form of brain injury in premature infants, 
characterized by white matter injury. The underlying pathogenic mechanisms include 
hypoperfusion, procoagulant activity, apoptotic cell death, microglial activation and 
inflammation associated with maternal and/or fetal infection (Genc, 2006). They 
hypothesized that APC, which modulates many of these processes, is a promising 
therapeutic agent for periventricular leukomalacia. 
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4.4 Alzheimer’s disease 

Alzheimer’s disease is characterized by elevated levels of amyloid ǃ peptide (Aǃ) in the 
brain that are associated with neuronal and vascular toxicity and is the major cause of 
dementia with advancing age. Inflammation, Aǃ deposition in the brain parenchyma and 
vessels, blood–brain barrier dysfunction, oxidative stress, formation of advanced end 
glycation products and endothelial and neural cell death have all been implicated in the 
pathogenesis of Alzheimer’s disease (Zlokovic, 2005). It has been proposed that APC could 
be useful in treating Alzheimer’s disease, since it has anti-inflammatory, anti-oxidant, 
profibrinolytic, neurovascular protectant and pro-angiogenic properties (Genc, 2007). 
Furthermore, APC exerts anti-inflammatory and anti-apoptotic activities directly on 
endothelial and neural cells (Griffin, 2006). APC protects against neurovascular injury in 
experimental stroke models, protects endothelial barrier integrity and decreases fibrin 
deposition (Griffin, 2006). Similar to its anti-inflammatory effect on other cells, APC may 
inhibit the activation status of the microglia that plays a key role in neuroinflammation.  

4.5 Acute kidney injury 

In a rat model of endotoxemia, rat APC significantly improved peritubular capillary flow 
and reduced leukocyte adhesion and rolling, 3 hours after treatment with LPS (Gupta, 2007). 
After 24 hr, APC treatment significantly improved renal blood flow. In addition, APC 
modulated the renin-angiotensin system by reducing mRNA expression levels of 
angiotensin converting enzyme-1, angiotensinogen in the kidney (Gupta, 2007). Thus, APC 
can suppress LPS-induced acute renal failure by modulating factors involved in vascular 
inflammation.  
Ischemia/reperfusion-induced renal injury is an important pathologic mechanism leading 

to acute renal failure (Thadhani, 1996).  In a rat model, intravenous administration of APC 

markedly reduces ischemia/reperfusion -induced renal dysfunction and tubular necrosis, 

whereas heparin or inactive APC has no effect (Mizutani, 2000). Furthermore, APC 

significantly inhibited the ischemia/reperfusion -induced decrease in renal tissue blood 

flow, the increase in the vascular permeability, and renal levels of TNF-, IL-8, and 

myeloperoxidase. Leukocytopenia produced effects similar to those of APC. These findings 

strongly suggested that APC has a protective effect against ischemia/reperfusion-induced 

renal injury by inhibiting activation of leukocytes rather than inhibiting coagulation 

(Okajima, 2004). Recently, Isemann et al (Isermann, 2007) have shown that APC protects 

against diabetic nephropathy by inhibiting endothelial and podocyte apoptosis.  In a rat 

model of sepsis by cecal ligation and puncture (CLP), treatment with APC significantly 

inhibited sepsis-induced elevations in creatinine, LDH levels, and improved renal 

architecture. Furthermore, sepsis-induced inhibition of interferon (INF)-Ǆ and increase in IL-

1ǃ and IL-10 were attenuated by APC treatment. The authors suggested that APC confers a 

survival advantage by reducing systemic inflammation and, in doing so, preserves organ 

function (Keller, 2011). 

4.6 Lung disorders 

In a mouse model of acute lung injury, APC inhalation attenuates LPS-induced 
amplification of neutrophils and macrophages in bronchoalveolar lavage fluid as well as 
VCAM-1 protein levels in lung tissue (Kotanidou, 2006). In a murine model of asthma, 
inhalation of APC significantly inhibits the expression of T helper 2 (Th2) cytokines, IgE, 
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eosinophilic inflammation, and hyper-responsiveness in bronchiolar lavage fluid (Yuda, 
2004). Electromobility shift assays show that translation of signal transducer and activator of 

transcription 6 (STAT6) and NF-B to the nucleus is reduced in lung samples from mice 
treated with inhaled APC. Although APC is thought to have a short half-life of ~ 20 mins, it 
can be detected in mice bronchoalveolar lavage fluid 24 h after inhalation. Thus, APC 
inhalation might offer a long-acting alternative route of administration to the lungs to 
attenuate pulmonary inflammation in acute lung injury.  
It is unclear whether APC has any beneficial effect in humans with inflammatory lung 
diseases. Nick et al (Nick, 2004) performed a double-blinded, placebo-controlled study of 
APC in a human model of endotoxin-induced pulmonary inflammation and showed that 
APC significantly reduced leukocyte accumulation to the airspaces, independent of 
pulmonary cytokine or chemokine release. Bronchoalveolar lavage fluid neutrophils of 
patients receiving APC demonstrated decreased chemotaxis ex vivo but no change in 
cytokine release, cell survival, or apoptosis. The major components of the protein C 
pathway, including thrombomodulin, protein C and EPCR are all expressed by human 
airway epithelial cells (Hataji, 2002). Activation of protein C is reduced in sputum of 
patients with bronchial asthma compared to control subjects, which may contribute to 
exacerbation of the inflammatory response in the airway of asthmatic patients  (Hataji, 
2002). However, Schouten et al (Schouten, 2011) showed that endogenous protein C has 
strong effects on the host response to lethal influenza A infection, on the one hand inhibiting 
pulmonary coagulopathy and inflammation, but on the other hand facilitating neutrophil 
influx and protein leak and accelerating mortality. 

4.7 Acute pancreatitis 

Acute pancreatitis is a local inflammatory process that leads to a systemic inflammatory 

response and multiple organ failure (Kirschenbaum & Astiz, 2005). Disseminated 

intravascular coagulation and thromboembolism are related to overall morbidity of this 

disease which provides a setting in which APC could play a therapeutic role. Ottesen et al 

(Ottesen, 1999) found  a decrease in levels of protein C in animals with acute pancreatitis. In 

a rodent model of pancreatitis (Alsfasser, 2006), treatment with APC reduces inflammation 

in the pancreas and lungs and significantly improves survival compared to controls (86% vs 

38%; P=.05). This animal model exhibits severe consumptive coagulopathy, however APC’s 

anti-coagulation properties did not worsen this condition. In another study, when APC was 

given 6 hours after the induction of pancreatitis, it significantly reduced acinar necrosis, 

tissue edema, fat necrosis, IL-6 and TNF-ǂ and inflammatory infiltration compared to 

controls. Inhibition of expression of pancreatic p38 MAPK and JNK and upregulation of 

ERK1/2 expression by APC treatment protects against pancreatic injury, thus ameliorating 

severity of the disease (Chen, 2007).  

4.8 Type 1 Diabetes (T1D) 

T1D is a chronic progressive autoimmune disease that affects genetically prone individuals. 

The physiological destruction of -cells is a crucial event for disease onset (Mathis, 2001). 
Inflammation and auto-immunity play an important role in the destruction of pancreatic 

islet -cells in T1D, with apoptosis being the dominant form of -cell death in both animal 

models of diabetes and humans. Replacement of the -cells by transplantation of islet cells is 
a radical therapy for human T1D. A major problem with this therapy is the large loss of 
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viability of islet cells during the procedure. APC’s strong anti-inflammatory and anti-
apoptotic properties appear to be beneficial in preventing destruction of islet cells. 
Exogenous administration of APC significantly reduces loss of functional islet mass after 
intraportal transplantation in diabetic mice (Contreras, 2004). Animals given APC exhibit 
better glucose control, higher glucose disposal rates and higher arginine-stimulated acute 
insulin release (Contreras, 2004). These effects are associated with a reduction in plasma 
proinsulin, intrahepatic fibrin deposition, and islet apoptosis early after the transplant. APC 
treatment is also associated with a significant reduction of proinflammatory cytokine release 
and prevents endothelial cell activation and dysfunction. This study suggests that APC 
therapy will improve the take-rate of the transplanted islet cells and thus decrease the 
number of the  cells required for human pancreatic islet transplantation (Contreras, 2004).  
Interestingly, plasma levels of protein C/APC are reduced in humans with T1D (Gruden, 
1997; Vukovich & Schernthaner, 1986). In addition, soluble EPCR, which binds to APC 
and inhibits its activity, is increased in T1D (Wu, 2000). These data together indicate that 
circulating APC activity is markedly reduced in T1D. Whether replenishment of APC 
levels will benefit patients with T1D is yet to be resolved. However, APC exhibits great 
potential in preventing glucose-induced apoptosis in endothelial cells and podocytes 
(Isermann, 2007). 

4.9 Rheumatoid Arthritis (RA) 

RA is a chronic autoimmune disease characterized by persistent inflammation of multiple 

synovial joints which results in progressive tissue destruction of bone and cartilage. Protein 

C/APC is present in RA synovial tissues and co-localizes with MMP-2 in endothelial and 

synovial lining cells (Buisson-Legendre, 2004). EPCR is also strongly expressed by synovial 

tissue in patients with RA and co-localizes with CD68 positive staining cells, indicating that 

these cells are largely macrophage/monocytes (Xue, 2007). Inhibiting the activation of 

monocytes/macrophages reduces the severity of arthritis in patients with RA and in animal 

models of RA (Bondeson, 1999; Kwasny-Krochin, 2002). APC inhibits activation of normal 

monocytes by preventing their migration and production of proinflammatory 

cytokines/chemokines, such as TNF- and macrophage migration inhibitory factor levels 

(Schmidt-Supprian, 2000). When monocytes from RA patients are pre-treated with APC, 

their migration towards monocyte chemoattractant protein-1 (MCP-1) is inhibited in a dose-

dependent manner (Xue, 2007). Pre-incubation of these cells with RCR252, an antibody 

which blocks APC binding to EPCR, abolishes this inhibitory effect of APC, indicating that 

APC acts through EPCR to inhibit the chemotactic response of RA monocytes.  MMP-9 

regulation may be at least one downstream effector of APC’s inhibition of monocyte 

migration. When added to purified monocytes from RA patients, APC dose-dependently 

inhibits the production of MMP-9 (Xue, 2007). MMP-9 not only allows cell migration but 

also exerts direct pro-inflammatory effects, such as activation of cytokines which would 

enhance the beneficial effect of APC in RA.  

NF-B is activated in synovium from RA patients (Marok, 1996) and in cultured RA 

synovial fibroblasts (Fujisawa, 1996). Inhibition of NF-B activity strongly reduces the 
severity of disease in animal models of arthritis by inhibiting leukocyte infiltration 

(Blackwell, 2004). High levels of NF-B activity are present in RA monocytes under basal 

conditions. APC (20 g/ml) dramatically inhibits the active form of NF-B in both control 

and LPS stimulated monocytes from RA patients. Downstream of NF-B is one of the most 
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potent inflammatory cytokines in RA, TNF- (Xue, 2007). Specific inhibition of TNF- 
using biological agents such as the monoclonal antibody, Adalimumab (marketed as 
Humira), is proving very successful in treating moderate to severe RA in adults who have 
had a poor response to other anti-rheumatic drugs. Monocytes/macrophages are the 

primary source of TNF- which, after release, promotes the proinflammatory activity of 

these and other surrounding cells. APC significantly decreases TNF- both in control and 
LPS-stimulated RA monocytes (Xue, 2007). Thus, APC may mimic the action of the 

“biological” agents, through inhibition of TNF-. However, by acting on multiple targets, 
APC may be more effective. 

4.10 Cancer  

APC can activate signaling molecules to promote MDA-MB-231 breast cancer cell and 
endothelial cell motility (Gramling, 2010). However, accumulating evidence suggests that 
the APC pathway limits cancer progression. Acquired protein C deficiency is observed in 
cancer patients, especially in patients using certain types of chemotherapy (Feffer, 1989; 
Mewhort-Buist, 2008; Rogers, 1988; Woodley-Cook, 2006).  The  loss of expression of 
thrombomodulin (or increase in its soluble form), a receptor required to convert protein C to 
APC, on cancer cells correlates with advanced stage and poor prognosis (Hanly, 2006; Hanly 
& Winter, 2007; Lindahl, 1993). Low levels of thrombomodulin also increase the invasive 
ability of cancer cells in vitro (Matsushita, 1998) and is significantly correlated with a high 
relapse rate in breast cancer (Kim, 1997). It is likely that low thrombomodulin levels induce 
metastasis due to reduced endogenous APC levels, although several alternative mechanisms 
have also been proposed (Hanly & Winter, 2007). Additionally, EPCR, the specific receptor 
for APC is detected in several cell lines derived from various types of cancer (Van Sluis, 
2010). For example, EPCR is expressed on human breast cancer cells, with an extremely high 
frequency (Tsuneyoshi, 2001). EPCR on the vascular wall inhibits cancer cell adhesion and 
transmigration (Bezuhly, 2009; Lindahl, 1993). Finally, significant resistance to APC was 
found in women with a lymph-node-positive breast carcinoma (Bezuhly, 2009; Lindahl, 
1993; Nijziel, 2003). In a mouse model, endogenous APC has been found to limit cancer cell 
extravasation via sphingosine-1-phosphate receptor-1 and VE-cadherin-dependent vascular 
barrier enhancement. Van Sluis et al (Van Sluis, 2011) showed that in the absence of 
endogenous APC, fibrinogen depletion does not prevent cancer cell dissemination and 
secondary tumor formation in immune-competent mice. Overall, they show that 
endogenous APC is essential for immune-mediated cancer cell elimination (Van Sluis, 2011). 
The exact mechanisms on how about prevents cancer are not clear. However, recently, a 
number of studies have shown that activation of PAR1 are involved in limiting of tumour 
cell migration and  invasion/metastasis in vitro and in vivo (Kamath, 2001; Nierodzik, 1998; 
Villares, 2011) and intact barrier function can effectively prevent tumour cell migration and  
metastasis. APC can enhance both endothelial and epithelial barrier functions via activation 
of PAR1 which may partly explain the underlying mechanisms(Minhas, 2010; Xue, 2011). 

4.11 Skin injuries 

Chronic wounds are a common health problem. There are many different factors which lead 
to a chronic wound, including advancing age, persistent inflammatory stimuli, tissue 
hypoxia, diabetes mellitus, immunodeficiency, a smoking history or the use of certain 
medications, but they can affect patients at any race or economic background. The common 
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types of chronic wounds include: peripheral ulcers, which are the most frequent cause of 
lower limb amputation in patients with type I and type II diabetes (Levin, 1993); decubitus 
ulcers, a result of prolonged, unrelieved pressure over a bony prominence and venous stasis 
ulcers, where venous congestion of the lower extremities results in local hypoxia (Trent, 
2005).  With the current diabetes epidemic and increasing aging population, chronic wounds 
are a serious concern to the health system. They require dedicated care including regular 
dressings, frequent clinic appointments and when complications arise, hospital admission 
potentially requiring surgery or even amputation. The “state-of-the-art” treatments for 
chronic wounds are expensive and have limited success. Cutaneous wound repair can be 
divided into a series of overlapping phases including formation of fibrin clot, inflammatory 
response, granulation tissue formation, which includes re-epithelialization and 
angiogenesis, and matrix remodeling. Re-epithelialization is an important component of 
wound repair as it serves to restore the barrier function of skin. Newly formed blood vessels 
provide nutrition and oxygen to the growing tissue and allow leukocytes to enter the site of 
injury. A chronic wound or ulcer occurs when the co-coordinated cellular and biochemical 
response to injury are disrupted.  
 

 

Fig. 3. APC treatment used in conjunction with topical negative pressure (TNP) to treat a 

recalcitrant orthopaedic wound present for 2 years. APC and TNP were applied on day 0 

and twice a week until day 19. Day 0 shows exposed bone (arrow) and day 7 shows healthy 

granulation tissue covering bone. Wound is fully healed by day 28 and remained healed at 8 

months follow-up. Taken from Wijewardana et al, Int J Lower Extrem Wounds in press, 

2011. 

The role of inflammation in wound healing is under debate. Many researchers believe that 

the inflammatory phase is vital for wound healing to proceed, however, there is evidence to 

suggest otherwise. Whereas normal adult healing results in a fibrous scar, early fetal 

wounds which have very little, if any, inflammatory response, exhibit scarless healing with 

complete restoration of the normal skin architecture. Scar formation exacerbates when 

inflammation is provoked in fetal wounds, suggesting that the absence of inflammation 
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contributes to the rapid and flawless repair of these wounds (Szpaderska & DiPietro, 2005). 

Compared to dermal wounds, oral wounds have substantially lower levels of macrophage, 

neutrophil, and T-cell infiltration and heal rapidly with minimal inflammation and often 

with minimal scar formation (Szpaderska, 2003). Redd et al  (Redd, 2004) studied wound 

healing in the PU.1 null mouse, which is genetically incapable of raising an inflammatory 

response because several haematopoietic lineages, including macrophages and 

neutrophils, are absent or severely delayed in their differentiation. Wounds in these 

animals rapidly repair with increased vascularity at the wound site and faster 

reepithelialisation of the wound surface, as well as being scarless (Redd, 2004). They 

hypothesised that the lower the level of some growth factors in adult wounds the closer it 

would mimic scar-free healing in the embryo. This is relevant to many chronic wounds 

which are often associated with excess inflammation and become locked in this 

inflammatory phase. Thus, APC’s anti-inflammatory effects may actually benefit, rather 

than hinder, the healing of chronic wounds. 

Keratinocytes and endothelial cells are two major cell types in skin and play critical roles in 

the healing of skin injury. Keratinocytes of the epidermis provide the major cellular 

component of the outermost barrier to the environment. When the skin is broken, a critical 

response is triggered to restore its protective function. Within 24 hours of wounding, 

keratinocytes from the wound margins begin to migrate and invade the wound bed, where 

they proliferate to form the new epithelium. We have shown that protein C is produced by 

skin keratinocytes, especially those in the basal layer (Xue, 2007). This endogenous protein C 

is activated on the cell surface, with the resulting APC stimulating a wound healing 

phenotype in keratinocytes (Xue, 2005; Xue, 2007). Furthermore, the autocrine actions of 

APC are necessary for normal keratinocyte growth and function (Xue, 2007).  APC 

stimulates proliferation, MMP-2 activity, migration and prevents apoptosis in skin 

keratinocytes, all vital processes of re-epithelialization (Xue, 2005; Xue, 2004). Endothelial 

migration and proliferation are vital to generate new blood vessels for wound healing. APC 

stimulates endothelial cell proliferation and induces tube-like structure formation in vitro 

(Uchiba, 2004) and cell migration (Brueckmann, 2003). In the chick chorioallantoic 

membrane (CAM) assay, APC stimulates angiogenesis and re-epithelialization. In vivo, APC 

induces corneal angiogenesis in a mouse model (Uchiba, 2004). APC also stimulates the 

proliferation of smooth muscle cells (Bretschneider, 2007), which would contribute to the 

formation of mature blood vessels.  In a full-thickness rat skin-healing model, a single 

topical application of APC enhances wound healing compared to saline control at least 

partly via stimulating angiogenesis and re-epithelialisation (Jackson, 2005). 

Recent evidence suggests that APC will be effective in humans with chronic wounds. An 

open label pilot study was conducted on 4 patients whose wounds were not improving, 

despite standard wound treatment for 4 months or greater (Whitmont, 2008). APC was 

applied topically to wounds once weekly for 4 weeks. All 4 patients showed rapid positive 

response to treatment which was maintained during a 4 month follow-up period. Overall, 

there was more than 80% reduction in wound size. The treatment was well tolerated with no 

significant side effects or complications experienced. In another recent study, APC treatment 

was used in conjunction with topical negative pressure (TNP), to treat recalcitrant long-

standing orthopaedic wounds (Wijewardana et al, Combination of activated protein C and 

topical negative pressure vacuum therapy rapidly regenerates granulation tissue over 
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exposed bone to heal recalcitrant orthopaedic wounds, in press, 2011, Int J Lower Extrem 

Wounds). One example is a 47 year old male with no significant co-morbidities who had 

tibial and fibula fractures following an assault and being hit in the leg by a baseball bat, 2 

years prior to presentation. The fractures required open reduction and fixation with plates 

and screws. Two months post-operatively he developed an infection and breakdown of the 

wound. He was started on antibiotic treatment and had wash out of the wound and 

scraping of the bone which showed osteomyelitis. Antibiotic treatment was continued but 

failed to control the infection so all metal-ware was removed and the wound was debrided. 

There was malunion of the bone and after 3 months the plates and screws were replaced 

and the wound was covered with a fasciocutaneous flap. After one month, he again 

developed infection and breakdown of the flap. For the following year he had continued 

treatment with antibiotics, conventional and TNP dressings, however the wound remained 

non-healing. He was then treated with APC plus topical negative pressure and after 7 days a 

layer of healthy granulation tissue covered the bone and almost filled the entire wound 

space (Figure 3). By day 10 re-epithelialization had occurred on top of the dermis around the 

perimeter of the wound and by day 19 the wound had completely healed. Follow up at 8 

month showed the wound had continued to remain intact 

By dampening inflammation and accelerating angiogenesis and re-epithellialisation, APC 

is also likely to minimize scar formation, which holds great potential for burn victims and 

those susceptible to keloid scarring. Patients with burn injuries and inhalation trauma 

have a significant increase in thrombin generation in the airways compared with control 

patients, as reflected by increased lavage fluid levels of thrombin-antithrombin complexes 

and fibrin degradation products, and decreased lavage fluid levels of APC and 

antithrombin (Hofstra, 2011).  

5. Engineered protein C/APC 

The stereospecific interactions of APC with factors Va and VIIIa involve both the APC 

enzymatic active-site region and residues that are not part of the immediate APC active site. 

These residues are termed ‘exosites’ on the APC active enzyme surface and can be mutated 

to diminish the anticoagulant activity of APC without altering the cell-signaling activity of 

the molecule (Bae, 2007; Gale, 2002; Kerschen, 2007; Mosnier, 2004). Replacement of a cluster 

of five positively charged residues by alanine residues (ie. 5A-APC) on the top surface of the 

APC heavy-chain protease domain restructures this crucial positively charged exosite, 

causing >98% loss of the anticoagulant activity of human APC while leaving intact APC cell-

signaling activities on different cell types within the neurovascular unit (Mosnier, 2007; 

Mosnier, 2009). Replacement of three of these five residues (i.e. lysine residues 191–193) by 

three alanine residues produces the 3K3A-APC variant  (Deane, 2009; Guo, 2009; Wang, 

2009) which has a similar effect to the 5A-APC variant, causing loss of >92% of APC 

anticoagulant activity. These engineered variants provide APC for therapeutic purposes in 

which the risk of serious bleeding caused by the anticoagulant activity of APC is diminished 

while the cytoprotective effects of APC are preserved. In preclinical animal models of ALS 

(Zhong, 2009), stroke (Guo, 2009; Wang, 2009), brain injury (Walker, 2010) and sepsis 

{Kerschen, 2007 KERSCHEN2007 /id} and cytoprotective function (Ni, 2011) these APC 

variants show beneficial effects that were equivalent to, or sometimes greater than, the wild-

type recombinant APC. Bir et al (Bir, 2011) demonstrated that 5A-APC could attenuate lung 
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damage caused by P. aeruginosa in critically ill patients. In addition, 5A-APC inhibits the 

inflammatory response of conventional dendritic cells independent of EPCR and suppresses 

IFN-gamma production by natural killer-like dendritic cells (Kerschen, 2010).  Recently, an 

APC variant (APC-L38D/N329Q) was generated with minimal anticoagulant activity, but 5-

fold enhanced endothelial barrier protective function and 30-fold improved anti-apoptotic 

function when compared with wild type APC (Ni, 2011).  

An APC variant with minimal cell-signaling activity but with substantially increased 
anticoagulant activity, E149A-APC, has been useful for proof of concept studies and for 
antithrombotic indications (Mosnier, 2009). E149A-APC has superior antithrombotic activity 
in a mouse model of arterial thrombosis compared to wt-APC, but has no benefit in an 
endotoxemia sepsis model where wild type (wt)-APC or the 5A-APC variant reduced 
mortality {Kerschen, 2007 KERSCHEN2007 /id} (Mosnier, 2009). 

6. Conclusion 

APC, an anticoagulant with anti-inflammatory, anti-apoptotic, proliferative and barrier 

stabilization properties, has not only emerged as a therapeutic agent for use in selected 

patients with severe sepsis, but also appears to have considerable benefit in chronic wounds 

and a number of other autoimmune/inflammatory diseases. The in vitro, preclinical and 

limited clinical data for these diseases indicate that APC holds a remarkable promise. 

Further insights into the mechanisms of action of APC will be required for the translation of 

preclinical study results to the bedside. 

More than three decades since the discovery of APC, we are only beginning to learn of its 

biological diversity. The clinical evidence for APC as a treatment for severe sepsis is 

perplexing (Marti-Carvajal, 2007; Marti-Carvajal, 2011). Strong evidence indicates that APC 

will benefit other disorders involving various organ injuries including kidney injury, spinal 

cord injury, respiratory function and stroke. Blinded and controlled clinical trials will 

elucidate its clinical protective effects in these disorders. With the recent discovery that the 

largest organ of the body, the skin, positively responds to APC, it is likely that APC will 

accelerate healing of skin injuries and disorders.    

7. References 

Retraction for yuji taoka et Al., (2011). "activated protein C reduces the severity of 
compression-induced spinal cord injury in rats by inhibiting activation of 
leukocytes". J.Neurosci. Vol.31, No.23, pp. 8697 

Alsfasser, G., Warshaw, A.L., Thayer, S.P., Antoniu, B., Laposata, M., Lewandrowski, K.B., 
& Fernandez-del, C.C. (2006). Decreased inflammation and improved survival with 
recombinant human activated protein C treatment in experimental acute 
pancreatitis. Arch.Surg. Vol.141, No.7, pp. 670-676 

Bae, J.S., Yang, L., Manithody, C., & Rezaie, A.R. (2007). Engineering a disulfide bond to 
stabilize the calcium binding loop of activated protein C eliminates its 
anticoagulant but not protective signaling properties. J.Biol.Chem. Vol.282, No.35, 
pp.25493-25500 

Bae, J.S., Yang, L., Manithody, C., & Rezaie, A.R. (2007). The ligand occupancy of endothelial 
protein C receptor switches the protease-activated receptor 1-dependent signaling 

www.intechopen.com



 
Inflammatory Diseases – A Modern Perspective 62

specificity of thrombin from a permeability-enhancing to a barrier-protective 
response in endothelial cells. Blood. Vol.110, No.12, pp. 3909-3916 

Bae, J.S., Yang, L., & Rezaie, A.R. (2007). Receptors of the protein C activation and activated 
protein C signaling pathways are colocalized in lipid rafts of endothelial cells. 
Proc.Natl.Acad.Sci.U.S.A. Vol.104, No.8, pp. 2867-2872 

Baker, W.F. & Bick, R.L. (1999). Treatment of hereditary and acquired thrombophilic 
disorders. Semin.Thromb.Hemostasis. Vol.25, No.4, pp. 387-405 

Balazs, A.B., Fabian, A.J., Esmon, C.T., & Mulligan, R.C. (2006). Endothelial protein C 
receptor (CD201) explicitly identifies hematopoietic stem cells in murine bone 
marrow. Blood. Vol.107, No.6, pp. 2317-2321 

Bernard, G.R., Margolis, B.D., Shanies, H.M., Ely, E.W., Wheeler, A.P., Levy, H., Wong, K., & 
Wright, T.J. (2004). Extended Evaluation of Recombinant Human Activated Protein 
C United States Trial (ENHANCE US): A Single-Arm, Phase 3B, Multicenter Study 
of Drotrecogin Alfa (Activated) in Severe Sepsis. Chest. Vol.125, No.6, pp. 2206-2216 

Bernard, G.R., Vincent, J.L., Laterre, P.F., LaRosa, S.P., Dhainaut, J.F., Lopez-Rodriguez, A., 
Steingrub, J.S., Garber, G.E., Helterbrand, J.D., Ely, E.W., & Fisher, C.J. (2001). 
Efficacy and Safety of Recombinant Human Activated Protein C for Severe Sepsis. 
New Engl. J Med. Vol.344, No.10, pp. 699-709 

Bezuhly, M., Cullen, R., Esmon, C.T., Morris, S.F., West, K.A., Johnston, B., & Liwski, R.S. 
(2009). Role of activated protein C and its receptor in inhibition of tumor 
metastasis. Blood. Vol.113, No.14, pp. 3371-3374 

Bir, N., Lafargue, M., Howard, M., Goolaerts, A., Roux, J., Carles, M., Cohen, M.J., Iles, K.E., 
Fernandez, J.A., Griffin, J.H., & Pittet, J.F. (2011). Cytoprotective-selective Activated 
Protein C Attenuates P. aeruginosa-induced Lung Injury in Mice. Am.J.Respir.Cell 
Mol.Biol. Epub ahead of print 

Blackwell, N.M., Sembi, P., Newson, J.S., Lawrence, T., Gilroy, D.W., & Kabouridis, P.S. 
(2004). Reduced infiltration and increased apoptosis of leukocytes at sites of 
inflammation by systemic administration of a membrane-permeable IkappaBalpha 
repressor. Arthritis Rheum. Vol.50, No.8, pp. 2675-2684 

Bondeson, J., Browne, K.A., Brennan, F.M., Foxwell, B.M.J., & Feldmann, M. (1999). Selective 
Regulation of Cytokine Induction by Adenoviral Gene Transfer of I{kappa}B{alpha} 
into Human Macrophages: Lipopolysaccharide-Induced, But Not Zymosan-
Induced, Proinflammatory Cytokines Are Inhibited, But IL-10 Is Nuclear Factor-
{kappa}B Independent. J. Immunol. Vol.162, No.5, pp. 2939-2945 

Bretschneider, E., Uzonyi, B., Weber, A.A., Fischer, J.W., Pape, R., Lotzer, K., & Schror, K. 
(2007). Human vascular smooth muscle cells express functionally active endothelial 
cell protein C receptor. Circ.Res. Vol.100, No.2, pp. 255-262 

Brueckmann, M., Marx, A., Martin, W.H., Liebe, V., Lang, S., Kaden, J.J., Zieger, W., 
Borggrefe, M., Huhle, G., & Konstantin, H.K. (2003). Stabilization of monocyte 
chemoattractant protein-1-mRNA by activated protein C. Thromb.Haemost. Vol.89, 
No.1, pp. 149-160 

Buisson-Legendre, N., Smith, S., March, L., & Jackson, C. (2004). Elevation of activated 
protein C in synovial joints in rheumatoid arthritis and its correlation with matrix 
metalloproteinase 2. Arthritis Rheum. Vol.50, No.7, pp. 2151-2156 

Calzado, M.A., Bacher, S., & Schmitz, M.L. (2007). NF-kappaB inhibitors for the treatment of 
inflammatory diseases and cancer. Curr.Med.Chem. Vol.14, No.3, pp.367-376 

www.intechopen.com



 
Anti-Inflammatory Actions of the Anticoagulant, Activated Protein C 63 

Calzado, M.A., Bacher, S., & Schmitz, M.L. (2007). NF-kappaB inhibitors for the treatment of 
inflammatory diseases and cancer. Curr.Med.Chem. Vol.14, No.3, pp. 367-376 

Cao, C., Gao, Y., Li, Y., Antalis, T.M., Castellino, F.J., & Zhang, L. (2010). The efficacy of 
activated protein C in murine endotoxemia is dependent on integrin CD11b. J. Clin 
Invest. Vol.120, No.6, pp. 1971-1980 

Carmi, I. & Razin, E. (2007). The role played by key transcription factors in activated mast 
cells. Immunol.Rev. Vol.217:280-91., No.280-291 

Chen, P., Zhang, Y., Qiao, M., & Yuan, Y. (2007). Activated protein C, an anticoagulant 
polypeptide, ameliorates severe acute pancreatitis via regulation of mitogen-
activated protein kinases. J.Gastroenterol. Vol.42, No.11, pp. 887-896 

Cheng, T., Liu, D., Griffin, J.H., Fernandez, J.A., Castellino, F., Rosen, E.D., Fukudome, K., & 
Zlokovic, B.V. (2003). Activated protein C blocks p53-mediated apoptosis in 
ischemic human brain endothelium and is neuroprotective. Nat.Med. Vol.9, No.3, 
pp. 338-342 

Cheng, T., Petraglia, A.L., Li, Z., Thiyagarajan, M., Zhong, Z., Wu, Z., Liu, D., Maggirwar, 
S.B., Deane, R., Fernandez, J.A., LaRue, B., Griffin, J.H., Chopp, M., & Zlokovic, 
B.V. (2006). Activated protein C inhibits tissue plasminogen activator-induced 
brain hemorrhage. Nat. Med. Vol.12, No.11, pp. 1278-1285 

Contreras, J.L., Eckstein, C., Smyth, C.A., Bilbao, G., Vilatoba, M., Ringland, S.E., Young, C., 
Thompson, J.A., Fernandez, J.A., Griffin, J.H., & Eckhoff, D.E. (2004). Activated 
protein C preserves functional islet mass after intraportal transplantation: a novel 
link between endothelial cell activation, thrombosis, inflammation, and islet cell 
death. Diabetes. Vol.53, No.11, pp. 2804-2814 

Coughlin, S.R. (2000). Thrombin signalling and protease-activated receptors [In Process 
Citation]. Nature. Vol.407, No.6801, pp. 258-264 

Deane, R., LaRue, B., Sagare, A.P., Castellino, F.J., Zhong, Z., & Zlokovic, B.V. (2009). 
Endothelial protein C receptor-assisted transport of activated protein C across the 
mouse blood-brain barrier. J.Cereb.Blood Flow Metab. Vol.29, No.1, pp. 25-33 

Elphick, G.F., Sarangi, P.P., Hyun, Y.M., Hollenbaugh, J.A., Ayala, A., Biffl, W.L., Chung, 
H.L., Rezaie, A.R., McGrath, J.L., Topham, D.J., Reichner, J.S., & Kim, M. (2009). 
Recombinant human activated protein C inhibits integrin-mediated neutrophil 
migration. Blood. Vol.113, No.17, pp. 4078-4085 

Esmon, C.T. (2004). Crosstalk between inflammation and thrombosis. Maturitas. Vol.47, 
No.4, pp. 305-314 

Esmon, C.T. (2004). Structure and functions of the endothelial cell protein C receptor. Crit 
Care Med. Vol.32, No.5 Suppl, pp. S298-S301 

Feffer, S.E., Carmosino, L.S., & Fox, R.L. (989). Acquired protein C deficiency in patients 
with breast cancer receiving cyclophosphamide, methotrexate, and 5-fluorouracil. 
Cancer. Vol.63, No.7, pp. 1303-1307 

Feistritzer, C., Mosheimer, B.A., Sturn, D.H., Riewald, M., Patsch, J.R., & Wiedermann, C.J. 
(2006). Endothelial protein C receptor-dependent inhibition of migration of human 
lymphocytes by protein C involves epidermal growth factor receptor. J.Immunol. 
Vol.176, No.2, pp. 1019-1025 

Feistritzer, C. & Riewald, M. (2005). Endothelial barrier protection by activated protein C 
through PAR1-dependent sphingosine 1-phosphate receptor-1 crossactivation. 
Blood. Vol.105, No.8, pp. 3178-3184 

www.intechopen.com



 
Inflammatory Diseases – A Modern Perspective 64

Feistritzer, C., Schuepbach, R.A., Mosnier, L.O., Bush, L.A., Di, C.E., Griffin, J.H., & Riewald, 
M. (2006). Protective signaling by activated protein C is mechanistically linked to 
protein C activation on endothelial cells. J. Biol. Chem. Vol.281, No.29, pp. 20077-
20084 

Fernandez, J.A., Xu, X., Liu, D., Zlokovic, B.V., & Griffin, J.H. (2003). Recombinant murine-
activated protein C is neuroprotective in a murine ischemic stroke model. Blood 
Cells Mol.Dis. Vol.30, No.3, pp. 271-276 

Finigan, J.H., Dudek, S.M., Singleton, P.A., Chiang, E.T., Jacobson, J.R., Camp, S.M., Ye, S.Q., 
& Garcia, J.G. (2005). Activated protein C mediates novel lung endothelial barrier 
enhancement: Role of sphingosine 1-phosphate receptor transactivation. 
J.Biol.Chem. Vol.280, No.17, pp.17286-17293 

Fisher, C.J., Jr. & Yan, S.B. (2000). Protein C levels as a prognostic indicator of outcome in 
sepsis and related diseases. Crit Care Med. Vol.28, No.9 Suppl, pp. S49-S56 

Folsom, A.R., Rosamond, W.D., Shahar, E., Cooper, L.S., Aleksic, N., Nieto, F.J., Rasmussen, 
M.L., & Wu, K.K. (1999). Prospective study of markers of hemostatic function with 
risk of ischemic stroke. The Atherosclerosis Risk in Communities (ARIC) Study 
Investigators. Circulation. Vol.100, No.7, pp. 736-742 

Franscini, N., Bachli, E.B., Blau, N., Leikauf, M.S., Schaffner, A., & Schoedon, G. (2004). Gene 
expression profiling of inflamed human endothelial cells and influence of activated 
protein C. Circulation. Vol.110, No.18, pp. 2903-2909 

Fujisawa, K., Aono, H., Hasunuma, T., Yamamoto, K., Mita, S., & Nishioka, K. (1996). 
Activation of transcription factor NF-kappa B in human synovial cells in response 
to tumor necrosis factor alpha. Arthritis Rheum. Vol.39, No.2, pp. 197-203 

Fukudome, K. & Esmon, C.T. (1994). Identification, cloning, and regulation of a novel 
endothelial cell protein c activated protein c receptor. J. Biol. Chem. Vol.269, No.42, 
pp. 26486-26491 

Gale, A.J., Tsavaler, A., & Griffin, J.H. (2002). Molecular characterization of an extended 
binding site for coagulation factor Va in the positive exosite of activated protein C. 
J. Biol. Chem. Vol.277, No.32, pp. 28836-28840 

Ganopolsky, J.G. & Castellino, F.J. (2004). A Protein C Deficiency Exacerbates Inflammatory 
and Hypotensive Responses in Mice During Polymicrobial Sepsis in a Cecal 
Ligation and Puncture Model. Am. J. Pathol. Vol.165, No.4, pp. 1433-1446 

Genc, K. (2007). The rationale for activated protein C treatment in perinatal white matter 
injury. Med.Hypotheses. Vol.68, No.6, pp. 1418-1419 

Genc, K. (2007). Activated protein C: therapeutic implications for Alzheimer's disease. Med 
Hypotheses. Vol.69, No.3, pp. 701-702 

Gramling, M.W., Beaulieu, L.M., & Church, F.C. (2010). Activated protein C enhances cell 
motility of endothelial cells and MDA-MB-231 breast cancer cells by intracellular 
signal transduction. Exp.Cell Res. Vol.316, No.3, pp. 314-328 

Grey, S.T., Tsuchida, A., Hau, H., Orthner, C.L., Salem, H.H., & Hancock, W.W. (1994). 
Selective inhibitory effects of the anticoagulant activated protein C on the 
responses of human mononuclear phagocytes to LPS, IFN-gamma, or phorbol 
ester. J. Immunol. Vol.153, No.8, pp. 3664-3672 

Griffin, J.H., Fernandez, J.A., Gale, A.J., & Mosnier, L.O. (2005). Activated protein C. 
J.Thromb.Haemost.2007.Vol.5,No.suppl 1, pp.73-80. 

Griffin, J.H., Fernandez, J.A., Mosnier, L.O., Liu, D., Cheng, T., Guo, H., & Zlokovic, B.V. 
(2006). The promise of protein C. Blood Cells Mol.Dis. Vol.36, No.2, pp. 211-216 

www.intechopen.com



 
Anti-Inflammatory Actions of the Anticoagulant, Activated Protein C 65 

Griffin, J.H., Zlokovic, B., & Fernandez, J.A. (2002). Activated protein C: potential therapy 
for severe sepsis, thrombosis, and stroke. Semin.Hematol. Vol.39, No.3, pp. 197-205 

Gruber, A. & Griffin, J.H. (1992). Direct detection of activated protein C in blood from 
human subjects. Blood. Vol.79, No.9, pp. 2340-2348 

Gruden, G., Olivetti, C., Cavallo-Perin, P., Bazzan, M., Stella, S., Tamponi, G., & Pagano, G. 
(1997). Activated protein C resistance in type I diabetes. Diabetes Care. Vol.20, No.3, 
pp. 424-425 

Gu, J.M., Crawley, J.T.B., Ferrell, G., Zhang, F., Li, W., Esmon, N.L., & Esmon, C.T. (2002). 
Disruption of the Endothelial Cell Protein C Receptor Gene in Mice Causes 
Placental Thrombosis and Early Embryonic Lethality. J. Biol. Chem. Vol.277, No.45, 
pp. 43335-43343 

Guo, H., Gu, F., Li, W., Zhang, B., Niu, R., Fu, L., Zhang, N., & Ma, Y. (2009). Reduction of 
protein kinase C zeta inhibits migration and invasion of human glioblastoma cells. 
J.Neurochem. Vol.109, No.1, pp. 203-213 

Guo, H., Liu, D., Gelbard, H., Cheng, T., Insalaco, R., Fernandez, J.A., Griffin, J.H., & 
Zlokovic, B.V. (2004). Activated protein C prevents neuronal apoptosis via protease 
activated receptors 1 and 3. Neuron. Vol.41, No.4, pp. 563-572 

Guo, H., Singh, I., Wang, Y., Deane, R., Barrett, T., Fernandez, J.A., Chow, N., Griffin, J.H., & 
Zlokovic, B.V. (2009). Neuroprotective activities of activated protein C mutant with 
reduced anticoagulant activity. Eur J Neurosci. Vol.29, No.6, pp. 1119-1130 

Guo, H., Liu, D., Gelbard, H., Cheng, T., Insalaco, R., Fernandez, J.A., Griffin, J.H., & 
Zlokovic, B.V. (2004). Activated Protein C Prevents Neuronal Apoptosis via 
Protease Activated Receptors 1 and 3. Neuron. Vol.41, No.4, pp. 563-572 

Gupta, A., Rhodes, G.J., Berg, D.T., Gerlitz, B., Molitoris, B.A., & Grinnell, B.W. (2007). 
Activated protein C ameliorates LPS-induced acute kidney injury and 
downregulates renal INOS and angiotensin 2. Am.J.Physiol. Renal Physiol. Vol.293, 
No.1, pp. F245-F254 

Hanly, A.M., Redmond, M., Winter, D.C., Brophy, S., Deasy, J.M., Bouchier-Hayes, D.J., & 
Kay, E.W. (2006). Thrombomodulin expression in colorectal carcinoma is protective 
and correlates with survival. Br J Cancer. Vol.94, No.9, pp. 1320-1325 

Hanly, A.M. & Winter, D.C. (2007). The role of thrombomodulin in malignancy. Semin 
Thromb Hemost. Vol.33, No.7, pp. 673-679 

Hataji, O., Taguchi, O., Gabazza, E.C., Yuda, H., Fujimoto, H., Suzuki, K., & Adachi, Y. 
(2002). Activation of protein C pathway in the airways. Lung. Vol.180, No.1, pp. 47-
59 

Hirose, K., Okajima, K., Taoka, Y., Uchiba, M., Tagami, H., Nakano, K., Utoh, J., Okabe, H., 
& Kitamura, N. (2000). Activated protein C reduces the ischemia/reperfusion-
induced spinal cord injury in rats by inhibiting neutrophil activation. Ann Surg. 
Vol.232, No.2, pp. 272-280 

Hofstra, J.J., Vlaar, A.P., Knape, P., Mackie, D.P., Determann, R.M., Choi, G., van Der, P.T., 
Levi, M., & Schultz, M.J. (2011). Pulmonary Activation of Coagulation and 
Inhibition of Fibrinolysis After Burn Injuries and Inhalation Trauma. J Trauma. 
Epub ahead of print 

Hudson, L.G. & McCawley, L.J. (1998). Contributions of the epidermal growth factor 
receptor to keratinocyte motility. Microsc.Res.Tech. Vol.43, No.5, pp. 444-455 

Isermann, B., Vinnikov, I.A., Madhusudhan, T., Herzog, S., Kashif, M., Blautzik, J., Corat, 
M.A.F., Zeier, M., Blessing, E., Oh, J., Gerlitz, B., Berg, D.T., Grinnell, B.W., 

www.intechopen.com



 
Inflammatory Diseases – A Modern Perspective 66

Chavakis, T., Esmon, C.T., Weiler, H., Bierhaus, A., & Nawroth, P.P. (2007). 
Activated protein C protects against diabetic nephropathy by inhibiting endothelial 
and podocyte apoptosis. Nat Med. Vol.13, No.11, pp. 1349-1358 

Itoh, T., Matsuda, H., Tanioka, M., Kuwabara, K., Itohara, S., & Suzuki, R. (2002). The role of 
matrix metalloproteinase-2 and matrix metalloproteinase-9 in antibody-induced 
arthritis. J.Immunol. Vol.169, No.5, pp. 2643-2647 

Jackson, C.J., Xue, M., Thompson, P., Davey, R.A., Whitmont, K., Smith, S., Buisson-
Legendre, N., Sztynda, T., Furphy, L.J., Cooper, A., Sambrook, P., & March, L. 
(2005). Activated protein C prevents inflammation yet stimulates angiogenesis to 
promote cutaneous wound healing. Wound.Repair Regen. Vol.13, No.3, pp. 284-294 

Joyce, D.E., Gelbert, L., Ciaccia, A., DeHoff, B., & Grinnell, B.W. (2001). Gene expression 
profile of antithrombotic protein c defines new mechanisms modulating 
inflammation and apoptosis. J.Biol.Chem. Vol.276, No.14, pp. 11199-11203 

Kamath, L., Meydani, A., Foss, F., & Kuliopulos, A. (2001). Signaling from protease-
activated receptor-1 inhibits migration and invasion of breast cancer cells. Cancer 
Res. Vol.61, No.15, pp. 5933-5940 

Keller, S.A., Moore, C.C., Evans, S.L., McKillop, I.H., & Huynh, T. (2011). Activated protein 
C alters inflammation and protects renal function in sepsis. J Surg.Res. Vol.168, 
No.1, pp. e103-e109 

Kendrick, B.J., Gray, A.G., Pickworth, A., & Watters, M.P. (2006). Drotrecogin alfa 
(activated) in severe falciparum malaria. Anaesthesia. Vol.61, No.9, pp. 899-902 

Kent, D.G., Copley, M.R., Benz, C., Wohrer, S., Dykstra, B.J., Ma, E., Cheyne, J., Zhao, Y., 
Bowie, M.B., Zhao, Y., Gasparetto, M., Delaney, A., Smith, C., Marra, M., & Eaves, 
C.J. (2009). Prospective isolation and molecular characterization of hematopoietic 
stem cells with durable self-renewal potential. Blood. Vol.113, No.25, pp. 6342-6350 

Kerschen, E., Hernandez, I., Zogg, M., Jia, S., Hessner, M.J., Fernandez, J.A., Griffin, J.H., 
Huettner, C.S., Castellino, F.J., & Weiler, H. (2010). Activated protein C targets 
CD8+ dendritic cells to reduce the mortality of endotoxemia in mice. J Clin Invest. 
Vol.120, No.9, pp. 3167-3178 

Kerschen, E.J., Fernandez, J.A., Cooley, B.C., Yang, X.V., Sood, R., Mosnier, L.O., Castellino, 
F.J., Mackman, N., Griffin, J.H., & Weiler, H. (2007). Endotoxemia and sepsis 
mortality reduction by non-anticoagulant activated protein C. J Exp Med. Vol.204, 
No.10, pp. 2439-2448 

Kim, S.J., Shiba, E., Ishii, H., Inoue, T., Taguchi, T., Tanji, Y., Kimoto, Y., Izukura, M., & 
Takai, S. (1997). Thrombomodulin is a new biological and prognostic marker for 
breast cancer: an immunohistochemical study. Anticancer Res. Vol.17, No.3C, pp. 
2319-2323 

Kirschenbaum, L. & Astiz, M. (2005). Acute pancreatitis: a possible role for activated protein 
C? Crit Care. Vol.9, No.3, pp. 243-244 

Kotanidou, A., Loutrari, H., Papadomichelakis, E., Glynos, C., Magkou, C., Armaganidis, A., 
Papapetropoulos, A., Roussos, C., & Orfanos, S.E. (2006). Inhaled activated protein 
C attenuates lung injury induced by aerosolized endotoxin in mice. 
Vascul.Pharmacol. Vol.45, No.2, pp. 134-140 

Kuliopulos, A., Covic, L., Seeley, S.K., Sheridan, P.J., Helin, J., & Costello, C.E. (1999). 
Plasmin desensitization of the PAR1 thrombin receptor: kinetics, sites of truncation, 
and implications for thrombolytic therapy. Biochemistry. Vol.38, No.14, pp. 4572-
4585 

www.intechopen.com



 
Anti-Inflammatory Actions of the Anticoagulant, Activated Protein C 67 

Kwasny-Krochin, B., Bobek, M., Kontny, E., Gluszko, P., Biedron, R., Chain, B.M., Maslinski, 
W., & Marcinkiewicz, J. (2002). Effect of taurine chloramine, the product of 
activated neutrophils, on the development of collagen-induced arthritis in DBA 1/J 
mice. Amino.Acids. Vol.23, No.4, pp. 419-426 

Lay, A.J., Donahue, D., Tsai, M.J., & Castellino, F.J. (2007). Acute inflammation is 
exacerbated in mice genetically predisposed to a severe protein C deficiency. Blood. 
Vol.109, No.5, pp. 1984-1991 

Levi, M., Dorffler-Melly, J., Reitsma, P., Buller, H., Florquin, S., van der Poll, T., & Carmeliet, 
P. (2003). Aggravation of endotoxin-induced disseminated intravascular 
coagulation and cytokine activation in heterozygous protein-C-deficient mice. 
Blood. Vol.101, No.12, pp. 4823-4827 

Levin, M.E. (1993). Diabetic foot ulcers: pathogenesis and management. J.ET Nurs. Vol.20, 
No.5, pp. 191-198 

Li, Q. & Verma, I.M. (2002). NF-kappaB regulation in the immune system. Nat.Rev.Immunol. 
Vol.2, No.10, pp. 725-734 

Li, W., Zheng, X., Gu, J., Hunter, J., Ferrell, G.L., Lupu, F., Esmon, N.L., & Esmon, C.T. 
(2005). Overexpressing endothelial cell protein C receptor alters the hemostatic 
balance and protects mice from endotoxin. J Thromb.Haemost. Vol.3, No.7, pp. 1351-
1359 

Liaw, P.C., Esmon, C.T., Kahnamoui, K., Schmidt, S., Kahnamoui, S., Ferrell, G., Beaudin, S., 
Julian, J.A., Weitz, J.I., Crowther, M., Loeb, M., & Cook, D.J. (2004). Patients with 
severe sepsis vary markedly in their ability to generate activate protein C. Blood. 
Vol.104, No,13, pp 3958-3964 

Lindahl, A.K., Boffa, M.C., & Abildgaard, U. (1993). Increased plasma thrombomodulin in 
cancer patients. Thromb Haemost. Vol.69, No.2, pp. 112-114 

Macko, R.F., Ameriso, S.F., Gruber, A., Griffin, J.H., Fernandez, J.A., Barndt, R., Quismorio, 
F.P., Jr., Weiner, J.M., & Fisher, M. (1996). Impairments of the protein C system and 
fibrinolysis in infection-associated stroke. Stroke. Vol.27, No.11, pp. 2005-2011 

Marok, R., Winyard, P.G., Coumbe, A., Kus, M.L., Gaffney, K., Blades, S., Mapp, P.I., Morris, 
C.J., Blake, D.R., Kaltschmidt, C., & Baeuerle, P.A. (1996). Activation of the 
transcription factor nuclear factor-kappa-b in human inflamed synovial tissue. 
Arthritis Rheum. Vol.39, No.4, pp. 583-591 

Marti-Carvajal, A., Salanti, G., & Cardona, A.F. (2003). Human recombinant activated 
protein C for severe sepsis. Cochrane.Database.Syst.Rev. Vol.5,CD004388 

Marti-Carvajal, A., Salanti, G., & Cardona, A.F. (2007). Human recombinant activated 
protein C for severe sepsis. Cochrane.Database.Syst.Rev. Vol.3, CD004388 

Marti-Carvajal, A.J., Sola, I., Lathyris, D., & Cardona, A.F. (2011). Human recombinant 
activated protein C for severe sepsis. Cochrane.Database.Syst.Rev. Vol.4,.CD004388 

Mathis, D., Vence, L., & Benoist, C. (2001). [beta]-Cell death during progression to diabetes. 
Nature. Vol.414, No.6865, pp. 792-798 

Matsushita, Y., Yoshiie, K., Imamura, Y., Ogawa, H., Imamura, H., Takao, S., Yonezawa, S., 
Aikou, T., Maruyama, I., & Sato, E. (1998). A subcloned human esophageal 
squamous cell carcinoma cell line with low thrombomodulin expression showed 
increased invasiveness compared with a high thrombomodulin-expressing clone--
thrombomodulin as a possible candidate for an adhesion molecule of squamous 
cell carcinoma. Cancer Lett. Vol.127, No.1-2, pp. 195-201 

www.intechopen.com



 
Inflammatory Diseases – A Modern Perspective 68

McQuibban, G.A., Gong, J.H., Wong, J.P., Wallace, J.L., Clark-Lewis, I., & Overall, C.M. 
(2002). Matrix metalloproteinase processing of monocyte chemoattractant proteins 
generates CC chemokine receptor antagonists with anti-inflammatory properties in 
vivo. Blood. Vol.100, No.4, pp. 1160-1167 

Mewhort-Buist, T.A., Liaw, P.C., Patel, S., Atkinson, H.M., Berry, L.R., & Chan, A.K. (2008). 
Treatment of endothelium with the chemotherapy agent vincristine affects 
activated protein C generation to a greater degree in newborn plasma than in adult 
plasma. Thromb Res. Vol.122, No.3, pp. 418-426 

Milia, A.F., Salis, M.B., Stacca, T., Pinna, A., Madeddu, P., Trevisani, M., Geppetti, P., & 
Emanueli, C. (2002). Protease-activated receptor-2 stimulates angiogenesis and 
accelerates hemodynamic recovery in a mouse model of hindlimb ischemia. 
Circ.Res. Vol.91, No.4, pp. 346-352 

Minhas, N., Xue, M., Fukudome, K., & Jackson, C.J. (2010). Activated protein C utilizes the 
angiopoietin/Tie2 axis to promote endothelial barrier function. FASEB J. Vol.24, 
No.3, pp. 873-881 

Mizutani, A., Okajima, K., Uchiba, M., & Noguchi, T. (2000). Activated protein C reduces 
ischemia/reperfusion-induced renal injury in rats by inhibiting leukocyte 
activation. Blood. Vol.95, No.12, pp. 3781-3787 

Montiel, M., de la Blanca, E.P., & Jimenez, E. (2005). Angiotensin II induces focal adhesion 
kinase/paxillin phosphorylation and cell migration in human umbilical vein 
endothelial cells. Biochem.Biophys.Res.Commun. Vol.327, No.4, pp. 971-978 

Mosnier, L.O., Gale, A.J., Yegneswaran, S., & Griffin, J.H. (2004). Activated protein C 
variants with normal cytoprotective but reduced anticoagulant activity. Blood. 
Vol.104, No.6, pp 1740-1744 

Mosnier, L.O. & Griffin, J.H. (2003). Inhibition of staurosporine-induced apoptosis of 
endothelial cells by activated protein C requires protease-activated receptor-1 and 
endothelial cell protein C receptor. Biochem.J. Vol.373, No.Pt 1, pp. 65-70 

Mosnier, L.O., Yang, X.V., & Griffin, J.H. (2007). Activated protein C mutant with minimal 
anticoagulant activity, normal cytoprotective activity, and preservation of 
thrombin activable fibrinolysis inhibitor-dependent cytoprotective functions. 
J.Biol.Chem. Vol.282, No.45, pp. 33022-33033 

Mosnier, L.O., Zampolli, A., Kerschen, E.J., Schuepbach, R.A., Banerjee, Y., Fernandez, J.A., 
Yang, X.V., Riewald, M., Weiler, H., Ruggeri, Z.M., & Griffin, J.H. (2009). 
Hyperantithrombotic, noncytoprotective Glu149Ala-activated protein C mutant. 
Blood. Vol.113, No.23, pp. 5970-5978 

Nguyen, M., Arkell, J., & Jackson, C.J. (3000). Activated protein C directly activates human 
endothelial gelatinase A. J. Biol. Chem.Vol.275, No.13, pp. 9095-9098 

Ni, A.F., O'Donnell, J.S., Johnson, J.A., Brown, L., Gleeson, E.M., Smith, O.P., & Preston, R.J. 
(2011). Activated protein C N-linked glycans modulate cytoprotective signaling 
function on endothelial cells. J. Biol. Chem. Vol.286, No.2, pp. 1323-1330 

Nick, J.A., Coldren, C.D., Geraci, M.W., Poch, K.R., Fouty, B.W., O'Brien, J., Gruber, M., 
Zarini, S., Murphy, R.C., Kuhn, K., Richter, D., Kast, K.R., & Abraham, E. (2004). 
Recombinant human activated protein C reduces human endotoxin-induced 
pulmonary inflammation via inhibition of neutrophil chemotaxis. Blood. Vol.104, 
No.13, pp 3878-3885 

Nierodzik, M.L., Chen, K., Takeshita, K., Li, J.J., Huang, Y.Q., Feng, X.S., D'Andrea, M.R., 
ndrade-Gordon, P., & Karpatkin, S. (1998). Protease-activated receptor 1 (PAR-1) is 

www.intechopen.com



 
Anti-Inflammatory Actions of the Anticoagulant, Activated Protein C 69 

required and rate-limiting for thrombin-enhanced experimental pulmonary 
metastasis. Blood. Vol.92, No.10, pp. 3694-3700 

Nijziel, M.R., van, O.R., Christella, M., Thomassen, L.G., van Pampus, E.C., Hamulyak, K., 
Tans, G., & Rosing, J. (2003). Acquired resistance to activated protein C in breast 
cancer patients. Br.J Haematol. Vol.120, No.1, pp. 117-122 

O'Brien, L.A., Gupta, A., & Grinnell, B.W. (2006). Activated protein C and sepsis. Front 
Biosci. Vol.11, No.1, pp. 676-698 

Okajima, K. (2004). Regulation of inflammatory responses by activated protein C: the 
molecular mechanism(s) and therapeutic implications. Clin.Chem.Lab Med. Vol.42, 
No.2, pp. 132-141 

Ottesen, L.H., Bladbjerg, E.M., Osman, M., Lausten, S.B., Jacobsen, N.O., Gram, J., & Jensen, 
S.L. (1999). Protein C activation during the initial phase of experimental acute 
pancreatitis in the rabbit. Dig.Surg. Vol.16, No.6, pp. 486-495 

Park, S.Y., Lee, H.E., Li, H., Shipitsin, M., Gelman, R., & Polyak, K. (2010). Heterogeneity for 
Stem CellGÇôRelated Markers According to Tumor Subtype and Histologic Stage 
in Breast Cancer. Clin. Cancer Res. Vol.16, No.3, pp. 876-887 

Ram, M., Sherer, Y., & Shoenfeld, Y. (2006). Matrix metalloproteinase-9 and autoimmune 
diseases. J Clin Immunol. Vol.26, No.4,  pp. 299-307 

Redd, M.J., Cooper, L., Wood, W., Stramer, B., & Martin, P. (2004). Wound healing and 
inflammation: embryos reveal the way to perfect repair. Philos.Trans.R.Soc.Lond B 
Biol.Sci. Vol.359, No.1445, pp. 777-784 

Rezaie, A.R., Neuenschwander, P.F., Morrissey, J.H., & Esmon, C.T. (1993). Analysis of the 
functions of the first epidermal growth factor-like domain of factor X. J.Biol.Chem. 
Vol.268, No.11, pp. 8176-8180 

Riewald, M., Petrovan, R.J., Donner, A., Mueller, B.M., & Ruf, W. (2002). Activation of 
endothelial cell protease activated receptor 1 by the protein C pathway. Science. 
Vol.296, No.5574, pp. 1880-1882 

Rogers, J.S., Murgo, A.J., Fontana, J.A., & Raich, P.C. (1988). Chemotherapy for breast cancer 
decreases plasma protein C and protein S. J Clin Oncol. Vol.6, No.2, pp. 276-281 

Sadaka, F., O'Brien, J., Migneron, M., Stortz, J., Vanston, A., & Taylor, R.W. (2011). Activated 
protein C in septic shock: a propensity-matched analysis. Crit Care. Vol.15, No.2, 
pp. R89- 

Sakar, A., Vatansever, S., Sepit, L., Ozbilgin, K., & Yorgancioglu, A. (2007). Effect of 
recombinant human activated protein C on apoptosis-related proteins. Eur.J 
Histochem. Vol.51, No.2, pp. 103-109 

Schmidt-Supprian, M., Murphy, C., While, B., Lawler, M., Kapurniotu, A., Voelter, W., 
Smith, O., & Bernhagen, J. (2000). Activated protein C inhibits tumor necrosis factor 
and macrophage migration inhibitory factor production in monocytes. Eur Cytokine 
Netw. Vol.11, No.3, pp. 407-413 

Schouten, M., de Boer, J.D., van der Sluijs, K.F., Roelofs, J.J., van, '., V, Levi, M., Esmon, C.T., 
& van Der, P.T. (2011). Impact of Endogenous Protein C on Pulmonary Coagulation 
and Injury During Lethal H1N1 Influenza in Mice. Am J Respir.Cell Mol Biol. Vol.44, 
No.3, pp. 377-383 

Seol, J.W., Lee, Y.J., Jackson, C.J., Sambrook, P.N., & Park, S.Y. (2011). Activated protein C 
inhibits bisphosphonate-induced endothelial cell death via the endothelial protein 
C receptor and nuclear factor-kappaB pathways. Int J Mol Med. Vol.27, No.6, pp. 
835-840 

www.intechopen.com



 
Inflammatory Diseases – A Modern Perspective 70

Shibata, M., Kumar, S.R., Amar, A., Fernandez, J.A., Hofman, F., Griffin, J.H., & Zlokovic, 
B.V. (2001). Anti-inflammatory, antithrombotic, and neuroprotective effects of 
activated protein C in a murine model of focal ischemic stroke. Circulation. Vol.103, 
No.13, pp. 1799-1805 

Short, M.A., Schlichting, D., & Qualy, R.L. (2006). From bench to bedside: a review of the 
clinical trial development plan of drotrecogin alfa (activated). Curr.Med.Res.Opin. 
Vol.22, No.12, pp. 2525-2540 

Srinivas, R., Agarwal, R., & Gupta, D. (2007). Severe sepsis due to severe falciparum malaria 
and leptospirosis co-infection treated with activated protein C. Malar.J. Vol.6, No.6, 
pp.42 

Stenflo, J. (1976). A new vitamin K-dependent protein. Purification from bovine plasma and 
preliminary characterization. J.Biol.Chem. Vol.251, No.2, pp. 355-363 

Stephenson, D.A., Toltl, L.J., Beaudin, S., & Liaw, P.C. (2006). Modulation of monocyte 
function by activated protein C, a natural anticoagulant. J.Immunol. Vol.177, No.4, 
pp. 2115-2122 

Szpaderska, A.M. & DiPietro, L.A. (2005). Inflammation in surgical wound healing: friend or 
foe? Surgery. Vol.137, No.5, pp. 571-573 

Szpaderska, A.M., Zuckerman, J.D., & DiPietro, L.A. (2003). Differential injury responses in 
oral mucosal and cutaneous wounds. J.Dent.Res. Vol.82, No.8, pp. 621-626 

Taoka, Y., Okajima, K., Uchiba, M., & Johno, M. (2000). Neuroprotection by recombinant 
thrombomodulin. Thromb Haemost. Vol.83, No.3, pp. 462-468 

Taoka, Y., Okajima, K., Uchiba, M., Murakami, K., Harada, N., Johno, M., & Naruo, M. 
(1998). Activated protein C reduces the severity of compression-induced spinal 
cord injury in rats by inhibiting activation of leukocytes. J Neurosci. Vol.18, No.4, 
pp. 1393-1398 

Taoka, Y., Okajima, K., Uchiba, M., Murakami, K., Kushimoto, S., Johno, M., Naruo, M., 
Okabe, H., & Takatsuki, K. (1997). Role of neutrophils in spinal cord injury in the 
rat. Neuroscience. Vol.79, No.4, pp. 1177-1182 

Thadhani, R., Pascual, M., & Bonventre, J.V. (1996). Acute renal failure. N.Engl.J.Med. 
Vol.334, No.22, pp. 1448-1460 

Toltl, L.J., Beaudin, S., & Liaw, P.C. (2008). Activated protein C up-regulates IL-10 and 
inhibits tissue factor in blood monocytes. J.Immunol. Vol.181, No.3, pp. 2165-2173 

Trent, J.T., Falabella, A., Eaglstein, W.H., & Kirsner, R.S. (2005). Venous ulcers: 
pathophysiology and treatment options. Ostomy.Wound Manage. Vol.51, No.5, pp. 
38-54 

Tsuneyoshi, N., Fukudome, K., Horiguchi, S., Ye, X., Matsuzaki, M., Toi, M., Suzuki, K., & 
Kimoto, M. (2001). Expression and anticoagulant function of the endothelial cell 
protein C receptor (EPCR) in cancer cell lines. Thromb Haemost. Vol.85, No.2, pp. 
356-361 

Uchiba, M., Okajima, K., Oike, Y., Ito, Y., Fukudome, K., Isobe, H., & Suda, T. (2004). 
Activated protein C induces endothelial cell proliferation by mitogen-activated 
protein kinase activation in vitro and angiogenesis in vivo. Circ Res. Vol.95, No.1, 
pp. 34-41 

Van Sluis, G.L., Bruggemann, L.W., Esmon, C.T., Kamphuisen, P.W., Richel, D.J., Buller, 
H.R., Van Noorden, C.J., & Spek, C.A. (2011). Endogenous activated protein C is 
essential for immune-mediated cancer cell elimination from the circulation. Cancer 
Lett. Vol.306, No.1, pp. 106-110 

www.intechopen.com



 
Anti-Inflammatory Actions of the Anticoagulant, Activated Protein C 71 

Van Sluis, G.L., Buller, H.R., & Spek, C.A. (2010). The role of activated protein C in cancer 
progression. Thromb Res. Vol.125 Suppl 2, No.S138-S142 

Villares, G.J., Zigler, M., Dobroff, A.S., Wang, H., Song, R., Melnikova, V.O., Huang, L., 
Braeuer, R.R., & Bar-Eli, M. (2011). Protease activated receptor-1 inhibits the 
Maspin tumor-suppressor gene to determine the melanoma metastatic phenotype. 
Proc Natl Acad Sci U.S.A. Vol.108, No.2, pp. 626-631 

Vukovich, T.C. & Schernthaner, G. (1986). Decreased protein C levels in patients with 
insulin-dependent type I diabetes mellitus. Diabetes. Vol.35, No.5, pp. 617-619 

Walker, C.T., Marky, A.H., Petraglia, A.L., Ali, T., Chow, N., & Zlokovic, B.V. (2010). 
Activated protein C analog with reduced anticoagulant activity improves 
functional recovery and reduces bleeding risk following controlled cortical impact. 
Brain Res. Vol.1347, No.125-131 

Wang, Y., Thiyagarajan, M., Chow, N., Singh, I., Guo, H., Davis, T.P., & Zlokovic, B.V. 
(2009). Differential neuroprotection and risk for bleeding from activated protein C 
with varying degrees of anticoagulant activity. Stroke. Vol.40, No.5, pp. 1864-1869 

White, B., Schmidt, M., Murphy, C., Livingstone, W., O'Toole, D., Lawler, M., O'Neill, L., 
Kelleher, D., Schwarz, H.P., & Smith, O.P. (2000). Activated protein C inhibits 
lipopolysaccharide-induced nuclear translocation of nuclear factor kappaB (NF-
kappaB) and tumour necrosis factor alpha (TNF-alpha) production in the THP-1 
monocytic cell line. Br.J.Haematol. Vol.110, No.1, pp. 130-134 

Whitmont, K., Reid, I., Tritton, S., March, L., Xue, M., Lee, M., Fulcher, G., Sambrook, P., 
Slobedman, E., Cooper, A., & Jackson, C. (2008). Treatment of chronic leg ulcers 
with topical activated protein C. Arch.Dermatol. Vol.144, No.11, pp. 1479-1483 

Woodley-Cook, J., Shin, L.Y., Swystun, L., Caruso, S., Beaudin, S., & Liaw, P.C. (2006). 
Effects of the chemotherapeutic agent doxorubicin on the protein C anticoagulant 
pathway. Mol Cancer Ther. Vol.5, No.12, pp. 3303-3311 

Wu, J., Zhou, Z., Ye, S., Dai, H., Ma, L., Xu, X., & Li, X. (2000). [Detection of soluble 
endothelial protein C receptor (sEPCR) in patients with CHD, DM and SLE]. 
Zhonghua Xue.Ye.Xue.Za Zhi. Vol.21, No.9, pp. 472-474 

Xu, J., Ji, Y., Zhang, X., Drake, M., & Esmon, C.T. (2009). Endogenous activated protein C 
signaling is critical to protection of mice from lipopolysaccaride-induced septic 
shock. J Thromb Haemost. Vol.7, No.5, pp. 851-856 

Xu, J., Zhang, X., Pelayo, R., Monestier, M., Ammollo, C.T., Semeraro, F., Taylor, F.B., 
Esmon, N.L., Lupu, F., & Esmon, C.T. (2009). Extracellular histones are major 
mediators of death in sepsis. Nat Med. Vol.15, No.11, pp. 1318-1321 

Xue, M., Campbell, D., Sambrook, P.N., Fukudome, K., & Jackson, C.J. (2005). Endothelial 
protein C receptor and protease-activated receptor-1 mediate induction of a 
wound-healing phenotype in human keratinocytes by activated protein C. J. Invest. 
Dermatol. Vol.125, No.6, pp. 1279-1285 

Xue, M., Chow, S.O., Dervish, S., Chan, Y.K., Julovi, S.M., & Jackson, C.J. (2011). Activated 
protein C enhances human keratinocyte barrier integrity via sequential activation 
of epidermal growth factor receptor and Tie2. J. Biol. Chem. Vol.286, No.8, pp. 6742-
6750 

Xue, M., March, L., Sambrook, P.N., Fukudome, F., & Jackson, C.J. (2007). Endothelial 
protein C receptor is over-expressed in rheumatoid arthritic (RA) synovium and 
mediates the anti-inflammatory effects of activated protein C in RA monocytes. 
Ann.Rheum.Dis. Vol.66, No.12, pp.1574-1580 

www.intechopen.com



 
Inflammatory Diseases – A Modern Perspective 72

Xue, M., March, L., Sambrook, P.N., & Jackson, C.J. (2007). Differential regulation of matrix 
metalloproteinase 2 and matrix metalloproteinase 9 by activated protein C: 
relevance to inflammation in rheumatoid arthritis. Arthritis Rheum. Vol.56, No.9, 
pp. 2864-2874 

Xue, M., Minhas, N., Chow, S.O., Dervish, S., Sambrook, P.N., March, L., & Jackson, C.J. 
(2010). Endogenous protein C is essential for the functional integrity of human 
endothelial cells. Cell Mol Life Sci. Vol.67, No.9, pp.1537-1546 

Xue, M., Thompson, P., Kelso, I., & Jackson, C. (2004). Activated protein C stimulates 
proliferation, migration and wound closure, inhibits apoptosis and upregulates 
MMP-2 activity in cultured human keratinocytes. Exp Cell Res. Vol.299, No.1, pp. 
119-127 

Xue, M., Campbell, D., & Jackson, C.J. (2007). Protein C is an autocrine growth factor for 
human skin keratinocytes. J. Biol. Chem. Vol.282, No.18, pp. 13610-13616 

Yamauchi, T., Sakurai, M., Abe, K., Takano, H., & Sawa, Y. (2006). Neuroprotective effects of 
activated protein C through induction of insulin-like growth factor-1 (IGF-1), IGF-1 
receptor, and its downstream signal phosphorylated serine-threonine kinase after 
spinal cord ischemia in rabbits. Stroke. Vol.37, No.4, pp. 1081-1086 

Yang, X.V., Banerjee, Y., Fernandez, J.A., Deguchi, H., Xu, X., Mosnier, L.O., Urbanus, R.T., 
de Groot, P.G., White-Adams, T.C., McCarty, O.J., & Griffin, J.H. (2009). Activated 
protein C ligation of ApoER2 (LRP8) causes Dab1-dependent signaling in U937 
cells. Proc. Nat. Acad. Sci. U.S.A. Vol.106, No.1, pp. 274-279 

Yuda, H., Adachi, Y., Taguchi, O., Gabazza, E.C., Hataji, O., Fujimoto, H., Tamaki, S., 
Nishikubo, K., Fukudome, K., D'Alessandro-Gabazza, C.N., Maruyama, J., 
Izumizaki, M., Iwase, M., Homma, I., Inoue, R., Kamada, H., Hayashi, T., Kasper, 
M., Lambrecht, B.N., Barnes, P.J., & Suzuki, K. (2004). Activated protein C inhibits 
bronchial hyperresponsiveness and Th2 cytokine expression in mice. Blood. 
Vol.103, No.6, pp. 2196-2204 

Yuksel, M., Okajima, K., Uchiba, M., Horiuchi, S., & Okabe, H. (2002). Activated protein C 
inhibits lipopolysaccharide-induced tumor necrosis factor-alpha production by 
inhibiting activation of both nuclear factor-kappa B and activator protein-1 in 
human monocytes. Thromb.Haemost. Vol.88, No.2, pp. 267-273 

Zhong, Z., Ilieva, H., Hallagan, L., Bell, R., Singh, I., Paquette, N., Thiyagarajan, M., Deane, 
R., Fernandez, J.A., Lane, S., Zlokovic, A.B., Liu, T., Griffin, J.H., Chow, N., 
Castellino, F.J., Stojanovic, K., Cleveland, D.W., & Zlokovic, B.V. (2009). Activated 
protein C therapy slows ALS-like disease in mice by transcriptionally inhibiting 
SOD1 in motor neurons and microglia cells. J. Clin. Invest. Vol.119, No.11, pp. 3437-
3449 

Zlokovic, B.V. (2005). Neurovascular mechanisms of Alzheimer's neurodegeneration. Trends 
Neurosci. Vol.28, No.4, pp. 202-208 

Zlokovic, B.V. & Griffin, J.H. (2011). Cytoprotective protein C pathways and implications for 
stroke and neurological disorders. Trends Neurosci. Vol.34, No.4, pp. 198-209 

www.intechopen.com



Inflammatory Diseases - A Modern Perspective

Edited by Dr. Amit Nagal

ISBN 978-953-307-444-3

Hard cover, 240 pages

Publisher InTech

Published online 16, December, 2011

Published in print edition December, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

"Inflammatory Diseases - A Modern Perspective" represents an extended and thoroughly revised collection of

papers on inflammation. This book explores a wide range of topics relevant to inflammation and inflammatory

diseases while its main objective is to help in understanding the molecular mechanism and a concrete review

of inflammation. One of the interesting things about this book is its diversity in topics which include

pharmacology, medicine, rational drug design, microbiology and biochemistry. Each topic focuses on

inflammation and its related disease thus giving a unique platform which integrates all the useful information

regarding inflammation.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Christopher John Jackson and Meilang Xue (2011). Anti-Inflammatory Actions of the Anticoagulant, Activated

Protein C, Inflammatory Diseases - A Modern Perspective, Dr. Amit Nagal (Ed.), ISBN: 978-953-307-444-3,

InTech, Available from: http://www.intechopen.com/books/inflammatory-diseases-a-modern-perspective/anti-

inflammatory-actions-of-the-anticoagulant-activated-protein-c



© 2011 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


