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1. Introduction  

Phosphorylation by protein kinases including mitogen activated protein kinases (MAPKs) is 
a major signal transduction mechanism used by eukaryotic cells to regulate different 
functions, virtually almost all activities that define their phenotypic behavior. Considering 
their diverse cellular roles, it was not surprising to find that significant portions of 
eukaryotic genes are devoted to code for protein kinases. For example, the genome of 
Saccharomyces cerevisiae, the budding yeast contains 130 distinct protein kinase encoding 
genes, representing approximately 2% of the entire yeast genome (Hunter and Plowman, 
1997). The human genome contains 518 protein kinase genes comprising 1.7% of the genome 
(Manning et al., 2002). 

The MAPK signal transduction pathways constitute a cascade of phosphorylation events 
that transmit extracellular signals from membrane-bound receptors to the nucleus. MAPKs  
are highly selective for phosphorylation of serine/threonine residues lying immediately N-
terminal to a proline residue within a peptide substrate (Hanks and Hunter, 1995; Brábek 
and Hanks, 2004). MAP kinase cascades control almost all aspects of fungal growth, 
development, sexual and asexual reproduction, metabolism, proliferation and stress 
tolerance.  

Two of the three MAP kinase pathways of filamentous fungi, the HOG1 (high osmolarity 
glycerol according to yeast nomenclature) MAPK and the CWI (cell wall integrity) MAPK 
(homologous to Slt2/Mpk1 in yeast) pathways take part in abiotic stress tolerance including 
tolerance to salt, osmotic, oxidative, heat, cold, arsenite and citric acid stressors. Recently the 
HOG MAPK pathway has also been indicated in tunicamycin induced endoplasmic 
reticulum stress in S. cerevisiae (Torres-Quiroz et al., 2010). The third MAPK route, the so-
called pathogenicity MAP kinase (PMK) pathway is homologous to the mating/ 
filamentation Fus3/Kss1 MAPK pathway of the yeast. PMK is required for the infection 
process including penetration into the host cells and invasive growth. This pathway is also 
involved in the yeast-to-hyphal transition in dimorphic species. As far as studies on 
Fusarium species are concerned, the Fmk1 and the Gpmk1 MAP kinases of Fusarium 
oxysporum (Di Pietro et al., 2001) and Fusarium graminearum (Jenczmionka et al., 2003), 
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respectively were also found to be essential for pathogenicity. These PMK-type MAP 
kinases regulates the expression of several genes encoding cell-wall degrading hydrolytic 
enzymes (Jenczmionka and Schäfer , 2005). 

Although PMK-type MAP kinases were generally regarded to have not much role in stress 
adaptation, recent studies demonstrated that the pathogenicity MAPK pathway controls the 
oxidative stress response in Cochliobolus heterostrophus (Izumitsu et al., 2009). These 
observations highlight a more complex nature of stress signaling in filamentous fungi as it 
was anticipated previously (Aguirre et al., 2006). 

We present here a functional analysis of ∆Fvhog1 and ∆Fvmk2 CWI MAPK mutants of F. 
verticillioides by comparing their sensitivity to different oxidative stressors. Fusarium 
verticillioides (teleomorph: Gibberella moniliformis) is a world-wide occurring pathogen of 
maize that synthesizes a range of secondary metabolites, including fumonisins and 
carotenoids. To the best of our knowledge this is the first report on the comparison of 
oxidative stress tolerance of different MAPK mutants of the same filamentous fungus 
species. We also found that both ∆Fvhog1 and ∆Fvmk2 CWI MAPK gene-disruption mutants 
of F. verticillioides resulted in increased sensitivity to methylglyoxal, a toxic glycolytic by-
product  suggesting a double MAPK regulation of the cellular response to this compound. 
Secondary metabolite production is also regulated by different MAPK pathways in fungi: 
we provide here additional information on the recent findings available for fusaria. As the 
highly conserved fungicide signaling by fludioxonil is not dependent on the histidine 
kinase-HOG1 MAPK route in all filamentous fungi (Liu et al., 2008) we compared the 
fludioxonil and hydrogen peroxide sensitivity of three Fusarium species. The extreme 
sensitivity of F. graminearum to fludioxonil and hydrogen peroxide was not associated with 
substantial changes in HOG MAPK mediated osmotic stress tolerance. We also found that 
∆hog1 mutants of two other Fusarium species showed fludioxonil tolerant and hydrogen-
peroxide sensitive phenotypes, similarly to other filamentous species. 

2. The role of HOG1 MAPK signaling in stress and fungicide tolerance of 
Fusarium species 

Orthologues of the yeast HOG1 pathway genes have been identified either by functional or in 
silico analysis in several Fusarium species, including F. graminearum, Fusarium proliferatum, F. 
oxysporum, and F. verticillioides (Di Pietro et al., 2001; Ochiai et al., 2007; Ádám et al., 2008a, b; 
Rispail et al., 2009; Rispail and Di Pietro, 2010). In F. proliferatum, the HOG1 MAPK pathway 
plays a pivotal role in stress tolerance: this route takes part in salt, osmotic, heat, UV and 
oxidative (hydrogen peroxide) stress responses, but it is not required for invasive growth, 
sexual and asexual sporulation (Ádám et al., 2008a, b). Osmotic stress caused a considerably 
higher rate of cell death in the ∆Fphog1 MAPK gene disruption mutants as compared to the 
wild type strain. More importantly, when the fungi were subjected to osmotic (4% NaCl) 
stress, levels of reactive oxygen species (ROS), mitochondrial membrane permeability 
transition, nuclear disintegration and DNA fragmentation, four independent markers of 
programmed cell death (PCD) all showed significant increases in the ∆Fphog1 mutants in 
comparison to the wild type strain suggesting that an important role of the functional Hog1 
MAPK gene is attenuating apoptotic phenotypes under stress conditions (Ádám et al., 2008a). 
Fig. 1. shows intense cell death symptoms and accumulation of ROS indicated by blue 
stained morphologically abnormal cells and green fluorescent cells (indicated by arrow), 
respectively in a ∆Fphog1 gene-disruption mutant subjected to salt stress after adding 4% 
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(w/v) NaCl to the culture medium. Similarly to ∆hog1 mutants of other fungi, like Neurospora 
crassa, Aspergillus nidulans, C. heterostrophus and Colletotrichum lagenarium the ∆Fphog1 MAPK 
mutants of F. proliferatum became tolerant to phenylpyrrole and dicarboximide fungicides 
(Zhang et al., 2002; Noguchi et al., 2004; Yoshimi et al., 2005; Ádám et al., 2008b; Hagiwara et al., 
2009). Although the exact mode of action of these compounds is still unclear, the finding  
that heterologous expression of Hik1, the histidine kinase (HK) gene of Magnaporthe oryzae in 
the yeast, S. cerevisiae that contain only one HK gene, Sln1 confers susceptibility in this 
otherwise fludioxonil-resistant organism, suggests that class III HKs, located upstream  
of the HOG1 MAPK cascade are possible targets of this fungicide (Motoyama et al., 2005).  
The class III HKs responsible for elevated osmo-tolerance and increased fludioxonil 
sensitivity in filamentous fungi are not the orthologues of Sln1 of the yeast (Catlett et al.,  
2003). Inactivation of Fhk1, a class III HK in F. oxysporum resulted in osmo-sensitivity and 
resistance to phenylpyrrole and dicarboximide fungicides (Rispail and Di Pietro, 2010). The 
increased tolerance of the ∆Fphog1 mutants of F. proliferatum to fludioxonil and vinclozoline 
(Ádám et al., 2008b) suggests that functional HK-HOG1 MAPK pathway is required for 
sensitive response to these fungicides in Fusarium species. In silico analysis of HKs by 
reciprocal BLASTP searches in Fusarium genome sequences led to the identification of Fhk1 
(FOXG_01684) orthologues both in F. verticillioides (hypothetical protein FVEG_08048) and  
F. graminearum (hypothetical protein FGSG_07118) (Nagygyörgy and Ádám, unpublished).  

 
Fig. 1. Double staining of Fusarium proliferatum ∆Fphog1-24 gene-disruption MAP kinase 
mutant with 2,7-dichlorodihydrofluorescein diacetate (DCHFDA) and Evans blue after 
NaCl (4% w/v) exposition. Intensive green fluorescence (indicated by arrow) and dark blue 
discoloration of the cells indicate accumulation of reactive oxygen species (ROS) and cell 
death, respectively.  
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HKs have five HAMP (histidine kinase, adenylate cyclase, methyl binding protein and 
phosphatase) repeats: mutations in these sequences are responsible for the increased osmo-
sensitivity and fungicide resistance of N. crassa, C. heterostrophus, Alternaria brassicicola and 
Botrytis cinerea (Ochiai et al., 2001; Yoshimi et al., 2004; Motoyama et al., 2005; Viaud et al., 
2006). Recent microarray analyses have further shown that the transcriptional response to 
fludioxonil depends on a Hog1 orthologue in A. nidulans. This response overlaps, in part 
with the transcriptional response to hyperosmotic stress but depends on factors other than 
the AtfA transcription factor responsible for conidial stress tolerance (Hagiwara et al., 2009). 
Thus the identification of transcription factor(s), that are located downstream of Hog1 
MAPK and influence gene expression response to fludioxonil requires further studies.  

Although fungicide signaling by fludioxonil is highly conserved in filamentous fungi, 
response to this compound is still not entirely dependent on the HK-HOG1 MAPK route in all 
species. For example, the ∆sak1 (Hog1 orthologue) knockout mutants of B. cinerea maintained 
their sensitive phenotype to fludioxionil (Liu et al., 2008) indicating the complex nature of this 
signaling pathway. On-going research of our laboratory on fludioxonil sensitivity of three  
Fusarium  species with available genome sequences  (F. graminearum  PH-1/NRRL 31084, F. 
oxysporum 4287 and F. verticillioides FGSC 7600; http: //www.broadinstitute. org/annot-
ation/genome/Fusariumgroup/MultiHome.html) led to somewhat surprising results (Fig. 2).  

a

F.v. 7600

F.o. 4287

107 106 105 104

F.v. 7603

F.p. 2287

b c d
107 106 105 104

F.g. 31084

f 

∆Fphog1

∆Fvhog1

107 106 105 104

107 106 105 104

107 106 105 104 107 106 105 104

e  
Fig. 2. Growth sensitivity of three Fusarium species: Fusarium oxysporum 4287, Fusarium 
verticillioides FGSC 7600 and Fusarium graminearum PH-1/NRRL 31084 against different 
stressors (a-d) and sensitivity of ∆hog1 mutants of F. verticillioides FGSC 7603 and F. proliferatum 
FGSC 2287 (∆Fvhog1-14 and ∆Fphog1-24, respectively) against fludioxonil (e-f). Five-five μl of 
indicated concentrations of conidia (cells/ml) was spotted on (a, e) complex medium (CM) 
agar plates and CM agar plates supplemented with (b, f) 10 μg/ml fludioxonil, (c) 4% (w/v) 
NaCl and (d) 2 M sorbitol. Incubation time was 3 days for all plates at 24 oC. 
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F. graminearum showed increased sensitivity to this fungicide as compared to the other two 
species (Fig. 2a and b), but fludioxonil sensitivity was not accompanied with substantial 
changes in osmo-sensitivity of this fungus (Fig. 2c and d). On the other hand, ∆hog1 mutants of 
F. proliferatum and F. verticillioides showed fludioxonil tolerance (Fig. 2e and f), paralleled with 
elevated osmo-sensitivity. Although these results do not exclude the involvement of the HK-
HOG1 MAPK pathway in these phenotypes, further studies are needed to a better 
understanding of fungicide stress responses in Fusarium species. 

3. The role of MAPK pathways in secondary metabolism of Fusarium species  

In addition to its role in stress and fungicide tolerance, the HOG1 MAPK pathway plays also 
an important role in the regulation of secondary metabolism in different Fusarium species 
(Ochiai et al., 2007; Kohut et al., 2009). Disruption of either Fgos2 (a HOG-type MAPK 
orthologue) or Fgos4 (encoding a MAPK kinase) or Fgos5 (encoding a MAPK kinase kinase) 
blocked trichotecene production in F. graminearum and substantially reduced expression of 
the trichotecene gene cluster. On the other hand, amounts of aurofusarin were increased in 
all three types of mutants (Ochiai et al., 2007). Deoxynivalenol production is controlled by 
Mgv1 CWI MAPK in F. graminearum (Hou et al., 2002). Nitrogen depletion induced the 
production of fumonisin B1, a polyketide derivative mycotoxin and increased the expression 
of fuminisin biosynthesis genes in F. proliferatum. Under nitrogen starvation (absence of any 
N-source) conditions deletion of Fphog1, a HOG-type MAP kinase gene resulted in further 
increases in FUM1 and FUM8 gene expression, as well as fumonisin B1 production 
suggesting that this response is mediated via the HOG-type MAPK pathway in F. 
proliferatum (Kohut et al., 2009). In a more recent study Fvmk1, a PMK-type MAPK gene was 
identified as a positive regulator of fumonisin B1 production in F. verticillioides (Zhang et al., 
2011). On the contrary, fumonisin B1 production was not regulated by cAMP signaling 
either in F. proliferatum (Kohut et al., 2010) or F. verticillioides (Choi and Xu, 2010). This 
signaling route regulates, however negatively regulates the production of bikaverin, another 
polyketide metabolite in Fusarium species (Kohut et al., 2010; Choi and Xu, 2010; García-
Martínez et al., 2011). Moreover, the production of another secondary metabolite such as 
carotenoids is upregulated in Fusarium species not only by cAMP signaling (García-
Martínez et al., 2011) but other regulatory elements related to sexual reproduction (Ádám et 
al., 2011). 

4. Complexity of oxidative stress signaling in fungi: Role of the HOG1 and the 
CWI MAPK pathways  

Previous research with different species indicated that, besides the HOG MAPK pathway 
(Aguirre et al., 2006; Du et al., 2006; Ádám et al., 2008a), the CWI MAPK pathway (Krasley et al., 
2006; Valiante et al., 2007) also has a role in oxidative stress tolerance of fungi. To compare the 
particularities of the two pathways we generated both ∆hog1 (∆Fvhog1) and CWI MAPK 
(∆Fvmk2) gene-disruption mutants in a single fungus species, F. verticillioides as we have 
described earlier (Ádám et al., 2008a). These mutants were tested for oxidative stress tolerance 
in conidial dilution assay using hydrogen peroxide, menadione, diamide and methylglyoxal as 
stressors. Although all of these compounds elicit finally oxidative stress, the mechanisms they 
do this are different. Hydrogen peroxide induces lipid peroxidation, protein and DNA 
damage directly or indirectly and contributes to the formation of hydroxyl radicals (OH.) via 
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the Fenton reaction (Thön et al., 2007). Menadione is a redox cycling reagent that acts by 
generating superoxide radicals (O2.-) using NADPH as a cofactor. Diamide causes depletion of 
the reduced glutathione pool and perturbation of the redox balance of cells; this compound 
also reacts with sulfhydryl groups of proteins in a reversible way (Pócsi et al., 2005; Thön et al., 
2007). Methylglyoxal is a highly toxic natural glycolytic by-product interacting with proteins in 
a reversible way and, at higher concentrations (8-10 mM) it can deplete the glutathione pool in 
yeast cells (Aguilera et al., 2005).  

107 106 105 104 107 106 105 104107 106 105 104 107 106 105 104

107 106 105 104 107 106 105 104 107 106 105 104 107 106 105 104

a b c d

e f g h

CM

F. v. 7603

∆Fvmk2

CM + NaCl CM + S CM + H2O2

F. v. 7603

∆Fvhog1

∆Fvmk2

CM + MG CM + MG CM + D CM + M

∆Fvhog1

 
Fig. 3. Differential sensitivity of ∆Fvhog1-14 and ∆Fvmk2-16 CWI MAPK mutants of Fusarium 
verticillioides FGSC 7603 against oxidative stressors. Five-five μl of indicated concentrations of 
conidia (cells/ml) was spotted on (a) complex medium (CM) agar plate and CM agar plates 
supplemented with (b) 4% (w/v) NaCl, (c) 2 M sorbitol (S), (d) 2 mM hydrogen peroxide 
(H2O2), (e) 5 mM methylglyoxal (MG), (f) 10 mM methylglyoxal (MG), (g) 0,5 mM diamide (D) 
and (h) 0,03 mM menadione (M). Incubation time was 3 days for all plates at 24 oC. 

The ∆Fvhog1 mutant of F. verticillioides was highly sensitive to the osmotic stressors, sodium 
chloride and sorbitol (Fig 3a, b and c), similar to our former results with F. proliferatum ∆hog1 
mutants (Ádám et al., 2008a). On the contrary, the ∆Fvmk2 mutant showed no elevated 
osmo-sensitivity (Fig 3a, b and c). The ∆Fvhog1 mutant was sensitive not only to osmotic 
stressors but, as well as to hydrogen peroxide and methylglyoxal. However, this mutation 
caused no change in menadione and diamide sensitivity (Fig. 3a, d, e, f g and h). This is a 
first report on the involvement of HOG MAPK pathway in methylglyoxal tolerance of a 
filamentous species. Formerly Aguilera et al. (2005) reported on methylglyoxal sensitivity of 
∆hog1 mutants of S. cerevisiae. ∆Hog1 mutants of filamentous species showed different 
oxidative stress sensitivity. Mutants of A. fumigatus lacking the MAP kinase ∆sakA/∆hog1 
were more sensitive to H2O2 and menadione compared to wild type strain (Du et al., 2006). 
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In F. oxysporum the Fhk1 HK mutant, deficient in an upstream element of the HOG1 MAPK 
pathway is sensitive to menadione induced oxidative stress but not to H2O2 (Rispail and Di 
Pietro, 2010).  

Results obtained with the ∆Fvmk2 CWI MAPK mutants were completely different: they 
showed no elevated osmo-sensitivity, but their sensitivity to methylglyoxal and diamide 
increased as compared to the wild type strain (Figs. 3a, b, c, d, e, f, g and h). According to 
these results, the cellular response to methylglyoxal is regulated by both the HOG1 and CWI 
MAPK pathway, but the other stressors are signaled separately either by the HOG1 or CWI 
MAPK pathway. As both methylglyoxal and diamide interact mainly with glutathione 
metabolism, the possible role of CWI MAPK is to maintain glutathione pools under stress 
conditions. As regarding the oxidative stress sensitivity of other species, CWI MAPKs 
played a fluctuating but positive regulatory role in stress tolerance. An exceptional case is A. 
fumigatus: the deletion of MpkA CWI MAPK gene resulted in increased H2O2 tolerance and 
sensitivity to menadione and diamide (Valiante et al., 2007). In the case of S. cerevisiae 
∆slt2/∆mpk1 mutants were sensitive to H2O2 (Krasley et al., 2006). But in C. albicans and S. 
pombe, deletion mutants of ∆mkc1 and ∆pmk1, respectively were sensitive to diamide but not 
to H2O2 and menadione (Navarro-Garcia et al., 2005; Madrid et al., 2006). 

5. Sensitivity of different Fusarium species to hydrogen peroxide  

We compared the hydrogen peroxide sensitivity of three Fusarium species, F. graminearum    
PH-1/NRRL 31084, F. oxysporum 4287 and F. verticillioides FGSC 7600 with available genome 
sequences (http://www.broadinstitute.org/annotation/genome/Fusariumgroup/ Multi 
Home.html). F. gaminearum, a causal agent of head blight of wheat and stalk/cob rot of 
maize was the most sensitive to this oxidative stressor both in a decimal conidium dilution 
assay (Valiante et al., 2007)   and in radial growth  test  (Ádám et al., 2008a). Mycelial growth 
and conidial germination of this fungus was more strongly inhibited by 5-50 mM and 2 mM 
H2O2 concentrations as compared to F. oxysporum and F. verticillioides (Fig 4A, 4B), other two 
plant pathogenic species causing vascular wilt of a wide range of plants and maize cob rot, 
respectively. In a previous study (Nicolaou et al., 2009), oxidative stress tolerance of 18 
fungal species originating from different ecological niches and phylogenetic positions were 
compared and plant pathogenic species, like Ustilago maydis, F. graminearum and M. grisea 
were found to be relatively sensitive to oxidative stressors, including hydrogen peroxide. 
This result was somewhat surprising as both plant and animal pathogens that are exposed 
to massive oxidative and/or nitrosative stress by the host cells in many host-pathogen 
interactions (Brown et al., 2009) would have been expected to acquire improved levels of 
oxidative stress tolerance during their evolution. When the hydrogen peroxide sensitivity 
tests were extended to other two Fusarium species, F. fujikuroi MP-C and F. proliferatum 

FGSC 2287, causing the bakane disease of rice and crown and root rot of a wide range of 
plants, respectively they also showed higher levels of hydrogen peroxide tolerance as 
compared to that of F. graminearum. The increased H2O2 sensitivity of F. graminearum can be 
putatively explained by the long saprophytic phase in the life cycle of this species. During 
the saprophytic phase, F. graminearum lives and propagates on dead tissues and in this 
niche, the fungus is much less exposed to oxidative stress influence than the other species, 
that spend much of their life cycle inside living plant tissues either as endophytes or 
vascular colonizers. 
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Fig. 4. Growth sensitivity of three Fusarium species: Fusarium verticillioides FGSC 7600, 
Fusarium oxysporum 4287 and Fusarium graminearum PH-1/NRRL 31084 against hydrogen 
peroxide (H2O2) in radial growth test (A) and decimal conidial dilution assay (B). In (B) five-
five μl of indicated concentrations of conidia (cells/ml) was spotted on complex medium 
(CM) agar plate and CM agar plates supplemented with the indicated concentrations of 
hydrogen peroxide (H2O2). Incubation time was 5 days for plates in (A) and 3 days for plates 
in (B) at 24 oC.  

In another approach we have studied the role of cAMP signaling in oxidative stress 
response of different Fusarium species. Previous studies in N. crassa demonstrated that 
cAMP signaling and HOG1 MAPK signaling play opposite role in respect to oxidative stress 
response: disturbances in the cAMP and the HOG1 pathways result in increased and 
decreased H2O2 tolerance, respectively. In F. proliferatum and F. verticillioides, disruption of 
Acy1, the adenylyl cyclase gene resulted in enhanced resistance to heat shock and oxidative 
stress (Kohut et al., 2010; Choi and Xu, 2010). However, in contrast to these data, the acyA- 
mutants of F. fujikuroi MP-C were more sensitive to H2O2 than the wild type (García-
Martínez et al., 2011). This finding suggests the high versatility of the cAMP signaling route 
even in closely related fungi. These differences are particularly important, if we consider 
that heat shock and oxidative stress pathways have at least partially overlapping signaling 
routes and regulated by the same transcription factors in yeast (Ikner and Shiozaki, 2005). 
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6. Conclusion  

Functional analysis of orthologous signal transduction genes in different filamentous fungal 
species highlighted the complex nature of stress signal transduction. This is especially true 
for oxidative stress signaling, where all fungal MAPK cascades, the HOG1, CWI and PMK 
MAPK pathways participate and interact in this regulatory network depending on the 
fungal species. One of the oxidative agents, mehylglyoxal, a toxic by-product of glycolysis is 
signaled either by the HOG1 MAPK or CWI MAPK pathway in F. verticillioides. All these 
MAPK cascades are also involved either in positive or negative regulation of secondary 
metabolite production including mycotoxins in different Fusarium species. The high 
versatility of oxidative stress and secondary metabolite signaling by the above-mentioned 
MAPK pathways and the cAMP-PKA pathway in different Fusarium species denotes that 
stress signaling is exposed to rapid evolution to tune stress responses in a niche-specific 
manner, independently of the phylogenetic position of a given species.  
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