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1. Introduction 

Chromatin is a highly ordered structure consisting of repeats of nucleosomes connected by 
linker DNA. It consists of DNA, histone, and nonhistone proteins condensed into 
nucleoprotein complexes and it functions as the physiological template of all eukaryotic 
genetic information. Histones are small basic proteins containing a globular domain and a 
flexible charged NH2 terminus known as the histone tail, which protrudes from the 
nucleosome. Epigenetic codes are set up by modifications on the DNA (methylation) or on the 
histones (acetylation, methylation, phosphorylation, ubiquitination, and ADP ribosylation, 
etc.), by different classes of enzymes in a precise and targeted manner. Posttranslational 
modification to histones affects chromatin structure and function resulting in altered gene 
expression and changes in cell behavior. These modifications do not alter the primary 
sequence of DNA but have an impact on gene expression regulation, most frequently gene 
suppression. They lead to pathological states in hematopoietic system resulting in acute 
leukemia.  
DNA methylation is catalyzed by DNA methyltransferases (DNMTs), of which three active 

enzymes have been identified in mammals, namely DNMT1, DNMT3A and DNMT3B. 

DNMT1 is responsible for maintaining pre-existing methylation patterns during DNA 

replication, while DNMT3A and DNMT3B are required for initiation of de novo methylation. 

Acetylation is a reversible process. The balance between acetylation (transcriptional activation) 

and deacetylation (transcriptional repression) is regulated by histone acetyltransferase (HATs) 

and histone deacetylases (HDACs) in specific lysine residues in the N-termini of histone tails 

and/or in transcription factors (eg, p53, E2F1, GATA1, RelA, YY1, and Mad/Max) without 

directly binding to the DNA (Minucci et al., 2006, Gallinare et al., 2007), and is critical in 

regulating gene expression. Mammalian HDACs are classified into three classes based on their 

homology to yeast HDACs. Class I HDACs (HDAC1, 2, 3, 8, and 11) are homologues of 

Sacharomyces cerevisiae histone deacetylase Rpd 3 (reduced potassium dependency 3) and those 

with greater similarity to yeast Hda1, are class II HDACs (Gray & Ekstrom, 2001; Gao et al., 

2002; Kao et al., 2002). Class III HDACs are called Sirtuins, which are homologoues of yeast 

sir2 (silence information regulator). Histones can be mono-, di-, or tri-methylated at lysine and 

arginine residues by HMTs, and the recent identification of histone lysine demethylases such 

as KDM1/LSD1 and the Jumonji-domain (JMJD)-containing protein family shows that histone 
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methylation is an enzymatically dynamic process (Lan et al., 2008). In general, methylation 

at H3K4, H3K36, and H3K79 is associated with transcriptional activation, whereas H3K9, 

H3K27, and H3K20 methylation is associated with transcriptional repression (Kouzarides et 

al., 2007). The involvement of HMTases, more so of DNMTs (DNA methyltransferase) is 

observed in cancer (Zhang et al., 2005). Several chromosomal translocations in acute 

myeloid leukemia (AML) that produce chimerical fusion oncoproteins have been shown to 

repress genes involved in cell-cycle growth inhibition, differentiation, and apoptosis (Bhalla 

et al., 2005; Hormaeche, 2007) . The reversal of aberrant epigenetic changes has therefore 

emerged as a potential strategy for the treatment of cancer. DNA methylation and histone 

deacetylation inhibitors and a number of compounds targeting enzymes that regulate DNA 

methylation, histone acetylation and histone methylation have been developed as epigenetic 

therapies, with some demonstrating efficacy in hematological malignancies and solid 

tumors. The aberrance of DNA methylation, histone acetylation and methylation has been 

found in acute leukemia. We found that PHI (Phenylhexyl isothiocyanate), synthetic 

phenylhexyl  isothiocyanates，could correct the aberrance ( Ma et al., 2006; Xiao et al., 2010 ; 

Jiang et al., 2010) . 

2. Epigenetic event in acute leukemia 

Epigenetic mechanisms controlling transcription of genes involved in cell differentiation, 

proliferation, and survival are often targets for deregulation in malignant development. 

Misregulation of epigenetic modification may be as significant as genetic mutation in 

driving cancer development and growth. There are some acute leukemias with cytogenetic 

translocations in WHO classification, which involved in epigenetic modification change. 

DNA methylation is established during early embryogenesis and continues through 

different generations of cell cycle and development. Abnormal patterns in DNA methylation 

are one of epigenetic deregulation to be characterized in human cancers, either as a result of 

DNMT over expression or aberrant recruitment. Acetylation and methylation are the two 

histone modification that has been clinically associated with pathological epigenetic 

disruption in cancer cells. Specific recurring chromosomal abnormalities are commonly 

associated with acute myeloid leukemia. These chromosomal anomalies influence the 

molecular and cellular phenotype of the leukemia blasts and may be responsible for their 

malignant potential (Caligiuri et al., 1997; Thandla et al., 1997). The aberrations often lead to 

the formation of one or more fusion genes resulting in the over expression or untimely 

expression of a normal gene, eg, the MYC/Ig gene enhancer fusion produced by the t (8;14) 

in Burkitt’s lymphoma (Crosce et al., 1986; Thandla et al., 1997) , or the creation of a new 

gene product by fusing genes as in the PML-RAR fusion produced by the t(15;17) 

characteristic of acute promyelocytic leukemia (Zelent et al., 2001). Some regions are 

common partners in fusion events, and 11q23 is involved in at least 40 different 

translocations in acute leukemia.  

2.1 DNA methylation and acute leukemia 

The maintenance of appropriate DNA methylation within CpG nucleotide islands plays a 
significant role in regulation of a wide variety of molecular processes including stability of 
chromosomal structure and control of gene expression (Das, 2004). DNA methylation can 
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also result in the recruitment of proteins that bind methylated CpG sequences (methyl-CpG-
binding domain [MBD] proteins) complexes with histone deacetylases (HDACs) and histone 
methyltransferase (HMTase) prompting coordinated epigenetic modifications of the 
surrounding chromatin (Esteller, 2005). Tumor cell-specific promoter hypermethylation in 
genes that play important roles in regulating cell cycle, apoptosis, DNA repair, 
differentiation, and cell adhesion is often a hallmark of disease ( Esteller, 2008). In addition, 
hypomethylation of repetitive sequences may result in chromosomal and genetic instability, 
leading to further oncogenic events.  Transcriptional silencing via DNA hypermethylation 
can often be associated with poor clinical outcome in several malignancies (Bhalla et al., 
2005; Das, 2004; Herranz, 2007). Abnormal gain in DNA methylation with aberrant silencing 
of transcription may occur at specific gene promoter regions and represents a mechanism 
for inactivation of tumor-suppressor genes. In a clinical experiment, the methylation profiles 
of 344 patients with acute myeloid leukemia (AML) were examined. A common aberrant 
DNA methylation signature consisting of 45 genes in most of them hypermethylated was 
identified, that was consistently detected in at least 10 of the 16 clusters’ methylation 
signatures and affecting at least 70% of the cases studied. Genes in this signature are likely 
to be part of a common epigenetic pathway involved in leukemic transformation of 
hematopoietic cells. They are the tumor suppressor PDZD2, transcriptional regulators 
(ZNF667, ZNF582, PIAS2, CDK8), nuclear import receptors (TNPO3, IPO8), and CSDA, a 
repressor of GM-CSF. They could predict the clinical outcome (Maria et al., 2010). Silencing 
of CDKN2A and CDKN1A has been associated with poor clinical outcome in acute 
leukemias (Herman, 2003; Bernstein et al., 2007). Aberrant p15CDKN2B has been widely 
reported in leukemias and other myeloid neoplasms (Cameron et al., 1999; Christiansen et 
al., 2003; Shimamoto et al., 2005; Toyota et al., 2001). Roman-Gomez et al. reported an 
incidence of p21CIP1 methylation of 41% in 124 patients with acute lymphocytic leukemia 
(ALL). Most importantly, they observed that p21CIP1 methylation was an independent 
predictor of poor prognosis both in adults and children with this disease (Roman-Gomez et 
al., 2002). Zheng et al. reported that there are 35.29%, 48.65% hypermethylation of the p15 

INK4，p16 INK4 gene exon 1 in acute leukemia respectively, 25%, 37.5% hypermethylation 

of the p15 INK4，p16 INK4 gene exon 1  in acute myeloid leukemia respectively, 60%, 

69.23% hypermethylation of the p15 INK4，p16 INK4 gene exon 1 in acute lymphoid 
leukemia respectively (Zheng et al., 2004a, 2004b).  

2.2 Histone acetylation and acute leukemia 

Histone acetylation is associated with transcriptionally active chromatin, which has been 

established over 40 years ago (Littau et al., 1964). The acetylation of the histone tails was 

surmised to result in a decreased affinity of the histone for the DNA, on account of the 

decreasing positive charge, establishing an ‘open’ chromatin state. The transcriptionally 

active state may be mediated via the transient formation of (H3-H4) 2 tetrameric particle that 

could adopt an open structure only when H3 and H4 tails are acetylated (Morales et al., 

2000). Mistargeting and mutations in HATs and HDACs are major factors leading to 

diseases and disorders. A classic example of one such disorder is the Rubinstein-Taybi 

syndrome (RSTS), which is a consequence of a single mutation in the gene encoding the 

HAT CREB binding protein (CBP) located on chromosome 16p13.3. In addition to 

functioning as a bridge between transcription factors and the basal transcription machinery, 

CBP has histone acetyltransferase activity (Bannister et al., 1996; Ogryzko et al., 1996). CBP 
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causes an acetylation of core histone proteins, such as H2A, H2B, H3 and H4, and interacts 

with histone acetyltransferases, such as PCAF (P300/CBP associated factor), SRC-1 (steroid 

receptor coactivator-1) and ACTR (coactivator for nuclear hormone receptors). It is generally 

accepted that CBP is involved in the remodeling of nucleosomes via these factors. Altered 

HAT (histone acetylase) activity has been reported in both hematological and solid cancers, 

by inactivation of HAT activity through gene mutation or through deregulation of HAT 

activity by viral oncoproteins. Chromosomal translocations involving HATs and their 

consequent fusion proteins have been implicated in the onset and progression of acute 

leukemia. Such translocations have been identified in acute myeloid leukemia (AML) and 

acute lymphoblastic leukemia (ALL) cases in which the translocation t (11;16) (q23;p13) 

results in a fusion protein (MLL-CBP) consisting of the CBP and the mixed lineage leukemia 

(MLL) protein. The underlying mechanisms of effects of this fusion protein in the formation 

of AML may involve deregulation of MLL target genes by CBP-mediated chromatin 

remodeling and increased chromatin accessibility (Ayton et al., 2001). The fusion protein has 

A/T hooks and cysteine-rich DNA recognition domain of MLL fused to intact CBP and fails 

to recruit SWI/SNF to its target as it lacks the SET domain, which is important for 

interacting with hSNF5 (Taki et al., 1997). MLL can also be aberrantly fused to p300 in AML 

via the t (11;22)(q23;p13) translocation (Ida et al., 1997). In addition to p300 and CBP fusion 

proteins involving the HATs, TIF2, MOZ (monocytic zinc finger protein) and MORF that 

arise as a result of chromosomal translocations have also been identified in hematological 

malignancies (Cairns, 2001; Cairns et al., 2001; Panagopoulos et al., 2001; Liang J et al., 1998). 

The MOZ-CBP fusion proteins is expressed due to a translocation t (8;16)(p11;p13), 

associated with a subtype of acute monocytic leukemia (AML M5). The resulting fusion 

protein has been recently shown to increase expression of genes regulated by NF-κB (Chan 

et al., 2007). MORF gene fusions are expressed in t (10;16) (q22;p13) in childhood AML and 

myelodysplastic syndrome, in which the MORF gene is fused with the CBP gene 

(Champagne et al., 1999). The MOZ-TIF2 fusion is one of a new family of chromosomal 

rearrangements that associate HAT activity, transcriptional coactivation, and acute leukemia 

(Jian et al., 1998). The CBP gene has been shown to fuse with MOZ in AML patients with t 

(8;16)(p11;p13) (Borrow et al., 1996; Giles et al., 1997), and in MLL patients with therapy-

related acute leukemia with t(11;16)(q23;p13) (Rowley et al., 1997; Satake et al., 1997; Sobulo 

et al., 1997; Taki et al., 1997).  

Deregulation of HDAC activity by chromosomal translocations has been strongly implicated 
in aberrant gene silencing and the promotion of tumorigenesis, especially in leukemia. A 
well-understood link between tumorigenesis and aberrant HDAC activity occurs in acute 
promyelocytic leukemia (APL). In APL, the chromosomal translocations t (15;17) and t 
(11;17) results in fusion proteins RARǂ-PML (promyelocytic leukemia protein) and RARǂ-
PLZF (promyelocytic zinc finger), respectively. These aberrant proteins retain the ability to 
bind RAREs and HDACs with high affinity and are no responsive to retinoids, resulting in 
the deregulated transcriptional silencing of RAR-targeted genes and prevention of cell 
differentiation  (Zelent et al., 2001). The retinoic acid receptor (RAR) is important for 
myeloid differentiation and acts as a transcriptional regulator by binding its 
heterodimerization partner RXR, which in turn bind to retinoic acid response elements 
(RAREs) within the promoters of target genes (Bolden et al., 2006). Both PML-RARalpha and 
PLZF-RARalpha fusion proteins recruit the nuclear co-repressor (N-CoR)-histone 
deacetylase complex through the RARalpha CoR box (Iris & Luciano, 2011). AML1-ETO is a 
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fusion protein that results from t (8;21) and CBFǃ-MYH11 caused by the chromatin 
inversion 16(p13;q22) in cases of AML. It is of translocations in leukemogenesis that is 
capable of altering protein acetylation. Fusion proteins from these translocations result in 
the recruitment of HDACs to target gene promoters and consequent gene silencing  (Wang 
et al., 2007; Bhalla et al., 2005). 
We have studied on the state of histone acetylation in acute leukemia. The levels of 

acetylated H3 and H4 were examined in patients with or without complete remission 

response. The deficient histone acetylation existed in all 15 cases of acute leukemias, 

including both myeloid and lymphoid lineages. The results showed that both levels of 

histone H3 and H4 acetylation in 15 AL patients were significantly lower, as compared with 

4 individuals without leukemia(H3 0.128±0.013 vs 0.386±0.104，H4 0.096± 0.008 vs 

0.341±0.096 respectively, both p<0.01)．This deficiency was revealed in all the acute 

leukemia cases investigated in all age groups from 2.5 to 69 years, including both myeloid 

and lymphoid lineages (Xiao et al., 2010). 

2.3 Histone methylation and acute leukemia 

Histone methylation is brought about by histone methyltransferases (HMTases), which 
catalyze the transfer of methyl group from the donor SAM (S-adenosyl methionine) 
predominantly to the lysine or arginine residues on the N-terminal histone tails. Based on 
the basis of amino acids that get modified, they are classified into the lysine 
methyltransferases (Martin & Zhang, 2005) and arginine methyltransferases (Bedford et al., 
2005). The residues can be mono-, di- or tri-methylated, which further increase the scope 
and range of methylation-mediated regulation. Arginine methyltransferase have an 
additional level of regulation in catalyzing the formation of asymmetricdimethylarginine 
(aDMA) or symmetricdimethylarginine (sDMA). HMTases are versatile enzymes with their 
modifications being involved in both activation and repression. The exact residue on the 
histone tails that gets modification determines transcriptional activation or repression. The 
lysineme methyltransferases are involved in transcriptional activation (methylation on 
H3K4, H3K36 and H3K79) as well as transcription repression (methylation of H3K9, H3K27 
and H4K20), while the arginine methyltransferases so far have been shown to be involved in 
transcriptional activation (Kourzarides et al., 2007). There are a form of chromosomal 
translocations involving HMTs (e.g., MLL1, NSD1, NSD3), gene over expression or 
amplification (e.g., EZH2, MLL2, NSD3, BMI1, GASC1), gene silencing (e.g., RIZ1), and gene 
deletion (e.g., MLL3). 
Chromosomal rearrangements, affecting chromosome 11q23 and involving the human MLL 

gene, is a histone methyltransferase. It recurrently associated with the disease phenotype of 

acute leukemias (Pui et al., 2002, 2003). There are a total of 87 different MLL rearrangements 

of which 51 TPGs are now characterized at the molecular level. The four most frequently 

found TPGs (AF4, AF9, ENL and AF10) encode nuclear proteins that are part of a protein 

network involved in histone H3K79 methylation (Meyer et al., 2006). Because H3K79 

methylation is important for transcriptional elongation (Krogan et al., 2003), global 

hypomethylation could also lead to a reduced expression of a great number of genes (Dik et 

al., 2005).  
The key transcriptional pathways that are subordinate to both wild-type and oncogenic 
MLL proteins include Hox genes, which are master regulators of cell fate, proliferation, and 
morphogenesis (Owens & Hawley, 2002). Hematopoietic cells transformed by MLL 
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oncoproteins consistently hyperexpress several Hoxa cluster genes, some of which have 
been shown to be direct targets of MLL and key contributors to the pathologic features of 
MLL associated leukemia (Ayton & Cleary, 2003; Kumar et al., 2004; Wang et al., 2005). This 
subtype of acute leukemia has a particularly aggressive with a very dismal prognosis. Thus, 
an interesting scenario about the contribution of CALM-AF10 in leukemogenesis can be 
envisioned whereby the CALM-AF10 fusion, in addition to up-regulating specific oncogenes 
(eg, HOXA5 genes) via local hypermethylation, might promote leukemogenesis by 
interfering with multiple cellular pathways through global hypomethylation of H3K79. 
Lin et al. suggested that the increased chromosomal instability associated with H3K79 

hypomethylation caused by the CALM-AF10 fusion might accelerate the acquisition of 

additional genetic abnormalities required for leukemogenesis. AF10 fusion proteins seem to 

use at least 2 mechanisms that promote leukemogenesis: (1) deregulation of target genes 

resulting from local epigenetic changes, and (2) increasing genomic instability due to global 

epigenetic changes (Lin et al., 2009). 

ALL-1 is a member of the human trithorax/Polycomb gene family and is also involved in 

acute leukemia. ALL-1 is associated in a stable complex with at least 27 proteins (Tatsuya et 

al., 2002), most ALL-1-associated proteins can be classified into well-known complexes 

involved in transcription. The ALL-1 protein was found to be posttranslationally processed 

into two polypeptides, p300 and p180. The two ALL-1 polypeptides are present within a 

single supercomplex, which is physical association between segments spanning residues 

1979–2130 and 3613–3876. p180 contains the SET domain which methylates H3-K4, as well 

as a domain (TAD) with transcriptional activation capacity. p300 comprises the HAT hooks 

which bind DNA, a bromodomain which binds acetylated lysines within histone H4 

(Dhalluin et al., 1999; Jacobson et al., 2000), the PHD zinc fingers domain, and a region with 

homology to DNA methyltransferase. The cleavage might enable the formation of a spatial 

configuration accommodating the many interactions of ALL-1 with proteins and DNA. 

ALL-1-associated leukemias show some unusual and intriguing features (DiMartino et al., 

1999). A study showed 16/22 (68%) infant’s acute leukemia with ALL-1 gene 

rearrangements. It demonstrated that ALL-1, a highly intricate chromatin modifier, in acute 

leukemia is abnormal in its function (Cimino et al., 1997). 

The t (8;21) is found in 10–15% of myeloid  leukemia and gives rise to a fusion protein that 

contains the N-terminal portion of RUNX1 fused to nearly all of myeloid translocation gene 

on chromosome 8 (MTG8, also known as eight-twenty-one (ETO)) (Miyoshi et al., 1991, 

1993; Erickson et al., 1994). The fusion protein appears to function as a transcriptional 

repressor of RUNX1-regulated genes (Peterson et al., 2004). The t (12;21) is found in up to 

25% of pediatric B-cell acute leukemia and creates a chimerical gene encoding the TEL–

RUNX1 fusion protein (Golub et al., 1995; Nucifora et al., 1995). RUNX1 function is also 

impaired by the inv (16), which fuses the RUNX1 associating factor, core binding factor b 

(CBFb or polyoma enhancer binding protein 2 betas) to the smooth muscle myosin heavy-

chain gene MYH11, in approximately 8% of acute myeloid leukemia (Liu et al., 1993). Two 

SUV39H1 contact points within repression domain 2 of RUNX1, with one of these RUNX1 

domains also contacting HDAC1 and HDAC3, begins to provide a mechanistic basis for 

gene silencing mediated by RUNX1. Both Runt and RUNX1 are required for gene silencing 

during development and a central domain of RUNX1, termed repression domain 2 (RD2). 

RD2 contacts SUV39H1, a histone methyltransferase, via two motifs and that endogenous 

SUV39H1 associates with a Runx1-regulated repression element in murine erythroleukemia 
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cells. In addition, one of these SUV39H1-binding motifs is also sufficient forbidding to 

histone deacetylases 1 and 3, and both of these domains are required for full RUNX1-

mediated transcriptional repression. The association between RUNX1, histone deacetylases 

and SUV39H1 provides a molecular mechanism for repressor (E et al., 2006). 

The state of histone methylation in acute leukemia has been studied. Aberrant histone 

methylations showed downregulation of H3K4 methylation and upregulation of H3K9 

methylation in all acute leukemia. The methylation status of histone H3 at lysines 4 and 9 of 

mononuclear cells from 19 patients with acute leukemia, aged from 6 to 78, including AML 

and ALL and that from 9 individuals without leukemia were compared. The results showed 

that the level of H3K4 methylation was significantly lower in 19 AL patients than that in non 

leukemia (0.220±0.096 vs 0.447±0.186, P<0．01), while the level of H3K9 methylation was 

significantly higher (0.409 4±0.106 vs  0.168±0.015，P<0.01). These results clearly 

demonstrated that the patients with acute leukemias are hypomethylated at H3K4, and 

hypermethylated at H3K9. (Ma et al., 2010).  

3. Epigenetic therapy in acute leukemia 

The cause of most epigenetic diseases can be traced to the enzymes that establish them. A 

great deal of research has gone into the discovery of the modulators of these enzymes, 

which not only leads to a better understanding of the mechanism, but also to therapeutic 

possibilities. Fusion protein, such as MLL-MOZ, PML-RARA results mutations in HATs, 

HDACs and HMTas, and misregulating gene expression. Inactivation of tumor suppressor 

genes is central to the development of cancer. Silencing of these genes occurs by epigenetic 

means and inhibition of these factors lead to reversal of tumor suppressor gene silencing 

and inhibition of tumorigenesis (Gibbons et al., 2005). 

Chemical compound acting on epigenetic control of gene expression mainly fall into two 

broad categories: inhibitors of DNA methyltransferases and inhibitors of histone deacetylase 

(HDACi). Recently, compounds regulating histone methylations have been studied. These 

drugs have been used in phase I and II trials in patients with hematological and solid tumor. 

Some of them have been approved by FDA (U.S. Food and Drug Administration) to treat 

hematological disorders and solid tumor.  

Pharmacologic inhibition of DNA methylation causes the trapping of DNMTs and their 

targeted degradation results in re-expression of genes that have been aberrantly silenced by 

hypermethylation, concomitant with inhibition of clonal expansion and tumor cell growth, 

induction of cell differentiation, and cancer cell death (Issa, 2007). A number of DNA 

methylation inhibitors are currently under investigation, including the pyrimidine 

nucleoside analogs Decitabine (Dacogen, SuperGen, Inc., Dublin, CA) and Azacitidine 

(Vidaza, Celgene, Summit, NJ), and the nonucleoside inhibitor Hydralazine. Azacitidine and 

Decitabine are both approved by FDA for the treatment of a number of myelodysplastic 

syndrome subtypes, including refractory anemia and chronic myelogenous leukemia (CML) 

(Gal-Yam et al., 2008; Issa. 2007; Wong et al., 2007).  

Most current DNA-demethylating agents block the action of DNA methyltransferases 

(DNMTs), whose expression levels are usually moderately elevated in human tumors. The 

genetic inactivation of two DNMTs, DNMT1 and DNMT3B, induces demethylation of all 

known hypermethylated tumor-suppressor genes and remarkably slow growth. DNMTs 

have two binding sites: one for the cytosine residue and another for S-adenosyl- methionine. 
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It is expected that chemicals tightly binding any of these pockets will reduce the methylation 

rate because of competitive inhibition. The cytidine and 2-deoxycytidine analogs are the 

most extensively studied members of this class. The first analog tested to determine whether 

it was an inhibitor of DNA methylation was 5-azacytidine (5-aza-CR), which was first 

synthesized almost 50 years ago. 5-azacytidine could incorporate into DNA forming 

covalent adducts with cellular DNMT1, thereby depleting cells from enzyme activity and 

causing demethylation of genomic DNA as a secondary consequence. Schneider-Stock 

reported that 5-aza-CR caused a marked down-regulation of DNMT1 and DNMT3A mRNA 

levels, in contrast to a null effect on DNMT3B (Schneider-Stock, et al., 2005). In various in 

vitro experiments, 5-aza-CR treatment leads to re-expression of former silenced genes. The 

resulting DNA hypomethylation has been linked to the induction of cellular differentiation 

and altered expression of genes involved in tumor suppression. It was demonstrated to have 

a wide range of anti-metabolic activities when tested against cultured cancer cells and to be 

an effective chemotherapeutic agent for acute myelogenous leukemia. Their clinical efficacy 

in hematological malignancies has been demonstrated in vitro and in a series of phase I and 

II trials. Azacitidine was first approved by FDA in 2004 for the treatment of myelodyspalstic 

syndrome (MDS). The phase II trials recorded complete remission (CR), partial remission 

(PR) and hematological improvement (HI) rates of 15%, 2% and 27%, and of 17%, 0% and 

23% in the CALGB 8421 and CALGB 8921, respectively. A subsequent phase III randomized 

trial in 191 MDS patients reported an overall response rate of 60% on the Azacitidine arm 

(CR, 7%) compared with 5% of patients receiving supportive care (Silverman et al., 1993). A 

recent re-analysis of three CALGB trials by applying WHO classification and International 

Working Group (IWG) responds criteria confirmed those response figures, with 90% of 

patients achieving a response by six cycles; however, whereas quality of life significantly 

ameliorated, there was no improvement in overall survival in the whole patient population 

or in the separate classes of risk (Silverman et al,. 2006). Because of 5-azacytidine's general 

toxicity, other nucleoside analogs were favored as therapeutics. There is now a revived 

interest in the use of Decitabine (5-aza-2 -deoxycytidine) as a therapeutic agent for cancers in 

which epigenetic silencing of critical regulatory genes has occurred (Christman, 2006).  
Decitabine was approved by FDA in 2006 for the treatment of MDS. It is an analog of 
deoxycytidine that incorporates into DNA and forms irreversible covalent bonding with 
DNA-methyltransferases (Mtase) at cytosine sites targeted for methylation. That leads to 
DNA synthesis stalling and eventual degradation of DNA-Mtase. Resumption of DNA 
replication in the absence of Mtase results in gene hypomethylation and reactivation of gene 
expression, as has been demonstrated for multiple epigenetically inactivated loci (Karpf et 
al., 2002; Li et al., 1999; Toyota et al., 2002). At high doses, treated cells die via apoptosis 
triggered by the DNA adducts and DNA synthesis arrest. By contrast, at low doses, cells 
survive but change their gene expression profile to favor differentiation, reduced 
proliferation, and/or increased apoptosis. Thus, Decitabine has potentially dual effects on 
treated cells. Clinical development of Decitabine was initiated more than 2 decades ago, 
with classical phase I studies that defined 1500 to 2250 mg/m2 per course as the maximum 
tolerated dose (MTD), and demonstrated a short half-life for the drug ( Santini et al., 2001). 

In a multicenter, phase II study,  patients older than 60 years who had AML (i.e., ＞20% 
bone marrow blasts) and no prior therapy for AML were treated with Decitabine 20 mg/m2 
intravenously for 5 consecutive days of a 4-week cycle. Response was assessed by weekly 
CBC and bone marrow biopsy after cycle 2nd and after each subsequent cycle. Patients 
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continued to receive Decitabine until disease progression or an unacceptable adverse event 
occurred. Fifty-five patients (mean age, 74 years) were enrolled and were treated with a 
median of three cycles (range, 1 to 25 cycles) of Decitabine. The expert-reviewed overall 
response rate was 25% (complete response rate, 24%). The response rate was consistent 
across subgroups, including in patients with poor-risk cytogenetics and in those with a 
history of myelodysplastic syndrome. The overall median survival was 7.7 months, and the 
30-day mortality rate was 7%. The most common toxicities were myelosuppression, febrile 
neutropenia, and fatigue (Amanda et al., 2010). Decitabine has been used also in Imatinib-
resistant CML (Issa, et al., 2005) or in combination with Imatinib in patients with accelerated 
or leukaemic-phase CML (Oki et al., 2007).  
Several classes of HDACIs have been identified, including: (a) short-chain fatty acids  (e.g., 
butyrates); (b) organic hydroxamic acids (e.g., TSA and hybrid polar compounds [HPCs]); 
(c) cyclic tetrapeptides containing a 2-amino-8-oxo 9,10-epoxy-decanoyl (AOE) moiety (e.g., 
trapoxin); and (d) cyclic peptides not containing the AOE moiety (e.g., FR901228, apicidin). 
HDAC inhibitors (HDACIs) also impact epigenetic expression. They display ability to affect 
several cellular processes which are dysregulated in neoplastic cells. One of the mechanism 
is that HDACIs could upregulate acetylation of histones, activate tumor suppressor genes 
and repress oncogenes. They are potent inducers of differentiation with arrest of  cells in the 
G1 but sometimes also in the G2 phase. They activate transcription of the cyclin-dependent 
kinase (CDK) inhibitor WAF1 which are responsible for cell cycle arrest and subsequent cell 
differentiation (Rocchi et al., 2005). Another mechanism is that they can induce apoptosis in 
vitro and in vivo by activating both the death-receptor and intrinsic apoptotic pathway 
(Nebbioso et al., 2005; Peart et al., 2005) and increase p53 acetylation diminishes Mdm2-
mediated ubiquitination and the subsequent proteasome-facilitated degradation (Luo et al., 
2000). In addition, HDAC inhibitors might lead to activation of the host immune response 
and inhibition of tumor angiogenesis by multifactorial processes.  
Drugs belonging to several classes of HDACIs are in clinical trials. TSA is a fermentation 
product of Streptomycin with anti-fungal properties and was found to be a reversible 
inhibitor of HDACs in vitro, as well as in vivo. It is a highly potent HDAC inhibitor. Because 
of its known pharmacology, it has come to be a “reference” substance in research aimed at 
changing the acetylation-deacetylation state of proteins for clinical as well as research 
applications. Januchowski R et al. found that TSA down-regulate DNMT1 mRNA and 
protein expression in Jurkat T leukemia cells clone E6-1. They also observed that TSA 
decreased DNMT1 mRNA stability and reduced this transcript half-life from approximately 
7 to 2 h. The finding suggests that TSA not only alters histone acetylation, but also may 
affect DNA methylation (Januchowski et al, 2007). 
Vorinostat, suberoylanilide hydroxamic acid (SAHA), is an inhibitor of class I and II HDAC 
enzymes, promoting cell-cycle arrest and apoptosis of cancer cells (Marks et al., 2007). 
Relevant target genes have been characterized through gene expression analysis (Peart et al., 
2005). SAHA has been shown to have clinical activity in a transgenic animal model of 
therapy resistant acute promyelocytic leukemia, restoring sensitivity to retinoic acid, and to 
induce differentiation of human breast cancer cells (He et al., 2001). It has been approved by 
FDA for the treatment of CTCL in 2006. In phase I clinical trials, it was demonstrated that 
the maximum tolerated dose was 400 mg qd and 200 mg bid for continuous daily dosing 
and 300 mg bid for 3 consecutive days per week dosing. Histones isolated from peripheral-
blood mononuclear cells showed consistent accumulation of acetylated histones post-
therapy, and enzyme-linked immunosorbent assay demonstrated a trend towards a dose-
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dependent accumulation of acetylated histones from 200 to 600 mg of oral SAHA. There was 
one complete response, three partial responses, two unconfirmed partial responses, and 22 
(30%) patients remained on study for 4 to 37+ months (William et al., 2005). Phase I studies 
with vorinostat (SAHA) have also resulted in complete and partial responses (CRs and PRs, 
respectively) in both refractory solid and hematological malignancies. The major adverse 
events (AEs) observed with vorinostat differ by route of administration, i.v. or oral, possibly 
due to differences in pharmacokinetics. Oral vorinostat produced fatigue, diarrhea, anorexia 
and dehydration as major AEs, whereas i.v. vorinostat produced myelosuppression and 
thrombocytopenia as major AEs (O’Connor et al., 2006). In another phase I/II study, 
vorinostat was used to treat 41 patients with leukaemia or MDS who were relapsed or 
refractory to previous therapy or who were not candidate to chemotherapy. Hematological 
improvement was observed in 17% of cases including two complete responses in AML. 
Evidence of histone H3 acetylation was found in peripheral blood and bone marrow cells, 
and down-regulation of proliferation-associated genes was associated with hematological 
improvement (Garcia-Manero et al., 2008).  
Phenylbutyrate is a fatty acid with HDACi activity that has been studied extensively in 

patients with solid tumors, leukemia, and myelodysplastic syndromes (MDS). Depsipetide 

(FK-228) is a cyclic tetrapeptide with potent HDACi activity especially of Class I HDACs. 

Depsipeptide also has been studied in several clinical trials.  

Valproic Acid is a short chain fatty acid that is clinically used as an anticonvulsant. It has 

excellent bioavailability and can be given orally. Its elimination half-life is 6–17 hours. And 

overall, it has a good toxicity profile (Garcia-Manero G &Issa, 2005). Clinical activity has 

been demonstrated in studies in MDS patients who received VPA orally on a continuous 

schedule to maintain a serum concentration of 50–100 mg/ml. The first pilot study reported 

a 44% overall response rate in MDS with a median response duration of 4 months 

(Kuendgen et al., 2004). In a follow-up study on 122 patients with MSD and AML, an overall 

response rate of 20% was reported, including one CR. A higher percentage of response was 

observed in low-risk MDS, according to morphological subtype (Kuendgen et al., 2007). 

VPA has been used in combination with all-trans retinoic acid in patients with acute 

leukaemia, eventually in association with cytotoxic therapy, without appreciable or with 

only minor improvements (Raffoux et al.,2005; Pilatrino et al., 2005; Bug et al., 2005).  

The field of HMTase is relatively unexplored with just a few examples of which majority are 

substrate analogues. The only specific inhibitor is Chaetocin, a SU(VAR)3–9 inhibitor 

(Greiner et al., 2005) and the documented analogue inhibitors are AMI-1, analogue inhibitor 

of PRMT (Cheng et al., 2004). Chaetocin killed human tumor cell lines and primary 

myeloma cells in vitro whereas normal human B cells were insensitive to the compound 

(Isham et al., 2007). We have designed siRNA segments targeting JARID1B and SU (VAR) 3–

9 gene and transfected them into tumor cells. The result showed that JARID1B siRNA 

upregulated histone methylated H3K4 remarkbly and histone acetylation of H3 slightly. SU 

(VAR) 3–9 siRNA downregulated H3K9, upregulated histone acetyaltion H3. JARID1B and 

SU (VAR) 3–9 siRNA upregulated P27 and suppressed the proliferation in tumor cells. The 

expression of BCL-2, procaspase-9, procaspase-3, and C-myc decreased and cells apoptosis 

induced. (Cai, et al., unpublished; Ma et al., unpublished).  

Sinefungin is another analogue inhibitor of Arginine methyltransferase (Amur et al., 1986). 

Since the role of HMTases in cancer manifestations is well established, these inhibitors will 

be of great use for cancer treatment. The small molecule inhibitor BIX-01294 inhibited 
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methylation at H3K9 at several G9a-targeting genes. 3-Deazaneplanocin (DZNep) is a 

compound capable of depleting levels of the polycomb-recessive complex 2 (PRC2) 

components EZH2, SUZ12, and EED. Treatment of tumor cell lines with DZNep inhibited 

methylation at H3K27 but not H3K9 reactivated a series of genes that are transcriptionally 

repressed by PRC2 and induced potent tumor cell-selective apoptosis (Tan et al., 2007). An 

alternative way to reactivate epigenetically silencing genes is to inhibit the activity of 

histone demethylases. Recently, polyamine-based inhibitors of LSD1 have been developed 

that induce mono- and di-methylation at H3K4 and concomitant reactivation of previously 

silenced genes in treated tumor cell lines (Huang et al., 2007). The biological effects of these 

agents have not yet been evaluated but they represent an important step forward in the 

development of new agents to target the epigenetics. 

Both HDAC inhibitors and DNA demethylating agents have shown clinical efficacy as 
single agents; yet combination of the two therapies has been shown to have strong 
synergistic effects on the reactivation of silenced genes and antiproliferative and cytotoxic 
effects on cancer cells (Bhalla et al., 2005; Glaser et al., 2007). 
Combination therapies employing DNMT inhibitors and HDACIs together or with other 
agents are being pursued clinically. The combination of azacitidine with histone deacetylase 
inhibitors, such as sodium phenylbutyrate (Maslak et al., 2006), valproic acid and all-trans 
retinoic acid (Soriano et al., 2007), has been explored with little evidence of improvement in 
patients with leukaemia or high-risk MDS. 
A phase I/II trial of vorinostat in combination with azacitidine (NCT00392353) are currently 
underway; preliminary results from phase I of the combination trial indicated that the 
therapy is safe and well tolerated and appears superior to azacitidine alone for time to 
response, overall response and CR rate (Silverman et al., 2008). 
Isothiocyanates has been found potential anti-tumor agents. Natural isothiocyanates occur 

as thioglucoside conjugates, i.e. glucosinolate, in a wide variety of cruciferous vegetables 

including broccoli, cabbages, watercress, and Brussel's sprouts. The isothiocyanates (ITS) are 

released when the vegetables are cut or masticated. The research currently demonstrated 

that natural and synthetic isothiocyanates are potent cancer chemopreventive agents in a 

number of carcinogen-induced cancer models in rodents. The primary mechanism is the 

blocking of initiation of carcinogenesis via inhibiting cytochrome P450s, and inducing 

detoxifying enzymes to remove carcinogens (Chiao et al, 2002). We have demonstrated that 

Phenylhexyl isothiocyanate (PHI), one of ITC, a man-made isothiocyanate, may induce cell 

cycle blocking and apoptosis via altering epigenetic modification. PHI inhibited cell cycle 

CDK activity and up-regulated p21WAF1 (p21) in cancer cells. Exposure of HL-60 and Molt-

4 leukemia cells to PHI induced G1 arrest and apoptosis. Additionally, PHI reduced the 

expression of HDAC and increased the level of acetyl transferase p300, in favor of 

accumulation of acetylated histones. Within hours, global acetylation of histones was 

enhanced. PHI further mediated selective alterations of histone methylation, with 

upregulated H3K4 and downregulated H3K9, a pattern consistent to the marks of 

transcription competent chromatins. ChIP assay showed that chromatins from cells exposed 

to PHI contained more p21 DNA in the precipitates of hyperacetylated histones, indicating 

more accessibility of transcription machinery to the p21 promoter after chromatin unfolding 

(Ma XD et al., 2006; Xiao et al., 2010). On the other hand, PHI could induce DNA 

demethylation in Molt-4 cells. Hypermethylation of gene p15 was reversed and activation 

transcription could be de novo by PHI. Hypermethylation of gene p15 was attenuated and 
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p15 gene was activated de novo after 5 days exposure to PHI in a concentration-dependent 

manner(0-40μM). DNMT1 and DNMT3B were inhibited by PHI (P<0.05). Alteration of 

DNMT3A was not significant at those concentrations (Jiang et al., 2010). PHI has multi-

target in epigenetic, it might represent a combination target for correcting aberrant histone 

acetylation, histone methylation and DNA methylation, and a promising potential 

epigenetic regulators for preventing the progression of leukemia.  

4. Conclusion 

Epigenetic disorder may be the mechanism in acute leukemia. It is now understood that 
deregulated epigenetic mechanisms can cause, as well as compound, the effects of oncogenic 
mutations to promote tumor development and growth. Epigenetic therapy is a promising 
approach for the prevention and treatment of malignancies. The discovery of modulators of 
HATs and HMTases which are highly specific may bring a new era of epigenetics based 
drugs. 
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