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Wladislav Sudnik 
R & E Center ‘ComHi-Tech in Materials Joining‘ 

Welding Department, Tula State University, 
Russian Federation 

1. Introduction 

An increase in the productivity of arc welding is connected with an increase in both welding 

speed and welding current, which leads to the formation of welding defects, such as 

undercuts, humps, burn-through areas, etc. Fusion welding defects is classified due to the 

international standard ISO 6520-1.  

In most cases mathematical models of weld formation describe the normal course of the 

process and establish the relation between welding parameters and weld pool sizes. It is 

much more difficult to construct the models which describe defective weld formation; the 

formation of the defects is described within the limits of the general model of the process at 

some combinations of welding parameters and weld pool sizes.  

The arc pressure at the crater of a weld pool makes considerable impact on the basic 

processes occurring during the weld formation. Despite the arc pressure it is not a direct 

welding parameter, it has an important technological value as it defines the crater depth of a 

weld pool and essentially the lack of penetration and an incomplete fusion (Yamauchi et al., 

1982). Free surface deformation of a molten weld pool is an important feature of fusion 

welding. For gas tungsten arc welding (GTAW), a significant weld pool deformation may 

take place at high current levels. In gas metal arc welding (GMAW), the free surface 

problem is more complicated due to the filler metal addition and droplet impact. Free 

surface deformation affects the fluid flow and heat transfer in the weld pool, which, in turn, 

affects the weld geometry. The first profound research on the formation of weld defects was 

made by Bradstreet, 1968, in which the basic mechanisms of the formation of weld defects 

were shown in fusion welding.  

The first two decades of the 70s and 80s of the 20th century have been devoted to the 

research of the mechanisms of the formation of undercuts and the causes of the transition 

from a normal mode of the weld formation to that one with the appearance of defects, as 

well as to the creation of the correspondent mathematical models. Selected papers of that 

period are presented in Table 1.  

www.intechopen.com



 
Arc Welding 

 

244 

Bradstreet, 1968 
Effect of surface tension and melt flow on 
weld bead formation 

Paton et al., 1971 
Hypothesis of a weld pool hydraulic head 
and arc pressure balance, arc induced 
undercutting 

Erokhin et al., 1972  
Hypothesis of a level lowering of a weld 
pool and its fixation by solidification 
process 

Yamamoto & Shimada, 1975 
Hypothesis of a hydraulic jump and 
undercut bead, supercritical flow model  

Nomura et al., 1982  
Experimental confirmation of hypothesis 
validity Paton et al., 1971 

Sudnik, 1985, 1991a, b 

Mathematical modelling of solidified free 
surface profile in fusion welding. For the 
first time, undercutting had been modelled 
and simulated 

Table 1. Selected papers of research on the mechanisms of the formation of undercuts. 

For the last 20 years the mechanisms of the humps formation have been actively studied, 
and corresponding mathematical models have been developed, Table 2.  

 

Tytkin, 1981 
Theoretical study of coarse flaky surface. Kelvin-Helmholtz 
instability   

Gratzke et al., 1992 Capillary instability model for humping 

Lin & Eagar, 1983 Explained humping using vortex theory  

Mendez & Eagar, 2003 
Simple model for force balance between the gouged region and 
trailing region inside weld pool 

Nguyen et al., 2005, 2006 

Experimental study of hump formation by the instrumentality of 
LaserStrobe video imaging system; hump bead as a series of 
periodic fluctuation of swellings is one of dominating defect in 
high speed welding 

Soderstrom & Mendez, 
2006 

Two types of humping formation: gouging region and beaded 
cylinder 

Kumar & DebRoy, 2006  
Unified mathematical model of humping in GTAW with Kelvin-
Helmholtz instability  

Cho & Farson, 2007 
Thermohydrodynamic mathematical model and numeric 
analysis of hybrid process for prevention of weld bead hump 
formation  

Chen & Wu, 2009   
Thermohydrostatic mathematical model and numerical analysis 
of forming mechanism of hump bead in high speed GMAW   

Table 2. Selected papers on the study of the humps formation and the creation of the 
correspondent models. 

From a mathematical viewpoint, the modelling of the weld defects formation consists in 
simulation of the solidifying profile of the weld free surface. It demands the execution of 
numerical three-dimensional modelling of a weld pool with the deformable free surface, 
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which for the first time had been executed by Sudnik, 1985, 1991 at predicting the quality of 
welds and simulation of the undercuts formation in GTAW. Then the first numerical 
thermohydrostatic mathematical models for GTAW with a deformable weld pool surface 
were created by Ohji et al., 1983, and Zacharia et al., 1988.   
In the 21st century there were developed fuller thermohydrodynamic models by Kumar and 
DebRoy, 2006; Cho and Farson, 2007, as well as the simplified thermohydrostatic models by 
Chen & Wu, 2009 for the simulation of the humps formation.  
The purpose of the present work is the analysis of the physical mechanisms of the defects 
formation on the basis of the full and simplified mathematical models of the formation of 
undercuts and humps. The ways of thermohydrodynamic and thermohydrostatic modelling 
and simulation of the weld formation with correspondent equations and their boundary 
conditions will be presented. There will be stated the stready state mathematical models of 
the GTAW and GMAW processes, as well as the transient model for the GMAW processes 
that allows the reproduction of the formation of undercuts and burn-through areas. The task 
of the search for the welding parameters, providing faultless areas, will be illustrated on the 
examples of two-dimensional areas for GTAW- and three-dimensional areas for GMAW-
processes.  

2. Physical mechanisms of defects formation 

Savage et al., 1979, showed that an increasing in welding speed beyond a critical limit 
results in weld-bead undercutting and/or humping, related to arc force and its distribution, 
Fig. 1.  
 

 

Fig. 1. Effect of welding current on welding speed limit, after Savage et al., 1979. 
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According to the results of this work there are some characteristic ranges of the weld current 
for the formation of undercuts and humps. For the currents below 250 А, critical welding 
speed corresponds to the beginning of formation of undercuts, and for the formation of 
humps higher speeds are required. In the range 250 - 400 А the speed limit corresponds to 
the beginning of the humps formation without undercuts. For the currents above 400-430 А, 
at first  an undercut forms, whereas further increase in the welding speed leads to the  
humps. 

2.1 Undercutting mechanisms 
Bradstreet, 1968, used a high speed camera to observe undercutting and humping 
phenomena and showed that the undercutting is also strongly influenced by surface tension, 
which controls wetting at the edges of the weld pool. Paton et al., 1971, put forward a 
hypothesis about a weld pool hydraulic head and arc pressure balance. At an increase in the 
welding speed, the pressure at the weld pool bottom from a liquid column decreases at the 
constancy of the arc pressure, and at balance infringement probably formation of an 
undercut occurs. This hypothesis has been confirmed by Nomura et al., 1982 which have 
experimentally confirmed the justice of this hypothesis. Erokhin et al., 1972 put forward 
hypothesis of the level lowering of the weld pool and its fixation by the solidification 
process. Authors also considered that level of the liquid metal in the points of the maximal 
width of the weld pool where solidification at the weld edges begins,  it appears below the 
surface of the basic metal owing to the big inclination of the weld pool mirror and the high 
speed of solidification. Chernyshov et al., 1979 considered that undercuts and other defects 
initiate difficult wave processes at the surface of the liquid metal and, in particular, 
hydraulic jumps of various forms. The hydraulic jump is known from hydraulics and is 
characterised by a spasmodic increase in height of the liquid level. The hypothesis 
(Yamamoto & Shimada, 1975; Shimada & Hoshinouchi, 1982) about the role of the hydraulic 
jump in the formation of welding defects, including the bead undercut has been 
undeservedly forgotten, Fig. 2. 
They connect the occurrence of undercuts, first of all, with the arc pressure; therefore the 
aspiration to receive a smaller arc pressure has in their researches caused application of a 
welding process in the environment of inert gas of the lowered pressure (32 mm Hg). They 
have established that in comparison with welding at atmospheric pressure normal 
formation of the platen without undercuts can be received in wider range and at higher 
values of the weld current and the welding speed. At an increase in the welding speed 
instead of the normal wide platen there is a narrow deep platen, and on the front wall of a 
weld pool there is an area gouging. At excess of critical speed of formation of undercuts the 
area gouging extends on all a crater zone of a weld pool and reaches it midlength section. 
Thus liquid metal is displaced in a tail part of a weld pool with undercut formation at 
solidification of liquid metal.     
Sudnik, 1985, 1991 developed a mathematical model of the weld formation in GTAW which, 
for the first time, allowed to model and to reproduce the undercut. The mathematical model 
of fusion welding process by Sudnik, 1991a, considered the energy equation in enthalpy 
statement and the equation of balance of pressure on deformable free surfaces of the weld 
pool at the full penetration with boundary conditions corresponding to the weld process. It 
has appeared that the undercut is one of natural forms of cross-section and arises at the 
fusion line at a level lowering of the surface of a weld pool on the sites of the beginning of 
the solidification.  
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Fig. 2. Model of hydraulic jump and gouging region, after Shimada and Hoshinouchi, 1982 

Ohji et al, 2004 presented a three-dimensional transient mathematical model of the GMAW- 
process for simulation of multiple pass welding and welding of fillet welds with cross-
section fluctuations of the torch which also reproduces undercut formation. 

2.2 Humping mechanisms 
Bradstreet, 1968 is credited with publishing the first paper to directly recognise humping 
during GMAW. He has established that the hump defect was observed only at a high travel 
speed, that a leading (“push”) weld gun travel angle suppressed hump formation, and that 
oxygen in the shielding gas exacerbated hump formation. He proposed a liquid instability 
theory that was later modified by Gratzke et al., 1992 explaining humping during GMAW. 
Yamamoto and Shimada, 1975 and Shimada and Hoshinouchi, 1982 used the theory of 
hydraulic jump to account not only for an undercut, but also for the humping phenomenon, 
Fig. 3.  
Mendez and Eagar, 2003 offered an explanation of a penetration and occurrence of defects in 
a weld pool at high currents. Thus arc pressure pushes the fused metal to a back part of a 
weld pool, creating under an arc a thin layer of liquid metal. Premature solidification of this 
thin layer initiates formation of the humps, the split pool, parallel formation of humps, 
tunnel porosity and an undercut. The thin nature of a liquid layer is the reason of the 
increased penetration at a high current. They proposed a simple model for force balance 
between the gouged region and trailing region inside weld pool. Later, Soderstrom and 
Mendez, 2006 have offered two types of humping formation: gouging region and beaded 
cylinder. Nguyen et al., 2005, 2006 have lead an experimental study of hump formation by 

www.intechopen.com



 
Arc Welding 

 

248 

the instrumentality of LaserStrobe video imaging system and have shown that hump bead 
as a series of periodic fluctuation of swellings is one of the dominating defects in high speed 
welding.   
Cao et al., 2004 used a commercial software package, FLOW-3D, to simulate a transient 
moving weld pool under the impact of droplet impingement without the droplet generation. 
Choi et al., 2006 investigated hybrid processes of welding by the laser and GMAW for 
suppression of formation of humps and have shown that the heat input from the defocused 
laser beam applied in front of a GMAW pool suppresses formation of a weld bead hump 
defects. Kumar and DebRoy, 2006 have proposed the unified three-dimensional 
thermohydrodynamic mathematical model of humping defects in GTAW based on the 
Kelvin-Helmholtz instability of a free surface. This model can be used to help prevent 
humping when the effect of arc current, welding speed, shielding gas, electrode geometry, 
ambient pressure, torch angle, and external magnetic field are considered. Hu et al., 2007 
studied weld pool dynamics under the periodical impingement of filler droplets and the 
formation of such defects as ripples. Cho and Farson, 2007 used a mathematical model of 
hybrid process laser + pulsed GMA welding for the prevention of weld bead hump 
formation and have also established how formation of bead humps in high-speed GMAW is 
prevented by additional laser heat input. Chen and Wu, 2009 have developed a 
thermohydrostatic mathematical model and have lead numerical analysis of forming 
mechanism of hump bead in high speed GMA welding.  

3. Mathematical models of the formation of weld and bead defects 

Generally anisothermic movement of a viscous compressed liquid in hydrodynamics is 
described by the system of the Navier-Stockes-Fourier equations that include. 

 Three equations of Navier-Stokes (for a component of a velocity vector u, v, w). 

 The continuity equation (for pressure p). 

 The equation of convective heat conductivity (for calculation of temperature T). 

 The equation of state which connects p, ρ, T (for ideal gases this equation is of the form p 
= ρ RT). 

Thus, there are 6 equations with 6 unknown (u, v, w, ρ, T, p). This system is extremely 
difficult to solve even with the use of modern numerical methods on powerful personal 
computers. Therefore, often one should examine various simplifications of this system 
which in some cases adequately model a fluid flow. 
The boundary problem for a concrete thermal and hydrodynamic process of fusion welding 
is formed by differential equations with initial and boundary conditions. The full 
formulation of this problem in scientific weld literature is absent. We will make an attempt 
to examine these questions with reference to arc welding and defects of a weld.   
The weld pool model can be described by the three main conservation equations of energy, 
movement and continuity (Rykalin et al., 1985) with the boundary conditions defining 
interaction of heat and force flows with welded workpiece. The order of the record of the 
differential equations of impulse (movement), continuity and energy (a convective heat 
transfer) accepted in hydrodynamics, from the point of view of mathematical physics and 
the numerical iterative solution by the computer, does not play a special role, as the solution 
of the coupled problem is reached iteratively. For high-temperature weld processes the first-
priority solution of the energy equation in most cases is defining and sets the melt volume 
and its form where hydrodynamic processes proceed. 
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3.1 Model of convective heat transfer and viscous fluid flow dynamics 
3.1.1 Energy equation, or the equation of a convective heat transfer 
The weld pool model according to Rykalin et al., 1985 is described by conservation 
equations of energy, movement  after Navier-Stokes and continuity. The energy equation 
with a moving heat source can be presented as the equation of heat conductivity in enthalpy 
statement with a fluid flow (Kou &  Sun, 1985) 

    w

H H
uH v T

t x
              


 (1) 

where ρ is the density,  is an enthalpy coupled with temperature Т by relation , where , with 
c is thermal capacity, ψl is a fraction of a liquid phase in two-phase zone of  solid-liquid 
melting / solidification area, ; Tl and Ts are liquidus and solidus temperatures, is the latent 
heat of melted alloy,  is a flow velocity vector of a weld pool melt, vw is the welding speed, 
and λ is heat conductivity coefficient. 

3.1.2 Thermal boundary conditions 
The boundary condition on the top surface describes the energy source heat flows and heat 
sinks on an air convection, radiation and evaporation 

 
2

4 4
0 0 vap2 2

q

exp ( ) ( )
2 2q

T Q r
T T T T q

t k k

  


          
   

 (2) 

where η is the process efficiency, Q is the heat source power, kq is heat flow concentration 
coefficient. Α is the heat exchange-coefficient, σ is the Stefan-Boltzmann constant, ε is the 
emissivity, qvap is the heat sink on evaporation.  

3.1.3 Movement conservation equation for a viscous liquid 
The movement conservation equation for a viscous incompressible Newtonian liquid in 
Navier-Stokes approximation is presented according to Landau and Lifshiz, 1959 

 2( )
u

u u p u g
t

           

    
 (3) 

where p is the pressure,  is the viscosity,  is the acceleration vector of free fall. In this 
equation the left part describes inertial force, including local and convective acceleration. In 
the right part there is a pressure gradient, a friction force and elevating force of a free 
convection.  

3.1.4 Force boundary conditions 
Boundary conditions for a free surface may be of two types: kinematic, setting speeds on 
liquid boundaries, and dynamic, connected with pressure. Other boundary conditions for 
the walls of a weld pool are similar to hydrodynamic conditions on channel walls, i.e. to 
adhesion conditions according to which normal and tangential components of speed on a 
wall are equal to zero. The form of a free surface of a weld pool is defined from a condition 
of balance of internal and external forces on its surface. To avoid any formulations of this 
balance, we will make an attempt for its conclusion from the first principles.  

www.intechopen.com



 
Arc Welding 

 

250 

Boundary conditions on a free interface a liquid - gas include: 
 - normal stresses from pressure balance  of a liquid and forces of a viscous friction (Landau 
and Lifshiz, 1959; Batchelor, 1970), and also it is similar from balance of capillary forces and 
forces of an arc pressure in the arc welding conditions, and, the left part of expression is 
written down like expression taking into account a viscous stress tensor   

 n
arc

1 2

1 1
2

u
p p

n R R
 

 
      

  
 (4) 

- and tangential stresses of Marangoni forces 

 
u T

n T z

   
 

  
 (5) 

where p is the pressure in a liquid on a free surface in a normal direction, µ is the dynamic 
viscosity of a melt, un is the velocity component of a fluid flow on a normal to a movement 
direction, γ is the surface tension, R1 and R2 are  the main radiuses of curvature of the bent 
surface and parc is the arc pressure.   
For the approximate calculation of curvature of surface Z = Z (x, y), set in an explicit form, 
in hydrodynamics the formula of a Landau and Lifshits, 1959 is used 

 

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2
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21

11

y

Z

x

Z

RR
   

which is fair for poorly bent surfaces. At the big surface deflections the multiplier of 
formulas of the differential geometry, equal to a cosine of an inclination of a surface of a 
weld pool is in addition used.  

3.1.5 The continuity equation, or the mass conservation law 
The equation of continuity follows from the law of a mass conservation and registers 

 ( ) 0div u
t

 
 




 (6) 

This law of a mass conservation is important for modelling of a fusion welding process, 
including arc welding. At local heating there is a thermal expansion of metal and phase 
transformation during melting. Accepting an assumption about an immovability of solid 
boundary surfaces of a solidus and a constancy of mass of metal during heating and fusion 
(for example, during welding by a nonconsumable electrode), volume changes can be 
defined on the temperature change of density proportional to coefficient of expansion. The 
weld pool volume Vm, 0 with density ρ0 at reference temperature T0 and with dependence of 
density on temperature ρ (T) is equal to weld pool volume Vm with convexity at the expense 
of thermal expansion and phase transformation at melting. The convexity form of a melt is 
fixed at the front solidifications that define the form of a profile surface of a weld. The 
subsequent volume shrinkage and return thermal compression at cooling of solid metal 
reduce the sizes, not changing of convexity and concavity forms of area, for example, a weld 
undercut a little. The increase in volume of a weld pool because of a filler addition or its 
reduction because of a technological gap is considered by addition or reduction of these 
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volumes to volume Vm (Sudnik et al., 1999). The account of these phenomena defines an 
additional geometrical condition of change of volume, or balance of masses, in a welding 
zone  

  
,0

0

m

,
( )

mV V

dV Z x y dxdy
T




   (7) 

The solution of the equations system (1) - (7) even on modern computers is connected with 
the big expenses of computer time. For example, for understanding of the humping 
formation during GMAW Cho & Farson, 2007 used software Flow3D which for 
reproduction of real-time 3 seconds has demanded expenses of almost 4 days of central 
processing unit time. Many simplified models are based on assumptions of weak changes of 
velocities and temperatures one direction under the relation with changes in other direction, 
for example, model of a boundary layer and other reduced Navier-Stokes equations.  

3.2 Model of conductive heat transfer and inviscid fluid flow statics 
For simplification of a dynamic problem (1) - (7) 2 assumptions are accepted: 

 The fluid flow is accepted poorly convection, i.e. convection carrying over of heat to the 
fused metal is ignored,  

 The fused metal is a nonviscous incompressible liquid.  
It allows rejecting in the equations velocity terms who have less essential value for 
definition of behaviour of a weld pool which can be described by the theory of an ideal 
liquid of Euler.  

3.2.1 Energy equation, or the equation of a conductive heat transfer 
The energy equation from moving with a welding speed vw a heat source in this case is 
represented by the usual equation of heat conductivity (without convection) in enthalpy 
statement 

  w

H H
v T

t x
   

    
 

 (8) 

with the thermal boundary condition (2).  
At small velocities of movement of a source it is possible to neglect acceleration of a flow 
and viscosity of a melt, i.e. to sink inertial and viscous terms. From four basic driving forces 
of a fluid flow: gravity, pressure, friction and inertia remain only two: gravity and pressure 
which allow describing the phenomena in a weld pool under the hydrostatic law as the 
pressure created by a column of a liquid. Thus, three known conditions of a hydrostatics 
should be satisfied according Myshkis et al., 1987:  

 the Euler's condition in a weld pool volume,  

 the Laplace law (condition) on a melted free surface  

 the Dupre-Yuong condition on a contact line of three environments: a liquid - gas - solid 
body.  

At balance the equation of continuity (6) becomes simpler (), that means, that a density field 

is permanent.  

The equation of Navier-Stokes (2) of fluid dynamics passes in Euler's condition, or the first 

condition of a hydrostatics  
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,gp 
 (9) 

and the hydrodynamic boundary condition of normal stresses (4) becomes simpler and 

takes the form the Laplace law, or the second condition of a hydrostatics 

 
arcp

RR
p 










2

11

1


 (10) 

Integrating Euler's condition (7)  where z is the height of a liquid column, we receive  where 

С is the arbitrary constant. This equality does not impose any restrictions on melt position, 

and only defines pressure distribution in it. The Laplace’s law thus modified for weld 

conditions (9) will play a role of the differential equation of a weld pool surface, and a 

geometrical condition (7) - a role of a corresponding boundary condition.  

3.2.2 Momentum conservation equation for a nonviscous liquid 
The modified equation of Laplace for conditions of fusion welding taking into account an 
arc pressure is of the form as 

 
   

 

2 2 2 2 2

3/2 2 22 2 21 2

1 2 11 1
exp

2 21 1

xx y yy x

p px y

Z Z ZxZyZxy Z ZZ F r
gz C

R R k kZ Z Z
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

                                  

 (11) 

where Z = Z (x, y) is the free surface equation of the weld pool set in an explicit form in the 

Cartesian system of co-ordinates x, y, z; the z is vertical coordinate of a deformable free weld 

pool surface, Zx, Zy, Zxx, Zyy, Zxy are private derivative functions Z=Z (x, y) on 

corresponding co-ordinates; F is force action of a source, the  is concentration coefficient of 

pressure and r is distance from an axis of a pressure source.  

For calculation of curvature of a surface in hydrodynamics the formula for the first time 

presented by Landau and Lifshits, 1959 is used. The constant С in the modified Laplace’s 

equation (9) pays off from a condition satisfaction of an additional condition the continuity 

equations (7). Mathematically, this constant C is the Lagrange multiplier in extreme 

statement (Landau and Lifshiz, 1959; Kim and Na, 1999), and physically, the constant C 

designates caused by surface deformation average change of pressure in a melt (Sudnik & 

Erofeev, 1986; Radaj, 1999). Its value is defined from a boundary condition of a mass 

conservation 

3.2.3 Boundary condition  
The boundary condition (7) dynamic problems (1) - (7) does not change 

  
m ,0

0,
( )

mV V

Z x y dxdy dxdydz
T




   (7') 

Thus, the equations of a weld pool surface in hydrostatic approximation, and taking into 

account the equation of a conductive heat transfer (the energy equation) are formulated; 

such model can be named a thermohydrostatic model of a weld pool. 
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3.3 Models of weld bead defects 
Defects of welded structures can be divided into two groups: 

 having the quantitative characteristic (width and depth of a penetration of a weld, 
depth and undercut radius, height of convexity or depth of concavity, etc.);   

 having qualitative character (presence of cracks, of pores, of burn-through etc.).  
Current values of the first defects pay off from the corresponding mathematical models, the 

second defects are found out by calculation of the physical sizes influencing occurrence of 

defects, and comparison of these sizes and their relations with some critical values. 

For the calculation of welding processes on weight it is necessary to reveal possibility of 

occurrence of a burn-through that is fixed by quantity of excesses on a profile of cross-

section section of the bottom surface of a pool. Sudnik, 1991a has established that occurrence 

of the first bending point is a necessary condition of safe loss of stability of a surface, and the 

second bending point a sufficient condition of occurrence of a burn-through. The condition 

of loss of stability of a surface of an underside of a weld pool, or a burn-through, 

mathematically registers as follows: 

 
 2

dz2

,
0 ,

Z x y

y



 


 (12) 

where y is the cross-section coordinate of the fused metal surface,  is the calculation error.  

3.4 Steady state mathematical models for arc welding 
3.4.1 Model for GTAW 
The three-dimensional model for the GTAW-process which predicts undercuts and burn-

through areas in butt welding is described by the system of three main equations: 

1) Energy conservation 

  w effdiv ( )grad
H

v T T
x

 



 (13) 

where eff (T) is the effective heat conductivity coefficient, depending on temperature T and 

considering a fluid flow  in a weld pool, , L is the heat conductivity coefficient at liquidus 

temperature TL and T0 is the ambient temperature.  

Thermal boundary conditions are usually represented as 
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 (14) 

where ηQ is the effective heat source power, T is the distribution parameter of the heat flow 

of anode power, other designations standard. 

2) Movement conservations of a weld pool free surface Z = Z (x, y) with adaptation for 

welding conditions 

   arc
2

1

Z
T gZ p C

Z
 
     

 
 (15) 
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where σ(T) is the melt surface tension, is the Nabla-symbol, g - acceleration of free fall, parc is 
the arc pressure, C is the constant designate caused by surfaces deformation average change 
of pressure in a melt, or the Lagrange multiplier in extreme statement.  
The distributed arc pressure is defined as 

 
2

arc
arc 2 2

p p

exp
2 2

F r
p

 

 
  
 
 

 (16) 

where Farc is the full force of an arc pressure, p is the parameter of its distribution, r is the  
distance from an arc axis.  
3) Mass conservation 

 0

0

M M0 0

T
T

( )V V

dxdydz dxdydz
T





   (17) 

where the weld pool volume at a room temperature in left side of equation is equal to 
volume of the fused pool taking into account convexity at volume thermal expansion and 
phase transformation «solid - liquid» in right  side of equation, that is considered through 
temperature change of density ρ (T).  
Demonstration examples of GTAW process calculation of an austenitic steel, such as 304, by 
sheet thickness  2,2 mm a tungsten electrode with a sharpening corner 30  by means of the 
over formulated model and comparison calculated and experimental geometry are shown in 
Fig. 3.  
The macrograph illustrates the longitudinal section of a weld pool on a mode: I = 265 A, larc 
= 2 mm and vw = 1,1 sm/s which is compared with a corresponding calculated profile of the 
same weld pool.   
 

 

Fig. 3. Comparison calculated (top) and experimental (bottom) longitudinal sections of a 
seam (welding modes are specified in the text); p and q are the curve distributions of an arc 
pressure and its heat flow, after Sudnik, 1991. 
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Cross-section sections of the hardened seam with an undercut and a three-dimensional weld 
pool at GTAW are presented in Fig. 4.   
 
 
 
 

 
a)     b) 

 

Fig. 4. Computed three-dimensional weld pool (a) and comparison between the macrograph 
and calculated two- dimensional finished weld shapes with undercutting (b) during GTAW 
at welding current 430 A, travel speed 30 mm/s and arc length 1 mm of CrNi-alloyed steel, 
plate thickness 2,2 mm; after Sudnik, 1991b 

The equations were solved numerically by control volume method. The numerical 
approximation of nonlinear mathematical model was realised in 1988 by programming the 
language FORTRAN with operational system OS DVK on a computer DVK-3 with an 
operative memory volume of 64К, manufactured in the former USSR. Visualisation of a 
three-dimensional weld pool and its free surface with an undercut of the solidified weld was 
executed and, for the first time in the world, was published by the author in 1991.  

Undercutting as quantitative weld bead defects  

The numerical analysis of formation of an undercut of a fusion line is executed in the thesis 
for a doctor's degree by the author. It is shown, that two major factors defining the form of 
an undercut are the level of liquid metal before front of solidification and the position of the 
last. The first factor depends on balance of the distributed forces in a weld pool and pool 
hydrodynamics, and the second solidification on thermal conditions. Ways of prevention of 
undercuts are: 1) redistribution of an arc pressure by a cathode deviation forward or use of 
the hollow cathode for reduction of an arc pressure and an exception of a gouging and 2) 
use of heating or decrease in temperature of a pool (for reduction of a gradient of 
temperatures at the front solidification) and 3) transition to two-and to the multiarc 
processes effectively realising both above-mentioned ways. 

Burn-through as quality weld bead defects 

Nishiguchi et al., 1984 were the first who theoretically and experimentally have proved a 
prediction method of a burn-through in fusion unsupported welding, Fig. 5.  
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Fig. 5. Comparison between computed and experimental tolerance zones for mild steel, 
sheet thickness 3 mm during GTA unsupported welding, after Ohji et al., 1992 

In the doctoral thesis, Sudnik, 1991a, it is shown that ways of prevention of burn-through 
areas are: 1) reduction of weld pool weight, 2) decrease in temperature and recoil vapour 
pressure, for example, at the expense of introduction of a filler wire or use of 
electromagnetic stirring and 3) imposing behind an arc of the external cross-section 
magnetic field creating at interaction with a current in a weld pool, vertical volume forces.  

Two-dimensional area of defectless welds 

The two-dimensional area of defectless formation of a weld and weld defects formation such 
as lack of penetration, and also burn-through and the continuous undercut, depending on a 
welding speed and a current, is shown in Fig. 6.  
 

 

Fig. 6. Defectless area and defects of a GTA weld depending on welding speed and arc 
current for austenitic steel received by modelling of heat transfer and hydrostatics; after 
Sudnik, 1991b. 
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3.4.2 Model for GMAW  
Three-dimensional numerical model GMA welding process is described by system of the 

energy, masses and movement equations (Sudnik et al., 1999a).  In the energy equation, arc 

electric power is the sum of powers selected in anode and cathode areas, and also in arc 

column plasma ΔQcol. Anode power is divided into two components - volume qvol, and 

surface qsurf.  
In this case, the system of three main equations is given as 1) energy conservation 

  w voldiv ( )grad
H

v T T q
x

 
 


 (18) 

with boundary conditions 
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 (19) 

where , vw is the wire feeding rate, Aw is the area of its cross-section, Ts is the solidus 
temperature, Hm is the melting enthalpy; is the anode power, ΔHw is the enthalpy of drops 
overheat, ; Tvap and TL are the evaporation and wire melting temperatures, σa  is the 
distribution parameter of anode power of drops.  
2) Movement conservations of a weld pool free surface 
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1
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       

 
 (20) 

where h is the height of a column of a melt, pv is the recoil vapour pressure.  
3) Mass conservation weld connection with the account of its local increase from receipt of 
drops of electrode metal is given as 
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d v L
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T v

 

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    (21) 

where Lwp is the average length of a weld pool. 

Continuous weld bead defects 

A typical continuous weld bead defect, such as  the weak undercut of a fillet weld, is shown in 7.  
 

              
       а)    b)         c)               d) 

Fig. 7. Comparison calculated (a, c) and experimental (b, d) macrographs; sheet thickness 2 + 
2 mm, cross-section, torch inclination 45 °; travel speed v = 0,7 m/min, wire speed vw = 4 
m/min, current I = 185 A and arc voltage U = 19 V for sections (a) and (b) and v = 1,6 
m/min, vw = 6 m/min, I = 250 A and U = 20 V for sections (c) and (d); after Sudnik, 1999. 
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Defectless welds with optimization of the process parameters 

The choice of the best value is based on the solution of an optimizing problem taking into 
account welding parameters. The algorithm of search of welding parameters I, U and vw in 
the field of the current-voltage characteristic of an arc includes following steps: 

 the choice of the maximum weld current; 

 calculation of a corresponding arc voltage; 

 the task of some initial welding speed and search by a method of gold section of the 
maximum welding speed vmax at which the bottom run is provided; 

 search of the minimum welding speed vmin at which the full penetration of one of 
details is provided; 

 the estimation of probability of defects of a run-out of a pool and an undercut with 
updating if necessary vmin; 

 calculation of i- coefficients of variation Pi; 

 repetition of procedures of calculation, since new value of current and calculation of 
new coefficient of a variation; 

 the choice of the greatest value Pi as optimum and storing of optimum values of t Iso, Us 
and  vso. 

The screen copy of results of finding an optimum point in admissible area of change of a 
current and voltage, and also GMA welding speed in mixture CO2 + 18 % Ar of butt welds 
of a low-alloyed steel is depicted in Fig. 8.  
 

 

Fig. 8. Results of the process optimal parameters (operating point 3) in region (1) at plate 
thickness 2.8 mm, wire diameter 1 mm, electrode extension 16mm; after Sudnik et al., 1997. 

3.5 Transient mathematical models for arc welding  
Non-stationary model of GTAW or GMAW processes differs a dynamic term in the energy 
equation (Sudnik et al., 1999b) 

  w voldiv ( )grad
H H

c v T T q
t x

   
  

 
 (22) 

with boundary conditions  
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 (23) 

where n is the fraction of power of a column of the arc, spent for heating of crater walls and 
surfaces of fillet welds.  
The mass and movement conservation equations for a mode of welding without current 
programming and wire feeding rate do not change. 

3.5.1 Beginning and end of weld 
In the transient process of pulsed arc welding without additional programmed control 
parameters in the seam start there are excess of convexity of a welded seam (humps), and in 
the seam end - depressions. A comparison of experimental and calculated cross-sections of 
transient process of pulsed arc welding of aluminium sheets (fig. 9) shows their good 
conformity. 
 

 

Fig. 9. Experimental longitudinal section (a), calculated cross sections of the welded joint (b, 
c) in pulsed metal inert gas welding of aluminium alloy AlMg2,7Mn, sheet thickness 3.4 
mm, welding speed 0.78 m/min; after Sudnik et al., 2002. 

3.5.2 Discontinuous weld bead defect or humping 
Chen & Wu, 2009 have offered the simplified thermohydrostatic mathematical model and 

have conducted numerical analysis of forming mechanism of hump bead in high speed 

GMA welding. Authors have taken into account both the kinetic energy and heat content of 

backward flowing molten jet They have entered into equation (20) the kinetic term  

describing an impulse of the melt, flowing back 
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 (24) 

In this study Chen & Wu, 2009, a presumed distribution of fluid flow velocity is employed, 
and emphasis is put on its effect on the hump formation. The experimental observations (Hu 
& Wu, 2008) show that the gouging region is a very thin layer of liquid that transports 
molten metal to the trailing region, and the backward flowing molten metal is the main 
driving force toward the rear of the weld pool. Thus, only the fluid velocity in rearward-
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direction U is taken into account in determining the momentum of backward flowing. At 
any transverse cross-section of weld pool, the fluid velocity uh takes its maximum at the 
pool centre, and decreases along y-direction as described. 
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 (25) 

where v0  is the droplet velocity when it impinges on the pool surface, is the x-coordinate of 
wire centre line,  ξ(x) is the half width of weld pool at different x-coordinates, L is the 
distance from wire centre line to the rear edge of weld pool, kv and a1 are coefficients 
depending on the process parameters. 
In high speed GMAW, backward flowing molten metal delivers most of the droplet heat 
content to the rear of weld pool. The thickness of molten metal layer varies along the pool 
length direction. It is very thin at the pool front, while it is thicker at the pool rear. It is 
assumed that the distribution depth of overheated droplet heat content is related to the 
molten layer thickness. Then, the source term SV describing the distribution of heat content 
of transferred droplets in Eq.(?) may be expressed as  

    
d

V
v l

, ,
,

Q
S x y z

k h x y dxdy


 


 (26) 

where Qd is the heat content of droplets transferred into the weld pool, hl(x,y) is the molten 
layer thickness inside the pool, and  Ω is the domain with boundary of melt-line at the top 
surface of workpiece.  
From Fig. 10 it is visible, as the hump arises and develops: at t=1.6 s middle part of the pool 
begins to solidify, at t=1.7 s middle parts solidified and the first humping formed, and at 
t=1.8 s the first humping solidified and the second humping appeared.   
According to Wu et al., 2007 at high-speed welding it is possible to avoid defects of a 

welded seam, such as an undercut and formation of humps if the value of deposited metal is 

a constant on unit of length of a seam. It means, that wire melting velocity should be high 

enough but in the meantime arc thermal energy should be divided between a wire and the 

basic metal. The requirement of higher current of a wire and lower heat input in the basic 

metal becomes the contradiction. The modified arc weld process named double-electrode 

gas metal arc welding has been developed by Zhang et al., 2004 at University of Kentucky to 

uncouple a current of the basic metal from a wire current in GMAW so that the high current 

could be used to fuse a wire and to reach high speed of melting, to fill cutting in one pass 

while the heat input to the basic metal is lowered.  
In Fig. 11 and 12 the results of virtual reproduction of the humping received by means of 
thermohydrodynamic and thermohydrostatic models are shown.  
It is visible that the simplified model has advantages on speed of reproduction of process 
and prospect of application for process control in high-speed arc welding.  
Double-electrode gas metal arc welding process can increase a critical welding speed and 
suppress defects of a welded seam for two reasons. The first is a scope of an arc on the basic 
metal in double-electrode gas metal arc welding more than it is in usual GMAW, and  
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Fig. 10. Simulated temperature profiles on the top surface and shape evolution of 
longitudinal section of the pool of a low carbon steel sample welded for different times at 
welding speed 1.5 m/min, current 350 A, arc voltage 27 V, and sample thickness 6 mm; after 
Chen & Wu, 2009   

 
 

  

Fig. 11. Three-dimensional thermohydrodynamic simulation of a single hump in hybrid 
laser-GMA welding. The calculation time by software Flow-3D was 89 hours; after Cho & 
Farson, 2007 
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Fig. 12. Three-dimensional thermohydrostatic simulation of humps formation in arc 
welding. Calculation time was approximately in 100-1000 times less; after Chen & Wu, 2009   

another that the buffer arc plays a role in preliminary heating of a surface of the basic metal. 

Both factors force liquid metal of a weld pool to disperse so that formation of a welded seam 

could be improved. It is to similarly hybrid laser-GMA welding where the leading laser 

beam can preliminary warm up a surface of the basic metal as an auxiliary heat source. 

Thus, change a fluid flow in a weld pool and the form of a way which suppresses the 

stooping platen of a weld. Models such novel processes while are unknown, but it is 

expected that they will appear in the near future.  

4. Conclusion 

Study of formation mechanisms of defects such as an undercut and humps is examined, and 

also thermohydrodynamic and thermohydrostatic models for simulation of corresponding 

defects formation are presented at arc welding. Thermohydrodynamic and 

thermohydrostatic approaches to construction of mathematical models of a weld pool with 

the specified formulation of boundary conditions are reconsidered. Formulations of 

stationary mathematical models of welding nonconsumable and consumable by electrodes, 

and also non-stationary model of a consumable electrode which allows reproducing 

formation of defects of type of an undercut and a burn-through are resulted. The solution of 

problems of search of parameters of a mode of the welding, providing defectless areas is 

illustrated by means of two examples of two-dimensional areas for GTAW and three-

dimensional areas for GMAW.  
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