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1. Introduction 

According to the literature, the plasma transferred arc welding process which employs the 

filler metal in wire form is known as Plasma Arc Welding (PAW) while that which employs 

powder filler material is generally referred to as Plasma Transferred Arc (PTA), Dai et al., 

2008. 

The PTA process can be considered a derivation of the PAW process. The similarities 

between the two processes can be observed in Figure 1.  Both welding processes employ a 

non-consumable tungsten electrode located inside the torch, a water-cooled constrictor 

nozzle, shield gas for the protection of the molten pool, and the plasma gas. The difference 

between the two welding processes lies in the nature of the filler material, powder instead of 

wire, which requires a gas for its transport to the arc region.  The diagram in Figure 1 shows 

the two processes with their differences and similarities.   

The equipment required to carry out the deposition through the PTA plasma process is very 

similar to that used in PAW.  When PAW is employed the equipment must be able to drive 

spooled wires of various gages and different materials, at constant or pulsed velocities.  In 

the PTA plasma welding process, the filler material is used in the form of a powder, and 

specific powder feeding equipment is required to transport it to the voltaic arc to produce 

the coating.  With respect to its application for coating, the PTA process is appropriate since 

it produces dilution values of the order of 6 to 10 % (Gatto, et al., 2009), much lower than 

those obtained with other arc soldering process which are around 20 to 25 %.  The low 

distortion, the small zone affected by the heat and the refined microstructure are also 

features of this technique (Zhang, et al., 2008; Liu, et al., 2008). 

In the PTA and PAW processes an inert gas is used as the plasma gas, which is forced to 
pass through the orifice of the constrictor nozzle, where the electrode is concentrically fixed. 
The shield gas passes through an external opening, concentric to the constrictor nozzle, 
effectively protecting the weld against contamination from atmospheric air (active or inert). 
On the other hand, in the PTA process a carrier gas is used to transport the filler material 
through flexible tubes to the constrictor nozzle, allowing its entrance into the plasma arc in a 
convergent form. The gas used for this purpose is generally argon. 
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Fig. 1. Comparison of Plasma Transferred Arc processes PTA and PAW. 

Given that the tungsten electrode lies within the constrictor nozzle of the welding torch, it is 

difficult to open the arc by contact, and thus equipment called a plasma module must be 

used to establish the arc opening. An electronic igniter provides voltage peaks between the 

tungsten electrode and constrictor nozzle, generating a small spark in this region.  Thus, 

with the passage of the plasma gas a low intensity electric arc appears between the tungsten 

electrode and constrictor nozzle, called the pilot arc (non-transferred arc). The pilot arc 

forms a pathway of low electrical resistance between the tungsten electrode and the 

workpiece to be welded facilitating the establishment of the main arc when a power source 

is added.  

In practice, the parameters which control the quality of the weld are the rate at which the 

material is added, the gas flow rate (shield gas, plasma gas, carrier gas), the weld current, 

the nozzle to workpiece distance (see below) and the welding speed.   

The basic configuration of the constrictor nozzle is shown in Figure 2, where the parameters 

employed in the process are indicated. The distance from the external face of the constrictor 

nozzle to the substrate is called the nozzle to workpiece distance (NWD).   

The recess (Rc) of the electrode is measured from the electrode tip to the external face of the 
constrictor nozzle.  Alterations in the arc characteristics are influenced by this factor, which 
defines the degree of constriction and the rigidity of the plasma jet (Oliveira, 2001). 
Oliveira (2001) studied the influence of the electrode recess of the plasma transferred arc 
process fed by wire in order to identify whether the degree of arc constriction influences the 
arc voltage. The results showed that, on average, a 2.4 V/mm variation in the voltage 
occurred as a function of the electrode recess.   
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Fig. 2. Nozzle to workpiece distance (NWD) and electrode setback (Rc) (Vergara, 2005). 

In general, the maximum and minimum values for the adjustment of the electrode recess 

vary according to the welding torch.  The electrode recess of the welding torch PWM–300, 

manufactured by Thermal Dynamics Corporation, for instance, has a range of adjustment of 

0.8 to 2.4 mm. 

As the electrode recess is reduced, the weld bead width increases and weld beads with 

lower penetration depth are obtained.  This variation in the geometric characteristics of the 

weld bead is due to a reduction in the constriction effect producing a larger area of 

incidence of the arc on the substrate.   

The constrictor nozzle (made of copper), where the electrode is confined, has a central 

orifice through which the arc and all of the plasma gas volume pass. The diameter of the 

orifice of the constrictor nozzle has a great influence on the quality of the coating since this 

relationship is directly related to the width and penetration of the weld bead produced.  An 

insufficient plasma gas flow rate affects the useful life of the constrictor nozzle since it leads 

to its wear.  The weld current reduces as a function of the decrease in the diameter of the 

constricting orifice, due to an increase in the weld arc temperature.   

The extent to which the nozzle to workpiece distance influences the coating is strongly 

dependent on the electrode recess in relation to the constrictor nozzle and the diameter of 

the constrictor orifice.  The larger the electrode recess adopted and the smaller the 

constrictor orifice diameter the greater the effect of the arc constriction, making it more 

concentrated.   

In the “melt–in” technique small electrode recess values are used, the arc being submitted to 

a low degree of  collimation, assuming a conical form.  In this situation, a variation in the 

nozzle to workpiece distance, even within normal limits, results in a change in the 

characteristics of the weld bead, in the same way as occurs in the GTAW process.  Thus, the 

greater the nozzle to workpiece distance the lower the penetration and wider the width of 

the weld bead due to the increase in the area of incidence of the arc on the substrate.   
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Hallen et al. (1991) reported that to obtain a good deposition yield, the nozzle to workpiece 
distance should not be greater than 10 to 15 mm. At values higher than this range the 
efficiency of the shield gas is significantly reduced. 
The authors of this paper have also reported results in relation to the nozzle to workpiece 
distance, for two values: 15 and 20 mm.  The study showed that as the nozzle to workpiece 
distance increases the degree of dilution decreases. 
The general objective of this study was to investigate the PAW and PTA welding processes 
with a view to their application in surface coating operations, particularly on hydraulic 
turbine blades worn by cavitation.  This research was motivated by the observation that 
information is scare in relation to the benefits offered by the plasma welding process using 
powder instead of wire filler material in the application of coatings.  The geometric 
characteristics of the weld beads, degree of dilution, hardness and microstructure were 
evaluated. 

2. Materials and Methods 

2.1 Test bench  
Initially, a test bench was assembled based on equipment previously developed at 
LABSOLDA (Oliveira, 2001; Vergara, 2005) which allowed tests to be carried out on the 
plasma transferred arc welding process fed by wire.  On the same test bench, a similar 
process fed by powder was assembled.  The welding source was equipment which, via an 
interface, was connected to a PC. By way of a very versatile software program almost all of 
the process variables could be controlled.   
Of the three gas circuits, that which received most attention was the plasma gas given its 

considerable relevance in terms of the quality of the deposits.  A mass flow controller was 

used, in which the control is carried out electronically and the command signal is a reference 

voltage.  The other gas flow circuits are simply monitored by electronic flow meters, 

however these are volumetric.   

One of the fundamental parts of the equipment is the device known as the plasma 
module, which enables any version of plasma welding to be carried out based on 
conventional welding sources for GTAW or coated electrode.  For the displacement of the 
welding torch an electronic device (Tartílope) was used.  The system component which 
was integrally designed for this specific development was the powder feeding device, 
which functions through a combination of an endless screw and a gas flow as the powder 
carrying mechanisms.  The weld torch was developed based on the plasma torch for 
keyhole welding. The great advantage of this lies in its multiprocess aspect which allows 
it to work with plasma employing powder or with conventional plasma.  Also, the design 
adaptation allows the use of constrictor nozzles with different angles of convergence for 
the powder feeding.  Initially, analysis was carried out on the torches to be used in this 
research.  It was observed that the PTA torch had a nozzle with a constrictor diameter of 
4.8 mm. In the case of the PAW torch, the manufacturer provides three nozzles with 
constrictor diameters of 2.4, 2.8 and 3.2 mm, which are designed according to the welding 
current to be applied.   
In this case, the nozzle with the largest constrictor diameter available for the PAW torch was 
selected, that is, 3.2 mm.   
Figure 3 shows a general view of the equipment developed, that which forms part of the test 
bench for the PAW and PTA welding processes being shown in the upper part of the figure.   
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In this study argon with a purity of 99.99 % was used as the plasma, shield and carrier 
gases.  A tungsten electrode with 2% thorium oxide (EWTh-2) and with a diameter of 4.8 
mm was used. The angle of the electrode tip was maintained at 30º for all of the 
experiments.   
 

 

Fig. 3. Test bench assembled at the welding laboratory. 1-Welding source;  2-Adapted 
plasma torch; 3-Plasma module; 4-Powder feeder; 5-Torch displacement system; 6-Digital 
gas meters; 7-Electronic gas valve; 8-Gases 

2.2 Constrictor nozzle in PTA process 
The configuration of the constrictor nozzle developed in this study included two conduits 
for the passage of the carrier gas, the role of which is to feed the powder to the plasma arc in 
a convergent form.  Figure 4 shows a cross-section of the constrictor nozzle.  At 60º the 
constrictor nozzle allows the entrance of powder directly into the molten pool, when a 
nozzle to workpiece distance of 10 mm is used.   
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Fig. 4. Cross-section of constrictor nozzle showing the entrance of the powder flow into the 
plasma arc. (Vergara, 2005). 

2.3 Characterization 
Deposits of the atomized alloy Stellite 6, Figure 5, were processed on carbon steel plates 
(class ABNT 1020;  dimensions 12.5 x 60 x 155 mm), using a constant continuous current.  
Table 1 shows the chemical composition of the substrate. The chemical analysis of the 
different filler materials was carried out by optical emission spectrometry and the results are 
shown in Tables 2 and 3.   
Single weld beads were deposited with the parameters indicated in Table 4 and samples 
were removed for their characterization.  This table gives the operational parameters for the 
PTA and PAW plasma welding processes, in which there are parameters which could not 
remain constant in the two process, for example: nature of the filler material (in PAW wire 
and in PTA powder); wire speed (not required in PTA); carrier gas (not required in PAW); 
constrictor nozzle diameter (in PTA 4.8 mm and in PAW 3.2 mm).   
Initially, the weld beads were submitted to visual inspection for the presence of welding 

defects, the degree of dilution was determined by the areas method using micrographs of 

the cross-sections of the deposits, etched with 6% nital.  Profiles of the Vickers 

microhardness, with a load of 500g, enabled the evaluation of the uniformity of the weld 

beads processed, according to the procedure of the standard ABNT6672/81.  The 

determination of the microhardness profiles, average of three measurements, was carried 

out at the center of the weld beads and in the region where they overlap. To determine the 

microstructure by optical microscopy a cross-section was prepared following standard 

procedures, the microstructure being revealed after electrolytic attack with oxalic acid.   

www.intechopen.com



 
Hardfacing by Plasma Transferred Arc Process 

 

9 

 

Fig. 5. Morphology of powder deposited by the PTA process (Stellite 6). 

 

C Si Mn P S Cr Mo Ni Al 

0.11 0.22 0.74 0.021 0.008 0.027 0.024 0.011 0.06 

Cu V W Sn Fe  

0.016 0.015 0.026 0.065 98.6 

Thickness: 12.7 mm 

Table 1. Chemical composition of the low carbon steel substrate. 

 

C Si Mn Cr Mo Ni Co W Fe 

1.32 1.30 0.028 30.01 0.24 2.45 Bal 5.21 2.05 

Hardness: 38-47 Rc; Particle size: 45 to 150 µm; Density: 8.3 g/cm3 

Table 2. Chemical composition of the filler material Stellite 6 in the form of a powder (BT-
906) 

 

C Si Mn Cr Mo Ni Co W Fe 

0.9-1.4 2.0 1.0 26-32 1.0 3.0 Bal 3.0-6.0 2.0 

Table 3. Chemical composition of filler material Stellite 6 in the form of steel (BT-906T). 
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PTA Process 

Welding current  
Welding speed  
Plasma gas flow rate 
Shield gas 
Carrier gas  
Feed rate 
Constrictor nozzle diameter/ convergence 
angle  
Nozzle to workpiece distance  
Setback 

A 
cm/min 

l/min 
l/min 
l/min 
kg/h 
mm/º 
mm 
mm 

160 
20 

2.2; 2.4; 3.0 
10 
2 

1.4 
4.8/30 

10 
2.4 

PAW Process 

Wire diameter (tubular) 
Wire speed  
Deposition rate  
Constrictor nozzle diameter  

mm 
m/min 
kg/h 
mm 

1.2 
3.0 
1.4 
3.2 

Welding current  
Welding speed  
Plasma gas flow rate 
Shield gas 
Feed rate 
Nozzle to workpiece distance  
Setback 

A 
cm/min 

l/min 
l/min 
kg/h 
mm 
mm 

160 
20 

2.2; 2.4; 3.0 
10 
1.4 
10 
2.4 

Table 4. Welding variables and parameters. 

3. Results and discussion 

3.1 General characteristics  
Figure 6 shows the external aspect of the beads where significant differences between them 
can be observed. The PTA process produced a better surface finish, better dilution, better 
wetting and wider width.    
Figures 7 and 8 show cross-sections of the beads obtained using the two processes (PAW 

and PTA) where considerable differences in the penetration profile of the welds can be 

noted and Figure 9 shows the results for the geometric parameters of the beads, for the three 

levels of plasma gas flow rate tested in this study: 2.2; 2.4 and 3.0 l/min. On comparing the 

deposits obtained from the two processes it can be observed that the reinforcement and the 

penetration are always smaller in the PTA process (Figure 9).  In the PTA process there was 

a significantly wider cord width, which is due to the use of a constrictor nozzle with a wider 

diameter.   

The data shown in Figure 9 together with an analysis of the variance in Tables 5, 6 and 7, 
indicate that the welding process and plasma gas flow rate have significant effects on the 
geometric parameters of the bead.   
In relation to the convexity index (CI = 100*r/W), Silva et al. (2000) establishes that values 
close to 30% are desirable for the relation between the width (W) and reinforcement (r) of 
the weld bead.  Figure 10 shows the convexity index of the weld bead for the PAW and PTA 
processes as a function of the plasma gas flow rate.   
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Analysis of Figure 10 shows that for the three plasma gas flow rates tested the PTA process 
provided acceptable convexity of the weld beads (less than 30%), a highly desirable 
condition.  In the case of the PAW process, the convexity index was acceptable only for low 
plasma gas flow rates. 
The average values for the areas of the metal deposited varied for the two welding processes 
studied, as expected, due to the difference in the diameters of the constriction orifices used 
in each case and the material loss according to the efficiency of the deposition process.  
Figure 11 shows that in the PTA process there was loss of material.  Lin (1999) observed that 
losses occur mainly due to vaporization and also dispersion of the particles after making 
contact with the substrate.   
Vergara (2005), reports that the carrier gas flow rate influences the dispersion of the 
particles.  In many cases it is possible, at the end of the finishing operation, to observe 
unmolten powder particles adhered to the sides of the finish.  On the other hand, when the 
deposition rate is very high (1.5 kg/h) in relation to the welding current (160 A) unmolten 
power can be seen spread over the substrate. Vergara [9] observed that the PTA process has 
a deposition efficiency of the order of 87% when a constrictor nozzle of 30º is used.  Similar 
results have been reported by Davis (1993), who demonstrated a range of 85 to 95 % 
deposition yield for the PTA process. 
The graph in Figure 12 shows the effect of the plasma gas flow rate on the degree of dilution 
using the wire Stellite 6, 1.2 mm tubular diameter. The results indicate that the dilution 
increases with the plasma gas flow rate possibly due to the greater pressure of the plasma 
jet.  Similar results were found for the PTA process, with dilution values being lower than 
those achieved with the PAW process, as expected, due to the difference in the diameters of 
the constrictor orifice.  Vergara (2005) reports that the diameter of the constrictor nozzle 
orifice has a considerable influence on the quality of the finish since it is directly related to 
the width and penetration of the weld bead produced.  The data in Figure 12 together with 
the analysis of variance in Table 8 indicate that, in general, the welding process and the 
plasma gas flow rate significantly affect the dilution.  Similar conclusions have been 
reported by Silvério (2003) for the alloy Stellite 1.  
The good results obtained for the PTA process are associated with: 

 Wider weld beads  greater area of covering  

 Lower dilution  deposits with composition closer to that of the filler alloy  

 Better wetting, lower convexity  reduced risk of lack of penetration/ fusion between 
weld beads.  

 

                  
                 a) PAW           b) PTA 

Fig. 6. Superficial aspect of Stellite 6 deposited by: a) PAW and b) PTA.  Welding current = 
160 A, Welding speed = 20 cm/min, Feed rate =1.4 kg/h, Plasma gas flow rate = 2.4 l/min. 
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        (a)                (b) 
 

 
(c) 

Fig. 7. Cross-section of weld beads processed via PAW. Plasma gas flow rate: (a) 2.2 (l/min); 
(b) 2.4 (l/min); and (c) 3.0 (l/min) 

 

                    
          (a)           (b) 
 

 

Fig. 8. Cross-section of weld beads processed via PTA. Plasma gas flow rate: (a) 2.2 (l/min); 
(b) 2.4 (l/min); and (c) 3.0 (l/min). 
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a) Width 
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b) Reinforcement 
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c) Penetration 

Fig. 9. Effect of plasma gas flow rate on geometric parameters (Width, reinforcement, 
penetration). 
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Fig. 10. Effect of plasma gas flow rate on convexity index. 

 
 

Source of variation 
Sum of 
squares 

Degrees of 
freedom 

Average of 
squares 

F observed F critical 

Welding process 17.85 1 17.85 1444.35  

Plasma gas flow rate 2.316 2 1.16 93.67  

Interaction 2.33 2 1.16 94.14 > 3.55 

Residual 0.22 18 0.0124   

      

Total 22.72 23    

Obs.: Index of significance () = 5% 

 

Table 5. Results of the analysis of variance for width. 

 
 

Source of variation 
Sum of 
squares 

Degrees of 
freedom 

Average of 
squares 

F observed F critical 

Welding process 4.29 1 4.29 1353.78  

Plasma gas flow rate 1.33 2 0.66 209.016  

Interaction 0.098 2 0.049 15.45 > 3.55 

Residual 0.057 18 0.0032   

      

Total 5.77 23    

Obs.: Index of significance () = 5% 

 

Table 6. Results of analysis of variance for reinforcement. 
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Source of variation 
Sum of 
squares 

Degrees of 
freedom 

Average of 
squares 

F observed F critical 

Welding process 8.35 1 8.354 5323.15  

Plasma gas flow rate 0.58 2 0.288 183.74  

Interaction 0.37 2 0.185 118.06 > 3.55 

Residual 0.02825 18 0.00157   

      

Total 9.33 23    

Obs.: Index of significance () = 5% 

Table 7. Results of analysis of variance for penetration. 
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Fig. 11. Area of material deposited in PAW and PTA processes. 
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Fig. 12. Effect of plasma gas flow rate on degree of dilution in PAW and PTA processes. 
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Source of variation 
Sum of 
squares 

Degrees of 
freedom 

Average of 
squares 

F observed F critical 

Welding process 1102.43 1 1102.43 25289.88  

Plasma gas flow rate 182.16 2 91.08 2089.39  

Interaction 25.93 2 12.96 297.4 > 3.55 

Residual 0.785 18 0.044   

      

Total 1311.305 23    

Obs.: Index of significance () = 5% 

Table 8. Results of analysis of variance for dilution  

3.2 Microhardness and microstructure  
Figure 13 shows the typical microstructures of the solidification in the center of the weld 
bead.  When a plasma gas flow rate of 2.2 l/min was used in the PAW and PTA processes 
the microstructure was more refined. For a plasma gas flow rate of 3.0 l/min for both 
welding processes the microstructure was less refined. 
The microhardness profiles evaluated along the cross-section of the deposits are shown in 
Figures 14 and 15 for the PAW and PTA processes, respectively.   
The data in Figure 14 together with the analysis of variance in Table 9, related to the PAW 
process, indicate that, in general, the plasma gas flow rate significantly affects the 
hardness.  On the other hand, the data in Figure 15 together with the analysis of variance 
in Table 10, which relate to the PTA process, indicate that the plasma gas flow rate does 
not significantly affect the hardness.  Deposits obtained with the PAW process have lower 
hardness values, which is to be expected given the less refined structures and higher 
degrees of dilution.   
 
 
 
 
 
 

Source of variation 
Sum of 
squares 

Degrees of 
freedom 

Average of 
squares 

F observed F critical 

Plasma gas flow rate 18214.93 2 9107.463 151.9637 > 3.2381 

Residual 2337.341 39 59.93183   

      

Total 20552.27 41    

Obs.: Index of significance () = 5% 

 
 
 

Table 9. Results of analysis of variance for average hardness of microstructure – PAW. 
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PAW PTA 

 
a) Plasma gas flow rate = 3.0 (l/min) 

 

 
b) Plasma gas flow rate = 2.4 (l/min) 

 

 
c) Plasma gas flow rate = 2.2 (l/min) 

 
 

Fig. 13. Micrographs of the samples of Stellite 6 for the PAW and PTA processes. Centre of 
weld bead. 
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Fig. 14. Effect of plasma gas flow rate on hardness in PAW process. 
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Fig. 15. Effect of plasma gas flow rate on hardness in PTA process. 
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Source of variation 
Sum of 
squares 

Degrees of 
freedom 

Average of 
squares 

F observed F critical 

Plasma gas flow rate 2729.185 2 1364.593 2.388627 < 3.554561 

Residual 10283.17 18 571.2875   

      

Total 13012.36 20    

Obs.: Index of significance () = 5% 

Table 10. Results of analysis of variance for average hardness of microstructure –– PTA. 

It was verified that the PTA process generates a more refined microstructure and 
consequently greater hardness than the PAW process, as also observed by Silvério (2003). 

4. Conclusions 

Based on the experimental results obtained in this study the conclusions are as follows: 

 The PTA process produced a better surface finish and better wetting. Due to the 
deposition efficiency and the difference in the orifice diameter of the constrictor nozzle 
used in the welding processes studied the main results are:  

 In the PTA process lower dilution values were achieved in comparison with the PAW 
process. 

 Greater weld bead width was obtained using the PTA process.  

 On comparing the deposits obtained through the two processes it could be observed 
that the reinforcement and penetration are always lower in the PTA process.  

  Deposits obtained with the PAW process had lower hardness values as expected due to 
the less refined structures and higher degrees of dilution.   
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