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1. Introduction 

Hematopoiesis is a complex series of events resulting in the formation of mature blood cells. 

This process is regulated by cytokines at various levels, including self-renewal, proliferation, 

and differentiation. Upon binding of cytokines to their cognate receptors, the activity of 

intracellular signal transduction pathways is regulated, leading to modulation of gene 

expression. Although our appreciation of the transcriptional regulators of hematopoiesis has 

developed considerably, until recently, the roles of specific intracellular signal transduction 

pathways were largely unknown. An important mediator of cytokine signaling implicated 

in regulation of hematopoiesis is the Phosphatidylinositol-3-Kinase (PI3K) / Protein Kinase 

B (PKB/c-Akt) signaling module (Figure 1).  

The PI3K family consists of three distinct subclasses of which, to date, only the class I 

isoforms have been implicated in regulation of hematopoiesis. Four distinct catalytic class I 

isoforms have been identified; p110, p110, p110and p110(reviewed by Vanhaesebroeck 

et al., 2001) These isoforms are predominantly activated by protein tyrosine kinases and 

form heterodimers with a group a regulatory adapter molecules, including p85, p85, p50 

p55, p55and p101(reviewed by Vanhaesebroeck et al., 2001). The most important 

substrate for these Class I PI3Ks is phosphatidylinositol 4,5 bisphosphate (PI(4,5)P2) which 

can be phosphorylated at the D3 position of the inositol ring upon extracellular stimulation, 

resulting in the formation of phosphatidylinositol 3,4,5 trisphosphate (PI(3,4,5)P3) (reviewed 

by Hawkins et al., 2006). PI(3,4,5)P3 subsequently serves as an anchor for pleckstrin 

homology (PH) domain-containing proteins, such as Protein Kinase B (PKB/ c-akt) 

(Burgering & Coffer, 1995). Activation of PKB requires phosphorylation on both Thr308, in 

the activation loop, by phosphoinositide-dependent kinase 1 (PDK1) and Ser473, within the 

carboxyl-terminal hydrophobic motif, by the MTORC2 complex that consists of multiple 

proteins, including Mammalian Target of Rapamycin (mTOR) and Rictor (Sarbassov et al., 

2005). 

PKB itself subsequently regulates the activity of multiple downstream effectors, including 

the serine/threonine kinase Glycogen Synthase Kinase-3 (GSK-3) (Cross et al., 1995), 

members of the FoxO subfamily of forkhead transcription factors FoxO1, FoxO3, and FoxO4 

(Brunet et al., 1999; Kops et al., 1999) and the serine/threonine kinase mammalian target of 

rapamycin (mTOR) as part of the MTORC1 complex, which also includes  the regulatory 
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associated protein of mTOR (Raptor). In contrast to GSK-3 and the FoxO transcription 

factors that are inhibitory phosphorylated by PKB, activation of mTOR is positively 

regulated (Nave et al., 1999; Inoki et al., 2002). It has been demonstrated that PKB can inhibit 

the GTPase activating protein Tuberous sclerosis protein 2 (TSC2)/TSC1 complex, resulting 

in accumulation of GTP-bound Rheb and subsequent activation of mTOR (Inoki et al., 2002).  
 

 

Fig. 1. Schematic representation of the PI3K/PKB signaling module. Activation of PI3K by 
receptor stimulation results in the production of PtdIns(3,4,5)P3 at the plasma membrane. 
PKB subsequently translocates to the plasma membrane where it is phopshorylated by 
PDK1 and the mTORC2 complex. Upon phosphorylation, PKB is released into the 
cytoplasm where it can both inhibitory phosphorylate multiple substrates, including FoxO 
transcription factors and GSK-3 and induce the activity of other substrates such as mTOR as 
part of the mTORC1 complex. Negative regulators of the PI3K/PKB signaling module 
include PTEN, SHIP1 and Ins(1,3,4,5)P4. 

While cytokines and growth factors positively induce PI3K activity, its activity can also be 

inhibited by SH2-containing inositol-5'-phosphatase 1 (SHIP1) (Damen et al., 1996), a protein 

predominantly expressed in hematopoietic cells (Liu et al., 1998), that hydrolyzes PIP3 to 

generate PI(3,4)P2 (Damen et al., 1996). Similarly, Phosphate and Tensin Homologue (PTEN) 

(Maehama & Dixon, 1998), a ubiquitously expressed tumor suppressor protein, can 
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dephosphorylate PIP3 resulting in the formation of PI(4,5)P2 (Maehama & Dixon, 1998). 

Although both PTEN and SHIP1 act on the main product of PI3K activity, PIP3, the products 

generated are distinct. PI(3,4)P2 and PI(4,5)P2 both act as discrete second messengers 

activating distinct downstream events (Dowler et al., 2000; Golub & Caroni, 2005) indicating 

that the activation of SHIP1 and PTEN not only inhibit PI3K activity, but also can re-route 

the signal transduction pathways activated by PI-lipid second messengers. 

2. PI3K/PKB signaling and normal hematopoiesis 

2.1 PI3K  
The role of PI3K class I isoforms was initially examined utilizing knockout mice deficient for 
one or multiple regulatory or catalytic subunits. Combined deletion of p85, p55 and p50 
resulted in a complete block in B cell development (Fruman et al., 2000). Similarly, 
introduction of a mutated, catalytically inactive p110 (p110D910A) in the normal p110 locus 
also resulted in a block in early B cell development while T cell development was unaffected 
(Jou et al., 2002; Okkenhaug et al., 2002). These results indicate that PI3K activity is essential 
for normal B lymphocyte development. Pharmacological inhibition of PI3K activity in 
human umbilical cord blood derived CD34+ hematopoietic stem and progenitor cells 
revealed that inhibition of the activity of PI3K is sufficient to completely abrogate both 
proliferation and differentiation during ex vivo eosinophil and neutrophil development 
eventually leading to cell death (Buitenhuis et al., 2008). Conditional deletion of either PTEN 
or SHIP1 in adult HSCs resulting in activation of the PI3K pathway not only reduced the 
level of B-lymphocytes but also enhanced the level of myeloid cells (Helgason et al., 1998; 
Liu et al., 1999; Zhang et al., 2006). In addition, these mice developed a myeloproliferative 
disorder that progressed to leukemia (Helgason et al., 1998; Liu et al., 1999; Zhang et al., 
2006). Furthermore, enhanced levels of megakaryocyte progenitors have been observed in 
SHIP1 deficient mice (Perez et al., 2008). In PTEN heterozygote (+/-) SHIP null (-/-)  mice, a 
more severe myeloproliferative phenotype, displayed by reduced erythrocyte and platelet 
numbers and enhanced white blood cell counts including elevated levels of neutrophils and 
monocytes in the peripheral blood, could be observed (Moody et al., 2004). Interestingly, 
PI3K appears not only to be involved in lineage development, but is also required for stem 
cell maintenance. In PTEN and SHIP1 deficient mice, an initial expansion of HSCs could be 
observed which was followed by a depletion of long-term repopulating HSCs (Damen et al., 
1996; Helgason et al., 2003). Recently, a shorter SHIP1 isoform (s-SHIP1), which is 
transcribed from an internal promoter in the SHIP1 gene, has also been implicated in 
positive regulation of lymphocyte development during hematopoiesis. (Nguyen et al., 2011). 
Its role in regulation of HSCs and long-term hematopoiesis remains to be investigated 
(Nguyen et al., 2011). A third negative regulator of the PI3K/PKB signaling module is 
Inositol 1,3,4,5-tetrakiphosphate (Ins(1,3,4,5)P4), which is generated from Inositol 1,4,5-
triphosphate (Ins(1,4,5)P3) by Inositol triphosphate 3-kinase B (InsP3KB). It has been shown 
that Ins(1,3,4,5)P4 can bind to the PIP3-specific PH domains and competes for binding to 
those PH domains with PIP3 (Jia et al., 2007). In the bone marrow of mice deficient for 
InsP3KB, an acceleration of proliferation of the granulocyte macrophage progenitor has been 
observed resulting in higher levels of GMPs and mature neutrophils (Jia et al., 2008). In 
addition, although B lymphocytes could still be observed in InsP3KB deficient mice, mature 
CD4+ and CD8+ T lymphocytes were almost completely absent (Pouillon et al., 2003). 
Although InsP3KB is also involved in regulation of other pathways, the enhanced PKB 
phosphorylation in these mice (Jia et al., 2008) suggest that the observed phenotype is at 
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least partially due to activation of the PI3K/PKB signaling module. Taken together, these 
studies suggest that correct temporal regulation of PI3K activity is critical for both HSC 
maintenance and regulation of lineage development. 

2.2 PKB 

PKB, an important effector of PI3K signaling, has been demonstrated to play an important 
role in regulation of cell survival and proliferation in a variety of systems (reviewed by 
Manning & Cantley, 2007). Three highly homologous PKB isoforms have been described to 

be expressed in mammalian cells; PKB, PKB, and PKB. Analysis of HSCs derived from 

PKB/PKB double-knockout mice revealed that PKB plays an important role in 

maintenance of long-term repopulating HSCs. These PKB/PKB double-deficient HSCs 
were found to persist in the G0 phase of the cell cycle, suggesting that the long-term 
functional defects observed in these mice were caused by enhanced quiescence (Juntilla et 
al., 2010). In contrast, loss of only one of the isoforms only minimally affected HSCs (Juntilla 

et al., 2010). In addition, analysis of mice deficient for both PKB and PKB revealed that the 
generation of marginal zone and B1 B cells and the survival of mature follicular B cells 

highly depend on the combined expression of PKB and PKB. Again no significant 
differences could be observed in mice deficient for the single isoforms (Calamito et al., 2010). 
In addition, ectopic expression of constitutively active PKB in mouse HSCs conversely 
resulted in transient expansion and increased cycling of HSCs, followed by apoptosis and 
expansion of immature progenitors in BM and spleen, which was also associated with 
impaired engraftment (Kharas et al., 2010), again demonstrating the importance of PKB in 
HSC maintenance. Utilizing an ex vivo human granulocyte differentiation system and a 
mouse transplantation model, it has recently been demonstrated that PKB not only plays a 
role in expansion of hematopoietic progenitors, but also has an important function in 
regulation of cell fate decisions during hematopoietic lineage commitment (Buitenhuis et al., 
2008). High PKB activity was found to promote neutrophil and monocyte development and 
to inhibit B lymphocyte development, while conversely reduction of PKB activity is required 
to induce optimal eosinophil differentiation (Buitenhuis et al., 2008). In addition, PKB plays 
an important role in regulation of proliferation and survival of dendritic cell (DC) 
progenitors, but not maturation (van de Laar et al., 2010). Transplantion of mouse bone 
marrow cells ectopically expressing constitutively active PKB was sufficient to induce a 
myeloproliferative disease in most mice, characterized by extramedullary hematopoiesis in 
liver and spleen. In the majority of those mice, lymphoblastic thymic T cell lymphoma could 
also be observed. In addition, an undifferentiated AML developed in those mice that did not 
develop a myeloproliferative disease (Kharas et al., 2010). 

2.3 Downstream effectors of PKB 

To understand the molecular mechanisms underlying PKB mediated regulation of 

hematopoiesis, the roles of its downstream effectors in hematopoiesis have been 

investigated. FoxO transcription factors are known to play an important role in regulation of 

proliferation and survival of various cell types (reviewed by Birkenkamp & Coffer, 2003). 

Although proliferation and differentiation of hematopoietic progenitors appears not to be 

affected in FoxO3 deficient mice, competitive repopulation experiments revealed that deletion 

of FoxO3 is sufficient to impair long-term reconstitution (Miyamoto et al., 2007). In addition, in 

aging mice, the frequency of HSCs was increased compared to wild type littermate controls 
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(Miyamoto et al., 2007) and neutrophilia developed upon myelosuppressive stress conditions 

(Miyamoto et al., 2007). In contrast to FoxO3 deficient mice in which neutrophilia only 

occurred after myelosuppression while aging, conditional deletion of FoxO1, 3, and 4 in the 

adult hematopoietic system, was sufficient to increase the levels of myeloid cells and decrease 

the number of peripheral blood lymphocytes under normal conditions. In time, these mice 

developed leukocytosis characterized by a relative neutrophilia and lymphopenia (Tothova et 

al., 2007). In addition, an initial expansion of HSCs has been observed in these mice which 

correlated with an HSC-specific up-regulation of Cyclin D2 and down-regulation of Cyclin G2, 

p130/Rb, p27, and p21 (Tothova et al., 2007). Furthermore, a defective long-term repopulating 

capacity of bone marrow cells was observed, which could be explained by the reduction in 

HSC numbers that followed the initial expansion (Tothova et al., 2007). Although deletion of 

FoxO3 alone was not sufficient to improve myeloid development, ectopic expression of a 

constitutively active, non-phosphorylatable, FoxO3 mutant in mouse hematopoietic 

progenitors did result in a decrease in the formation of both myeloid and erythroid colonies 

(Engstrom et al., 2003), suggesting that FoxO3 does plays an important role in lineage 

development.  

Modulation of the activity of the PI3K signaling pathway has been observed to alter the 

level of reactive oxygen species (ROS). While ROS levels are reduced in PKB/ deficient 

mice (Juntilla et al., 2010), increased levels have been observed in mice deficient for FoxO 

(Miyamoto et al., 2007). Increasing ROS levels in PKB/ deficient mice was sufficient to 

rescue differentiation defects, but not impaired long-term hematopoiesis (Juntilla et al., 

2010). Restoring the ROS levels in FoxO deficient mice by in vivo treatment with an 

antioxidative agent N-acetyl-L-cysteine was sufficient to abrogate the enhanced levels of 

proliferation and apoptosis in FoxO deficient HSCs and to restore the reduced colony 

forming ability of these cells (Tothova et al., 2007). These studies demonstrate that correct 

regulation of ROS by FoxO transcription factors is essential for normal hematopoiesis.  

Recent findings have demonstrated that correct regulation of the activity of GSK-3, another 
downstream effector of PKB, is also essential for maintenance of hematopoietic stem cell 
homeostasis. A reduction in long-term, but not short-term repopulating HSCs has, for 
example, been observed in GSK3 deficient mice (Huang et al., 2009). In addition, disruption 
of GSK-3 activity in mice with a pharmacological inhibitor or shRNAs has been shown to 
transiently induce expansion of both hematopoietic stem and progenitor cells followed by 
exhaustion of long-term repopulation HSCs (Trowbridge et al., 2006; Huang et al., 2009). In 
addition, since GSK-3 has been demonstrated to inhibit mTOR activity by phosphorylation 
and activation of TSC1/2 (Inoki et al., 2006) and the level of phosphorylated S6 was 
enhanced in cells with reduced GSK-3 levels, mice were treated with rapamycin. Rapamycin 
induced the number of LSK cells when GSK3 was depleted, but not in un-manipulated cells, 
suggesting that mTOR is an important effector of GSK-3 in regulation of HSC numbers 
(Huang et al., 2009) In addition to the observed expansion of HSCs in mice treated with a 
GSK-3 inhibitor, the recovery of neutrophil and megakaryocyte numbers after 
transplantation was accelerated in these mice, resulting in improved survival of the 
recipients (Trowbridge et al., 2006). In addition, ex vivo experiments revealed that GSK-3 can 
enhance eosinophil differentiation and inhibit neutrophil development (Buitenhuis et al., 

2008). C/EBP, a key regulator of hematopoiesis, has been demonstrated to be an important 
mediator of PKB/GSK-3 signaling in regulation of granulocyte development (Buitenhuis et 
al., 2008). 
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A third, important mediator of PI3K/PKB signaling is mTOR. Conditional deletion of TSC1 

in mice, resulting in activation of mTOR, has been demonstrated to enhance the percentage 

of cycling HSCs and to reduce the self-renewal capacity of HSCs in serial transplantation 

assays (Chen et al., 2008). In addition, a reduction in the number of granulocytes and 

lymphocytes has been observed in those mice (Chen et al., 2008). As described above, 

activation of the PI3K signaling pathway by conditional deletion of PTEN in adult murine 

HSCs resulted in an initial expansion followed by exhaustion of LT-HSCs. Inhibition of 

mTOR in murine HSCs deficient for PTEN with Rapamycin was sufficient to revert this 

phenotype, again suggesting that mTORC1 signaling plays an important role in 

proliferation of HSCs (Yilmaz et al., 2006). A role for mTOR in progenitor expansion has 

been demonstrated utilizing an ex vivo human granulocyte differentiation system (Geest et 

al., 2009). In contrast to inhibition of PKB activity which not only affects progenitor 

expansion but also alters lineage development (Buitenhuis et al., 2008), inhibition of mTOR 

activity with Rapamycin only reduced the expansion of hematopoietic progenitors, during 

both eosinophil and neutrophil differentiation, without altering levels of apoptosis or 

maturation (Geest et al., 2009). Similarly, inhibition of mTOR reduced the number of 

interstitial DCs and Langerhans cells in in vitro experiments (van de Laar et al., 2010). In 

contrast to granulocyte development, treatment with rapamycin appears not only to affect 

proliferation during megakaryocyte (MK) development, but also appears to delay the 

generation of pro-platelet MKs (Raslova et al., 2006). Similar to FOXO transcription factors, 

TSC1 also appears to be involved in regulation of ROS levels in HSCs. Elevated levels of 

ROS have been observed in TSC1 deficient mice. In vivo treatment of those mice with a ROS 

antagonist restored HSC numbers and function (Chen et al., 2008), suggesting that TSC1 

regulates HSC numbers at least in part via ROS. In addition to GSK3, the activity of C/EBP 

also appears to be regulated by mTOR, albeit in a different manner.  It has recently been 

shown that the ratio of wild type C/EBP (C/EBPp42) and truncated C/EBPp30, which 

is generated by alternative translation initiation, is decreased by mTOR, resulting in high 

levels of the smaller p30 C/EBP isoform (Fu et al., 2010) that inhibits trans-activation of 

C/EBP target genes in a dominant-negative manner (Pabst et al., 2001) and binds to the 

promoters of a unique set of target genes to suppress their transcription (Wang et al., 2007).  

3. PI3K/PKB signaling and malignant hematopoiesis 

3.1 Deregulated PI3K/PKB signaling in malignant hematopoiesis 

The above described studies clearly demonstrate that the PI3K/PKB signaling module plays 

a critical role in regulation of hematopoiesis. Since constitutive activation of PI3K and/or its 

downstream effectors has been observed in a high percentage of patients with hematological 

malignancies, it is likely that the development of leukemia may at least in part depend on 

aberrant regulation of this signaling module.  

3.1.1 PI3K  

Constitutive activation of class I PI3K isoforms has been observed in a high percentage of 
patients with acute leukemia (Kubota et al., 2004; Silva et al., 2008; Billottet et al., 2009; Zhao, 

2010). In contrast to the expression of p110, and which is only up-regulated in leukemic 

blasts of some patients, p110expression appears to be consistently up-regulated in cells 
from patients with either AML or APL (Sujobert et al., 2005; Billottet et al., 2009). Activating 
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mutations in p110, have been detected in a wide variety of human solid tumors (Ligresti et 

al., 2009). The most common mutations in p110 are located in the kinase domain (H1047R) 
and in the helical domain (E545A) (Lee et al., 2005). The E545A mutation has also been 
detected in acute, but not further specified, leukemia, albeit in a very low percentage (1/88) 
(Lee et al., 2005). In a series of 44 pediatric T-ALL patients,  activating mutations in the 
catalytic subunit of PI3K (PIK3CA) have been observed in 2 patients, while in frame 
insertions/deletions have been detected in the PI3K regulatory subunit PIK3R1 in two other 
patients (Gutierrez et al., 2009). Transplantation of mice with bone marrow cells ectopically 

expressing mutated p110 resulted in the development of a leukemia-like disease within 5 

weeks after transplantation (Horn et al., 2008), suggesting that mutations in p110 would be 
sufficient to induce leukemia. However, since mutations in PI3K appear to be very rare, it is 
unlikely that these mutations would be a major cause of leukemic development. 
Alternatively, the constitutive activation of PI3K observed in many patients with leukemia 
could also be caused by either aberrant expression or activation of modulators of PI3K 
activity, including PTEN and SHIP1. 
Reduced expression of PTEN has, for example, been observed in different types of leukemia 

(Xu et al., 2003; Nyakern et al., 2006). Both homozygous and heterozygous deletion of PTEN 

as well as non-synonymous sequence alterations in exon 7 have been detected in 

approximately 15% and 25% of T-ALL patients, respectively (Gutierrez et al., 2009). In 

contrast, analysis of both leukemic cell lines and primary AML blasts indicate that PTEN 

mutations are rare in AML (Aggerholm et al., 2000; Liu et al., 2000). In addition to mutations 

in PTEN itself, aberrant PTEN expression may also be caused by mutations in its upstream 

regulators. Both enhanced casein kinase 2 (CK2) expression/activity and enhanced ROS 

levels appear, for example, to correlate with decreased PTEN phosphatase activity in T-ALL 

cells (Silva et al., 2008). Both CK2 inhibitors and ROS scavengers were sufficient to restore 

PTEN activity and impaired PI3K/PKB signaling in those T-ALL cells, demonstrating that 

aberrant CK2 and ROS levels may affect PI3K signaling in leukemia (Silva et al., 2008). 

Another important, negative regulator of PI3K activity that has been demonstrated to play a 

critical role in hematopoiesis is SHIP1. Analysis of primary T-ALL cells revealed that full 

length SHIP1 expression is often low or undetectable. However, when using an antibody 

against the C terminal domain of SHIP1, low molecular weight proteins can frequently be 

observed. These low molecular weight proteins are thought to be the result of mutation 

induced alternative splicing (Lo et al., 2009). In addition, in leukemic cells from an AML 

patient, a mutation in the phosphatase domain of SHIP1 has also been detected which 

results in reduced catalytic activity and enhanced PKB phosphorylation (Luo et al., 2003). 

For an overview of all known mutations affecting PI3K/PKB signaling, see table 1. 

3.1.2 PKB 

Constitutive activation of PKB has been demonstrated in a significant fraction of AML 
patients (Min et al., 2003; Xu et al., 2003; Zhao et al., 2004; Grandage et al., 2005; Gallay et al., 
2009). Until recently, no PKB mutations were found in patients with leukemia. However, an 
activating mutation in the pleckstrin homology domain of PKB (E17K) has recently been 
detected in solid tumors (Carpten et al., 2007). Transplantation of mice with bone marrow 
cells ectopically expressing this E17K mutation was sufficient to induce leukemia, ten weeks 
after transplantation (Carpten et al., 2007). Although this particular mutation has been 
observed in different types of cancer, it appears to be rare in leukemic patients. Thus far, this 
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mutation has only been detected in one pediatric T-ALL patient (Gutierrez et al., 2009). To 
date, no other mutations in PKB have been described. 
 

 Mutation
Activation/ 

loss 
Detected 

in: 
Location References 

Pathway      

PI3K E545A Activation 
AML & 

ALL 
Helical domain p110α 

Lee , 2005; Horn , 
2008 

 E542K Activation # Helical domain p110α Horn , 2008 

 H1047R Activation # Kinase domain p110α Horn , 2008 

 PIK3CA Activation T-ALL Catalytic subunit PI3K Gutierrez , 2009 

 PIK3R1 Deletion T-ALL Regulatory subunit PI3K Gutierrez , 2009 

PTEN PTEN Deletion T-ALL 
Homozygous and 

heterozygous 
Gutierrez , 2009 

  Dysruption T-ALL Sequence alterations in exon 7 Gutierrez , 2009 

  Deletion 
ALL cell 

line 
Exons 2 through 5 Sakai , 1998 

  Deletion 
AMl cell 

line 
Exons 2 through 5 Aggerholm , 2000 

SHIP1 SHIP1 Deactivation AML Phosphatase domain Luo , 2003 

PKB E17K Activation T-ALL Pleckstrin homology domain 
Carpten , 2007; 
Gutierrez , 2009 

PP2A Deletion Deletion/Loss AML  Cristobal , 2011 

Upstream      

Flt3 Flt3-ITD Activation 
AML & 

ALL 
Juxtamembrane (JM) domain  

 
JM-point 
mutation

Less 
autoinhibition

AML Juxtamembrane (JM) domain 
Reviewed by 
Parcells , 2006 

 
AL-point 
mutation

Activation 
AML & 

ALL 
Activation loop (AL) of the 

kinase domain 
 
 

 K663Q Activation AML 
First mutation outside JM and 

AL domain 
 

c-Kit 
EC-point 
mutation

Activation AML 
Extracellular (EC) domain of 

the kinase 
Yuzawa, 2007 

 
AL-point 
mutation

Activation AML 
Activation loop (AL) of the 

kinase domain 
Reviewed by  Scholl 

, 2008 

Ras Mutations Activation 
AML & 

ALL 
 Gutierrez , 2009; 

     Dicker , 2010 

Bcr-Abl 
Translocati

on 
Activation ALL t(9;22) (q34;q11) Clark , 1988; 

     Varticovski , 1991 

# Mutation induces leukemia in mouse model. 

Table 1. Mutations in the PI3K/PKB pathway.  

3.1.3 Activating mutations upstream of PI3K/PKB signaling pathway 

The PI3K/PKB signaling module is an important mediator of cytokine signals. In 

hematological malignancies, mutations in cytokine receptors have been described to affect 
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PI3K signaling. Constitutive activation of FMS-like tyrosine kinase 3 (FLT3), by internal 

tandem duplication (Flt3-ITD) (Brandts et al., 2005) and mutation in c-Kit (Ning et al., 2001) 

have, for example, been demonstrated to induce PKB activity. This induction of PKB activity 

appears to be essential for the survival and proliferation of cells expressing FLT3-ITD 

(Brandts et al., 2005) or mutated c-Kit (Hashimoto et al., 2003; Cammenga et al., 2005; Horn 

et al., 2008). In addition to these tyrosine kinase receptors, the activity of the PI3K/PKB 

pathway can also be enhanced by several fusion proteins, including Bcr-Abl, which can be 

detected in virtually all patients with CML (Ben-Neriah et al., 1986) and in patients with 

ALL (Clark et al., 1988). It has been demonstrated that the PI3K/PKB signal transduction 

pathway plays an important role in Bcr-abl mediated leukemic transformation (Varticovski 

et al., 1991; Skorski et al., 1997; Hirano et al., 2009). Other potential regulators of PI3K often 

mutated in leukemia include Ras (Rodriguez-Viciana et al., 1994; reviewed by Schubbert et 

al., 2007; Gutierrez et al., 2009) Evi1 (Yoshimi et al., 2011) and PP2A. In AML patients, 

decreased PP2A activity has, for example, been reported to correlate with enhanced levels of 

PKB phosphorylation on Thr308 (Gallay et al., 2009). In addition, restoration of PP2A 

activity also resulted in a reduction of PKB phosphorylation (Cristobal et al., 2011). 

3.2 Prognosis of acute leukemia with activated PI3K/PKB signaling  

As described above, the PI3K/PKB signaling module appears to be aberrantly regulated in a 
large fraction of patients with leukemia. Recent evidence suggests that the level of 
PI3K/PKB activation in leukemic blasts could be used to predict the survival rate of 
patients. Comparison of pediatric T-ALL patients with either no mutations in PTEN, mono-
allelic mutations or bi-allelic mutations revealed that the survival rate of patients positively 
correlates with the level of PTEN (Jotta et al., 2010). Similar observations were made in a 
different cohort of pediatric T-ALL patients, in which PTEN deletions correlated with early 
treatment failure in T-ALL (Gutierrez et al., 2009). These studies suggest that constitutive 
activation of PI3K and its downstream effectors reduces the survival rate of ALL patients.  
To determine whether the level of mTOR activity similarly correlates with reduced survival 
of ALL patients, mice were transplanted with blasts from pediatric de novo B cell progenitor 
ALL patients. In those experiments, a rapid induction of leukemia correlated with enhanced 
mTOR activity in the leukemic blasts (Meyer et al., 2011). In addition to ALL, constitutive 
activation of PI3K, as measured by enhanced FoxO3 expression or phosphorylation, is also 
considered to be an independent adverse prognostic factor in AML patients  (Santamaria et 
al., 2009; Kornblau et al., 2010). In addition, a reduced survival rate has also been observed 
in AML patients displaying enhanced levels of phosphorylated, and therefore inactive, 
PTEN (Cheong et al., 2003) and phosphorylated PKB on Serine 473 (Kornblau et al., 2006) 
and Threonine 308 (Gallay et al., 2009). In contrast, Tamburini et al. suggest that PI3K 
activity, as was determined by analysis of the level of phosphorylation of PKB on Ser473, 
positively correlates with the survival of AML patients (Tamburini et al., 2007). Although 
the short-term survival rate (within 12 months) appeared to be slightly lower in the group 
displaying high PKB phosphorylation compared to the group with low levels of 
phosphorylated PKB, both the long-term survival and relapse free survival were 
significantly enhanced (Tamburini et al., 2007). Except for this last study, all other studies 
suggest that enhanced PI3K/PKB activity correlates with reduced survival rate in both ALL 
and AML patients. The molecular mechanisms underlying this reduced prognosis are, thus 
far, incompletely understood. However, it has been demonstrated that AML blasts 
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displaying enhanced PI3K/PKB activation exhibit a reduced apoptotic response (Rosen et 
al., 2010) which might be due to positive regulation of the anti-apoptotic NF-kB pathway 
and negative regulation of the P53 pathway (Grandage et al., 2005).  
In addition, since PI3K has been demonstrated to induce expression of the multidrug 
resistance-associated protein 1 (MRP1), a member of the ATP-binding cassette (ABC) 
membrane transporters that functions as a drug efflux pump (Tazzari, Cappellini et al. 
2007), it could also be hypothesized that constitutive activation of this signaling module 
results in drug-resistance. The observation that high levels of MRP1 correlates with 
enhanced drug resistance of AML cells and poor prognosis supports this hypothesis 
(Legrand et al., 1999; Mahadevan & List, 2004). 

3.3 PI3K/PKB signaling as therapeutic target in acute leukemia 
3.3.1 PI3K inhibitors 

Since aberrant regulation of PI3K and its downstream effectors has frequently been 
observed in leukemic cells and are known to play a critical role in normal hematopoiesis, 
these molecules are considered to be promising targets for therapy (Table 2). Wortmannin 
and LY294002 are two well characterized inhibitors of PI3K activity that prevent ATP to 
bind to and activate PI3K by association with its catalytic subunit (Vlahos et al., 1994; 
Wymann et al., 1996). Although pre-clinical experiments indicate that both LY294002 and 
Wortmannin are potent inhibitors of PI3K activity, induce apoptosis in leukemic cells (Xu et 
al., 2003; Zhao et al., 2004) and rescue drug sensitivity (Neri et al., 2003), it has been 
demonstrated that both inhibitors exhibit little specificity within the PI3K family and can 
also inhibit other kinases, including CK2 and smMLCK, respectively (Davies et al., 2000; 
Gharbi et al., 2007). Since both inhibitors are also insoluble in an aqueous solution (Garlich 
et al., 2008; Zask et al., 2008) and are detrimental for normal cells (Gunther et al., 1989; 
Buitenhuis et al., 2008), different PI3K inhibitors are currently developed. Recently, while 
screening for inhibitors of Cyclin D expression, a novel inhibitor of PI3K activity (S14161) 
has been discovered that appears to be able to delay tumor growth in mice transplanted 
with human leukemic cell lines (Mao et al., 2011). In addition, novel inhibitors have been 
developed that efficiently block the activity of individual p110 isoforms. The p110δ-selective 
inhibitor IC87114, for example, significantly reduced proliferation and survival of AML 
blasts (Sujobert et al., 2005) and APL cells (Billottet et al., 2009) without affecting the 
proliferation of normal hematopoietic progenitors (Sujobert et al., 2005). Similar results were 

obtained in APL cells treated with an inhibitor directed against p110TGX-115) (Billottet et 
al., 2009).  

3.3.2 PKB inhibitors 

In addition to PI3K inhibitors, research has also focused on the development of 
pharmacological compounds that inhibit its downstream effector PKB. Perifosine, a 
synthetic alkylphosphocholine with oral bioavailability inhibits PKB phosphorylation by 
competitive interaction with its PH doma1in (Kondapaka et al., 2003) and promotes 
degradation of PKB, mTOR, Raptor, Rictor, p70S6K and 4E-BP1 (Fu et al., 2009). In vitro 
experiments with multidrug-resistant human T-ALL cells  and primary AML cells revealed 
that treatment with Perisofine is sufficient to induce apoptosis (Chiarini et al., 2008; Papa et 
al., 2008). Moreover, Perifosine reduced the clonogenic activity of AML blasts, but not 
normal CD34+ hematopoietic progenitor cells (Papa et al., 2008). The efficacy of Perifosine in 
treatment of different types of leukemia is currently examined in several phase II clinical 
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trials (NCT00391560, NCT00873457). Phosphatidylinositol ether lipid analogues (PIA) 
inhibit PKB activity in a similar manner compared to Perifosine. Treatment of HL60 cells 
with PIA resulted in inhibition of proliferation and sensitization to chemotherapeutic agents 
in concentrations which did not affect proliferation of normal hematopoietic progenitors 
(Tabellini et al., 2004). Another specific PKB inhibitor (AKT-I-1/2 inhibitor) (Bain et al., 
2007), has been demonstrated to efficiently reduce colony formation in high-risk AML 
samples (Gallay et al., 2009). The PKB inhibitor Triciribine (API-2), a purine analog that has 
initially been identified as an inhibitor of DNA synthesis, inhibits PKB phosphorylation by 
interacting with the PH domain of PKB, thus preventing PKB membrane localization and 
phosphorylation (Berndt et al., 2010). Experiments in T-ALL cell lines revealed that API-2 
induces cell cycle arrest and caspase-dependent apoptosis (Evangelisti et al., 2011a). The 
safety of this inhibitor is currently under investigation in a phase I clinical trial in patients 
with advanced hematologic malignancies (NCT00363454). 

3.3.3 mTOR inhibitors 

Rapamycin and its analogues RAD001 (everolimus), CCI-779 (temsirolimus) and AP23573 
(deforolimus) inhibit the mTORC1 complex by association with FKBP-12 which prohibits 
association of Raptor with mTOR. (Choi et al., 1996; Oshiro et al., 2004).  The efficacy of 
these compounds as therapeutic drugs has been examined in various preclinical and clinical 
studies for a wide range of malignancies (reviewed by Yuan et al., 2009; reviewed by 
Chapuis et al., 2010a). The anti-tumor properties of Rapamycin have also been examined in 
both AML derived cell lines and primary AML blasts, revealing a strong anti-tumor effect of 
this agent in short-term cultures (Recher et al., 2005). Furthermore, Rapamycin and its 
analog CCI-779 showed promising effects in preclinical models of T-ALL (Teachey et al., 
2008; Meyer et al., 2011) and pre-B ALL (Teachey et al., 2006), respectively. Clinical trials 
initiated to examine the efficacy of Rapamycin (Recher et al., 2005) and its analog AP23573 
in hematological malignancies only resulted in a partial response (Rizzieri et al., 2008). The 
limited therapeutic effects of Rapamycin and AP23573 may be explained by the induction of 
PKB activity in AML blasts treated with these compounds (Easton & Houghton, 2006; 
Tamburini et al., 2008; Yap et al., 2008). Furthermore, experiments with PTEN deficient mice 
revealed that, due to failure to eliminate the leukemic stem cell population, withdrawal of 
rapamycin results in a rapid re-induction of leukemia and death in the majority of mice 
(Guo et al., 2011). This suggests that rapamycin primarily has cytostatic, but not cytotoxic, 
effects on hematopoietic stem cells. 
To circumvent the observed up-regulation of PKB phosphorylation by Rapamycin and its 
analogs, ATP-competitive mTOR inhibitors have been generated that inhibit both the 
activity of mTORC1 and mTORC2 (Garcia-Martinez et al., 2009; Bhagwat & Crew, 2010; 
Janes et al., 2010). Treatment of mice transplanted with primary ALL blasts or pre-leukemic 
thymocytes over-expressing PKB with the mTORC 1/2 inhibitor PP242, but not Rapamycin, 
significantly reduced the development of leukemia (Hsieh et al., 2010; Janes et al., 2010). 
Importantly, PP242 appears to induce less adverse effects on proliferation and function of 
normal lymphocytes in comparison to Rapamycin (Janes et al., 2010; Evangelisti et al., 
2011b). In addition to PP-242, another mTORC1/2 inhibitor, OSI-027, has recently been 
described. (Evangelisti et al., 2011). It has been demonstrated that this inhibitor exhibits anti-
leukemic effects in both Ph+ ALL and CML cells (Carayol et al., 2010). Furthermore, 
proliferation experiments indicate that, in comparison to Rapamycin, OSI-027 is a more 
efficient suppressor of proliferation of AML cell lines (Altman et al., 2011). 
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3.3.4 Dual inhibition of the PI3K/PKB pathway 

In addition to the recently developed mTORC1/2 inhibitors, dual specificity inhibitors have 

been generated to further optimize inhibition of the PI3K signaling module. PI-103, a 

synthetic small molecule of the pyridofuropyrimidine class is, for example, a potent 

inhibitor for both class I PI3K isoforms and mTORC1 (Raynaud et al., 2007). PI-103 has been 

demonstrated to reduce proliferation and survival of cells from T-ALL (Chiarini et al., 2009) 

and AML patients  (Kojima et al., 2008; Park et al., 2008) and appears to exhibit a stronger 

anti-leukemic activity compared to both Rapamycin (Chiarini et al., 2009) and the 

combination of RAD001 and IC87114 (Park et al., 2008). Importantly, although PI-103 

reduces proliferation of normal hematopoietic progenitors, survival is not affected (Park et 

al., 2008). Recently, NVP-BEZ235, another dual PI3K/mTOR inhibitor has been identified. 

This orally bioavailable imidazoquinoline derivative, has been demonstrated to inhibit the 

activity of both PI3K and mTOR by binding to their ATP-binding pocket (Maira et al., 2008). 

In both primary T-ALL (Chiarini et al., 2010) and AML cells (Chapuis, Tamburini et al. 

2010b) as well as leukemic cell lines, NVP-BEZ235 significantly reduced proliferation and 

survival (Chapuis et al., 2010b; Chiarini et al., 2010). Furthermore, this compound did not 

affect the clonogenic capacity of normal hematopoietic progenitors (Chapuis et al., 2010b). A 

dual PI3K/PDK1 inhibitor called BAG956 has also recently been described to inhibit 

proliferation of BCR-ABL and FLT3-ITD expressing cells. However, in contrast to RAD001 

which efficiently reduced the tumor load in mice transplanted with BCR-ABL expressing 

cells, treatment with BAG956 alone was not sufficient to reduce the tumor load (Weisberg et 

al., 2008). In addition to these dual inhibitors, KP372-1, a multiple kinase inhibitor capable of 

inhibiting PKB, PDK1, and FLT3 has been described (Zeng et al., 2006). It has been 

demonstrated that KP372-1 can induce apoptosis in primary AML cells and leukemic cell 

lines, as was visualized by mitochondrial depolarization and phosphatidylserine 

externalization (Zeng et al., 2006). Although the survival of normal hematopoietic 

progenitors was not impaired by this compound, their clonogenic capacity was, albeit with a 

low efficiency (Zeng et al., 2006). 

In addition to the above described dual inhibitors, the efficacy of combination therapy 

utilizing multiple inhibitors, which are directed against different intermediates of the PI3K 

signaling module, is also under investigation. To abrogate the RAD001 mediated up-

regulation of PKB phosphorylation, the p110 inhibitor IC87114 has, for example, been 

added to leukemic cells simultaneously with RAD001. Combined inhibition of mTOR and 

p110 not only resulted in a block in PKB phosphorylation in primary AML blasts, but a 

synergistic reduction in proliferation could also be observed (Tamburini et al., 2008). 

Similarly, combining the PI3K/PDK1 inhibitor BAG956 with RAD001 also resulted in a 

synergistic reduction in tumor volume in a mouse model transplanted with BCR-ABL 

expressing cells (Weisberg et al., 2008). Recently, a phase I trial focusing on development of 

a combination regimen including both perifosine and UCN-01 (NCT00301938), a PDK1 

inhibitor which is known to induce apoptosis in AML cells in vitro (Hahn et al., 2005), has 

been initiated. 

3.3.5 Combination of PI3K/PKB pathway inhibitors with other pathway inhibitors 

Leukemogenesis involves aberrant regulation of various signal transduction pathways, 

including, but not limited to, the PI3K signaling module. Simultaneous targeting of multiple  
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Target Compound Effect 
Clinical Trials 

(phase) 
Leukemia References 

  In vitro In vivo    

PI3K Wortmannin + - -  Wymann , 1996 

 LY294002 + - -  Xu , 2003; Zhao , 2004 

 S14161 + + -  Mao , 2011 

p110β TGX-115 + - -  Billottet , 2009 

p110δ IC87114 + - -  
Sujobert , 2005; 

Billottet , 2006, 2009 

 AMG 319 - - NCT01300026 (I) ALL  

PDK1 UCN-01 + - -  Hahn , 2005 

PKB Perifosine + - NCT00391560 (II) AML&ALL 
Chiarini , 2008; 

Fu , 2009; Papa , 2008 

    NCT00873457 (II) CLL  

 PIA + - -  Tabellini , 2004 

 AKT-I-1/2 + - -  Gallay , 2009 

 Triciribine 
(API-2) 

+ - NCT00363454 (I) - Evangelisti , 2011a 

      

 GSK690693 + - NCT00666081 (I) AML&ALL Levy , 2009 

 MK2206 - - NCT01231919 (I) AML&ALL  

    NCT01253447 (II) AML  

 SR13668 - - NCT00896207 (I) -  

 GSK2141795 - - NCT00920257 (I) -  

 
GSK2111018

3 
- - NCT00881946 (I/II) AML&ALL  

mTOR Rapamycin + + NCT00795886 (I) ALL Recher  2005; Meyer , 2011; 

      
Teachey , 2008; Gu , 2010; 

Guo , 2011 

 RAD001 + + Yee, 2006 (I/II) AML Yee  , 2006 

 CCI-779 + + Recher, 2005 (II) AML Teachey , 2006; Recher, 2005 

 AP23573 - - Rizzieri, 2008 (II) AML Rizzieri, 2008 

    NCT00086125 (II) AML&ALL  

 PP242 + + -  
Hsieh , 2010; Janes , 2010; 

Evangelisti , 2011b 

 OSI-027 + - -  
Evangelisti, 2011b ; 

Carayol, 2010; Altman, 2011 

 AZD-8050 + - - - Evangelisti , 2011b 

PI3K/mTOR PI-103 + + - - 
Chiarini , 2009; Kojima , 

2008; Park , 2008 

PI3K/mTOR 
NVP-

BEZ235 
+ + - - 

Maira , 2008; Chiarini , 2010; 
Chapuis , 2010b 

PI3K/PDK1 BAG956 + + - - Weisberg , 2008 

PKB/PDK1/Flt3 KP372-1 + - - - Zeng , 2006 

Table 2. Inhibitors of PI3K/PKB signaling pathway 
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aberrantly regulated signal transduction pathways is considered to be a promising 

therapeutic strategy (Table 3). Proteosome inhibitors are considered to be a new class of 

therapeutic agents. However, treatment of both pediatric and adult B-ALL patients with 

such an inhibitor (Bortezomib) alone was not sufficient to induce a robust anti-tumor 

response (Cortes et al., 2004; Horton et al., 2007). Experiments in leukemic cell lines and 

primary cells from B-ALL patients revealed that while MG132, a proteosome inhibitor, 

and RAD001 alone only modestly reduce cell viability, combined inhibition of 

proteosomes and mTOR significantly enhanced cell death (Saunders et al., 2011), 

suggesting a synergistic effect of both inhibitors. In addition to proteosome inhibitors, 

HDAC inhibitors have also emerged as a promising class of anti-tumor agents (reviewed 

by Minucci & Pelicci, 2006). Although the HDAC inhibitor MS-275 appears to induce 

growth arrest, apoptosis and differentiation of leukemic cell lines, in mouse models only a 

partial reduction in tumor volume could be observed (Nishioka et al., 2008). Combined 

administration of MS-275 and RAD001, however, potentiated the effect of both inhibitors 

individually both in vitro and in vivo (Nishioka et al., 2008). Synergistic effects on 

proliferation and survival of leukemic cell lines have also been observed after co-

administration of HDAC inhibitors and the PKB inhibitor Perisofine (Rahmani et al., 

2005). Additionally, the efficacy of specific inhibitors targeting constitutively activated 

tyrosine kinases in leukemia, including inhibitors of Flt3, Abl, and c-Kit, has been 

investigated in preclinical and clinical models. Although anti-leukemia effects were 

observed in vivo and in vitro, combined inhibition of tyrosine kinases and the PI3K/PKB 

pathway resulted in a synergistically enhanced anti-leukemia effect in ALL (Kharas et al., 

2008; Weisberg et al., 2008) and AML (Weisberg et al., 2008) compared to the individual 

inhibitors. Phase I/II clinical trials have already been initiated to investigate the 

synergistic effects of combined inhibition of PI3K/PKB and Flt3 (NCT00819546) or c-Kit 

(NCT00762632). 

3.3.6 Combination of PI3K/PKB pathway inhibitors with chemotherapeutical agents 

Despite the effectiveness of chemotherapy in a subset of patients, incomplete remission and 

the development of a refractory disease have been observed in many patients with acute 

leukemia (Thomas, 2009; Burnett et al., 2011). To optimize treatment of those patients, 

chemotherapy could potentially be combined with leukemia-specific inhibitors or 

chemosensitizing drugs (Table 3). Co-administration of mTOR inhibitors with different 

types of chemotherapeutic drugs, including Etoposide, Ara-C, Cytarabine and 

Dexamethason has, for example, been demonstrated to induce synergistic anti-leukemia 

effects in cells from AML patients (Xu et al., 2003; Xu et al., 2005) and ALL patients (Avellino 

et al., 2005; Teachey et al., 2008; Bonapace et al., 2010; Gu et al., 2010; Saunders et al., 2011). 

Several phase I/II clinical trials have been initiated to investigate and optimize the 

synergistic effect of mTOR inhibitors and chemotherapeutic drugs in patients with acute 

leukemia (NCT00544999, NCT01184898, NCT00780104, NCT01162551 and NCT00776373). In 

addition, co-administration of chemotherapeutic agents with IC87114 (Billottet et al., 2006), 

UCN-01 (Sampath et al., 2006) or Triciribine (Evangelisti et al., 2011a) showed similar 

synergistic effects in AML cells. Strong synergistic, cytotoxic, activity was also observed in 

T-ALL cells when combining the dual specificity inhibitors PI-103 and NVP-BEZ235 with 

chemotherapy (Chiarini et al., 2009; Chiarini et al., 2010).  
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Target Compound 
Combination 

regimens 

Effects 
in vitro/
in vivo 

Clinical trials (phase) Leukemia References 

PI3K Wortmannin ATRA (DA) + - -  Neri , 2003 

 LY294002 Apigenin (CK2 I) + - -  Cheong , 2010 

  ATRA (DA) + - -  Neri , 2003 

p110δ IC87114 VP16 (CT) + - -  Billottet , 2006 

PDK1 UCN-01 Ara-c (CT) + - Sampath, 2006 (II) AML Sampath , 2006 

  Cytarabine (CT) - - NCT00004263 (I) AML  

  Fludarabine (CT) - - NCT00019838 (I) AML&ALL  

PP2A Forskolin Idarubicine/Ara-C + - -  Cristobal , 2011 

PKB Perifosine UCN-01 - - NCT00301938 (I) AML&ALL  

  HDAC I + - -  Rahmani , 2005 

  TRAIL (AI) + - -  Tazzari , 2008 

  Etoposide (CT + - -  Papa , 2008 

 PIA CT + - -  Tabellini , 2004 

 Triciribine Cytarabine (CT) + - -  Evangelisti , 2011a 

mTOR Rapamycin UCN-01 + - -  Hahn , 2005 

  3-BrOP (glycolysis I) + - -  Akers , 2011 

  Notch I + - -  Chan , 2007 

  Dexamethason + - -  
Gu, 2010; Bonapace 

, 2010 

  Etoposide (CT) + + -  Xu , 2005 

  Methotrexate (CT) + + NCT01162551 (II) ALL Teachey , 2008 

  Anthracyclin (CT) + - -  Avellino , 2005 

  CT + - NCT00776373 (I/II) ALL  

   + - NCT01184898 (I/II) AML  

     NCT00780104 ( I/II) AML  

 RAD001 IC87114 + - -  Tamburini , 2008 

  BAG956 + + -  Weisberg , 2008 

  Bortezomib (PI) + - -  Saunders , 2011 

  MS-275 (HDAC I) + + -  Nishioka , 2008 

  PKC412 (Flt3 TKI) - - NCT00819546 (I) AML  

  Nilotinib (c-Kit-TKI) - - NCT00762632 (I/II) AML  

  ATRA (DA) + + -  Nishioko , 2009 

  Ara-c (CT) + - -  
Xu , 2003; Saunders 

, 2011 

  Vincristine (CT) + - - ALL Crazzolara, 2009 

  CT + - NCT00544999 (I) AML&ALL  

 CCI-779 Methotrexate (CT) + + -  Teachey , 2008 

 PP242 Vincristine (CT) + -   Evangelisti , 2011b 

PI3K/mTOR PI-103 Nutlin-3 (MDM2-I) + -   Kojima , 2008 

  Vincristine (CT) + -   Chiarini , 2009 

  Imatinib (Bcr-Abl-TKI) + -   Kharas , 2008 

PI3K/mTOR NVP-BEZ235 CT + -   Chiarini , 2010 

PI3K/PDK1 BAG956 Imatinib (Bcr-Abl-TKI) + +   Weisberg , 2008 

  PKC412 (Flt3 TKI) + +   Weisberg , 2008 

DA: Differentiating agents; I: Inhibitor; CT: Chemotherapy; AI: Apoptosis inducer; PI: Proteasome 
inhibitor; TKI: Tyrosine kinase inhibitor. 

Table 3. Combination regimens.  
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4. Conclusion 

During the last two decades, it has become clear that intracellular signal transduction 
pathways play an important role in both normal and malignant hematopoiesis. One such 
module implicated in playing a critical role in regulation of various hematopoietic processes 
includes PI3K and PKB. Aberrant regulation of these molecules appears to be sufficient to 
induce hematological malignancies.  As discussed in this chapter, constitutive activation of 
this signaling module has been observed in a large group of acute leukemia’s. Although 
activating mutations in PI3K and PKB have been detected in cells from patients with 
leukemia, these mutations appear to be very rare. In patients, mutations have also been 
observed in PTEN and SHIP1 resulting in activation of PI3K and its downstream effectors. 
These mutations, however, cannot account for the large incidence of constitutive activation 
of PI3K in patients with leukemia. Alternatively, constitutive activation of PI3K and PKB 
can also be induced by mutations in, for example, tyrosine kinase receptors and by 
translocation induced formation of fusion proteins. Since PI3K is frequently activated in 
leukemia and activation of this molecule is thought to correlate with poor prognosis and 
drug resistance, it is considered to be a promising target for therapy. A high number of 
pharmacological inhibitors directed against both individual and multiple components of 
this pathway has already been developed in order to improve therapy. Especially the dual 
specificity inhibitors seem to possess promising anti-leukemic activities. In addition, 
research currently focuses on combining inhibitors of the PI3K signaling module with either 
inhibitors directed against other signal transduction molecules or classic chemotherapy. 
Mouse models and in vitro experiments indicate that both strategies could be used to 
improve current therapeutic regimes in specific patient groups. To confirm the pre-clinical 
data and to examine the safety and efficacy of the individual inhibitors and combination 
regimes in patients with leukemia, several phase I and II clinical trials have already been 
initiated.  
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