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1. Introduction 

Acute promyelocytic leukemia (APL) is a distinct subtype of acute myeloid leukemia (AML) 
characterized by a severe bleeding tendency, accumulation of abnormal promyelocytes in 
the bone marrow and a reciprocal t(15;17) chromosomal translocation that fuses the gene 
encoding the promyelocytic leukemia protein (PML) to that encoding retinoic acid receptor 
alpha (RARA) (de Thé & Chen, 2010). During the past 30 years two therapeutic drugs have 
been introduced into the clinic that have dramatically improved the treatment outcome of 
this disease (Wang & Chen, 2008). The first of these components was all-trans retinoic acid 
(ATRA), a vitamin A derivative that significantly increased clinical remission and improved 
the 5-years disease-free survival rates from below 40% to more than 80% (Huang et al., 1988). 
The second drug was arsenic trioxide (ATO), a component that was discovered to be 
remarkably effective in treating APL as a single agent (Sun et al., 1992). Today, most 
hospitals employ ATRA in combination with chemotherapy as frontline therapy, while ATO 
is being used for refractory or relapsed patients. Recent clinical studies have also revealed a 
positive synergistic effect between the two drugs, suggesting that future therapy of newly 
diagnosed patients may involve a combination of the two reagents (Estey et al., 2006; Hu et 
al., 2009; Shen et al., 2004; Wang et al., 2004). 
The success of using ATRA and ATO in APL therapy appears to be linked to the ability of 
these drugs to interact with the fusion oncoprotein PML/RARA, which is produced by the 
APL-associated t(15;17) translocation, and that causes the disease. ATRA contacts a ligand 
binding domain present within the RARA moiety of this chimeric protein and promotes 
differentiation of APL cells along the granulocyte linage (Huang et al., 1988). ATO, on the 
other hand, has recently been shown to bind one or more cysteine rich motifs within the 
PML protein (Jeanne et al., 2010; Zhang et al., 2010) and contributes to the cure of APL 
through a mechanism that involves eradication of leukemic-initiating cells (LICs) (Nasr et 
al., 2008; Ito et al., 2008; Zheng et al., 2007).  
Due to the success of using ATRA and ATO in the clinic, and because of the ability of these 
drugs to promote clinical remission through a direct contact with PML/RARA, APL has 
become one of the most attractive model diseases for the development of targeted cancer 
therapy. The APL cure offers a proof of principle that a cancer can be cured through 
targeted inactivation of an oncoprotein, and it provides a rationale for the development of 
novel therapeutic strategies that target fusion oncoproteins produced by chromosomal 
translocations. In this chapter we will summarize the current knowledge of the biological 
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properties of PML, RARA and PML/RARA with particular emphasis on tumorigenesis in 
APL patients and the molecular mechanisms that underlie the response to ATRA and ATO.  

2. APL treatment – a historical perspective  

2.1 The discovery of ATRA-based APL therapy 

APL was first characterized as a distinct clinical entity in 1957 (Hillestad, 1957). Throughout 
the 1950s and 1960s, this disease had a 100% mortality rate and no effective treatment 
options. In 1973, chemotherapy by the topoisomerase inhibitor daunorubicin was shown to 
have some curative effect, yielding a complete remission (CR) rate of 55% (Bernard et al., 
1973), and in the early eighties induction therapy based on anthracyclins (daunorubicin, 
idarubicin among others) and the nucleocide analogue cytosine arabinoside (Ara-C) was 
found to yield CR rates of up to 80% in newly diagnosed patients (Cunningham et al., 1989; 
Sanz et al., 1988). However, the patients frequently suffered from one of the inherent 
drawbacks with induction therapy, namely the release of coagulation factors from dead 
leukemic cells, causing severe bleedings and increased risk of fatal outcome (Cordonnier et 
al., 1985; Drapkin et al., 1978; Ruggero et al., 1977). Consequently, most APL patients 
required intensive platelet and fibrinogen support, and based on the criterion of 5-years 
disease-free survival (DFS), only 35-45% of the cases were cured (Fenaux et al., 2007). The 
focus on APL therapy changed in 1978, as it became clear that leukemic cells undergo 
terminal differentiation upon treatment with differentiating-inducing agents, such as ATRA, 
Ara-C and 13-cis retinoic acid (Breitman et al., 1981; Degos et al., 1985; Gold et al., 1983; 
Koeffler et al., 1985; Sachs, 1978). Such differentiation therapy showed an advantage over 
induction therapy, with respect to incidences of severe bleedings, and led to reduced 
mortality rates. In 1985, the first attempt to treat APL patients with ATRA was made with 
promising results, but the percentage of patients with 5-years DFS was still relatively low 
(less than 50%) (Huang et al., 1987; Huang et al., 1988). Subsequently, optimization trials, 
combining ATRA with chemotherapy, raised the CR rates up to 90-95% and the 5-years DFS 
to 86% (Wang & Chen, 2008). In addition, the combination of ATRA and chemotherapy, 
which currently represents standard frontline APL therapy, helped reducing retinoic acid 
syndrome (RAS), a potentially fatal side effect caused by induction therapy and manifested 
in a burst of inflammatory cytokines released from malignant promyelocytes (de Botton et 
al., 2003; Fenaux et al., 1999; Sanz et al., 1999; Tallman et al., 1997).  

2.2 The discovery of ATO-based APL therapy 

Arsenic, in the form of arsenic trioxide (ATO), was first described as an agent that possesses 
antileukemic properties in the year 1878. In this study, Fowler’s solution, a solution of ATO 
in potassium bicarbonate, was shown to dramatically reduce the number of white blood 
cells in a patient with chronic myelogenous leukemia (CML) (Cutler & Bradford, 1878). 
Subsequently, this remedy was used as a primary antileukemic agent until the discovery of 
radiation therapy in the early 20th century (Forkner & Scott, 1931; Kwong & Todd, 1997). In 
the 1970s, ATO reappeared as a therapeutic agent for APL as Chinese researchers showed 
that ailing-1, a mixture of ATO and crude herbal extracts, was effective in the treatment of 
both de novo as well as relapsed cases (Shen et al., 1997; Sun et al., 1992; Zhang et al., 1996). 
Additional clinical studies showed that ATO, as a single agent, caused complete remission 
in up to 90% of patients and reduced the relapse rate for high risk patients (Niu et al., 1999; 
Shen et al., 1997). A research group in the United States confirmed these preliminary studies 
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and further showed that ATO treatment induced partial differentiation of leukemic cells, 
caspase activation and subsequently apoptosis (Soignet et al., 1998).  

2.3 Present and future APL therapy 

Currently, ATRA in combination with chemotherapy is being employed as frontline therapy 
for APL, whereas ATO primarily is being used for treatment of cases that are resistant to 
ATRA or patients suffering from frequent relapses. However, several clinical trials are now 
assessing the synergistic effect of combining ATRA and ATO with and without 
chemotherapy. These trials are conducted mainly on the basis of successful studies in animal 
models, showing a positive effect of ATRA/ATO combinations in APL mice (Jing et al., 2001; 
Lallemand-Breitenbach et al., 1999). The main conclusion so far from the ongoing clinical 
studies is that newly diagnosed patients are likely to benefit from ATRA/ATO combination 
treatment in addition to low-dose chemotherapy (Estey et al., 2006; Hu et al., 2009; Shen et al., 
2004; Wang et al., 2004).  

3. The mechanism of PML, RARA and PML/RARA 

3.1 The role of PML/RARA in APL pathogenesis  

The molecular hallmark of APL is the t(15;17) chromosomal translocation that expresses the 
fusion oncoprotein PML/RARA. While this genetic aberration is identified in more than 
97% of all APL cases, the remaining patients diagnosed with this disease harbor variant 
translocations that all involve the RARA gene in fusion with alternative partners such as the 
genes encoding promyelocytic leukemia zinc finger (PLZF) (Chen et al., 1993), 
nucleophosmin (NPM) (Redner et al., 1996), nuclear matrix associated (NUMA) (Wells et al., 
1997), or signal transducer and activator of transcription 5b (STAT5B) (Arnould et al., 1999). 
The most compelling evidence that PML/RARA alone can contribute directly to APL 
development comes from studies in mice showing that expression of this oncoprotein as a 
transgene leads to development of an APL–like disease. However, these experiments also 
show that a relatively long latency period is required prior to onset of disease, suggesting 
the involvement of acquired genetic aberrations in addition to the t(15;17) translocation 
(Brown et al., 1997; Grisolano et al., 1997).  

3.2 The function of PML 

The first component of the PML/RARA fusion, the PML protein, is a tumor suppressor 
(Bernardi et al., 2006; Salomoni & Pandolfi, 2002; Trotman et al., 2006) that functions in 
multiple cellular processes, including apoptosis (Wang et al., 1998), differentiation (Ito et al., 
2008), DNA repair (Bøe et al., 2006; Dellaire et al., 2006a), senescence (Ferbeyre et al., 2000; 
Pearson et al., 2000), angiogenesis (Bernardi et al., 2006) and virus defence (Everett & Maul, 
1994). The human PML gene is located on chromosome 15, consists of nine exons and 
produces several alternatively spliced protein isoforms designated PML I through VII. All of 
these PML variants contain an identical tripartite (TRIM) motif in their N-terminal region, 
and a C-terminus that varies due to alternative splicing (Borden, 2002; Fagioli et al., 1992; 
Jensen et al., 2001; Jul-Larsen et al., 2010; Reymond et al., 2001). The TRIM motif, which 
comprises a RING finger, two B-boxes and a predicted coiled coil domain, has been shown 
to be important for PML multimerization, a feature responsible for one of the most striking 
properties of this protein, namely the ability to generate nuclear structures termed PML 
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nuclear bodies (PML NBs) (Lallemand-Breitenbach & de The, 2010). These bodies are highly 
dynamic and change their morphology and biochemical composition in a cell cycle-
dependent manner. For example, during entry into mitosis, several PML NB resident 
components, including Daxx, Sp100 and SUMO, are lost concomitant with formation of 
PML NB aggregates called mitotic assemblies of PML proteins (MAPPs), whereas transition 
from mitosis to G1-phase coincides with exclusion of PML NBs from the progeny nuclei and 
complex formation with nucleoporins and microtubule filaments to form cytoplasmic 
assemblies of PML and nucleoporins (CyPNs) (Chen et al., 2008; Dellaire et al., 2006b; Jul-
Larsen et al., 2009). Although, PML NBs have the capacity to recruit a large number of 
different protein components, PML is the only protein so far that has been shown to be 
required for their formation. For this reason, it is widely assumed that the ability to 
assemble these cellular compartments represents an integral part of PML biogenesis. It still 
remains, however, to clearly define the molecular mechanism involved in PML NB assembly 
and function. 

3.3 The function of RARA 

The second fusion partner, RARA, is a ligand binding transcription factor that contains a 
DNA binding motif in its central region and a retinoid binding domain at the C-terminus. 
To generate an active protein complex, this nuclear receptor forms a heterodimer with the 
RXR family of transcription factors. Upon direct binding to a RA responsive element (RARE) 
within the regulatory region of a target gene, RARA/RXR complexes promote 
transcriptional silencing by recruiting co-repressor proteins such as NCOR1, SMRT and 
histone deacetylase to the promoter-binding complexes. In the presence of physiological 
concentrations of ligand (i.e. retinoids), a conformational change occurs within the 
RARA/RXR heterodimer that leads to dissociation of co-repressors and concomitant 
recruitment of histone acetylases and components of the basic transcription machinery, thus 
transforming the protein complex from a gene silencer to a gene activator (Bastien & 
Rochette-Egly, 2004). RARA regulates several genes involved in myeloid progenitor cell 
differentiation, including c-myc (Bentley & Groudine, 1986; Gowda et al., 1986), C/EBPβ 
(Duprez et al., 2003), C/EBP (Park et al., 1999) and PU.1 (Mueller et al., 2006), suggesting an 
important role of this protein in blood cell maturation.  

3.4 The function of PML/RARA 

Upon fusion between PML and RARA, the variable C-terminus of the PML protein is lost, 
whereas the constant N-terminal TRIM motif generally remains intact. In the case of RARA, 
fusion to PML leads to loss of the first 50 to 60 N-terminal amino acids, a deletion that does 
not appear to affect the DNA and ligand binding activities of this protein (de Thé et al., 
1991). Thus, PML/RARA retains the powerful protein-protein interaction domain of the 
PML protein, whereas the variable isoform-specific region is replaced by the trans-activating 
functions of RARA (Fig. 1.).  
One of the gained PML/RARA functions that is thought to contribute largely to APL 
development is the ability of this chimeric protein to form stable transcription repression 
complexes that are irresponsive to physiological concentrations of retinoids. As a 
consequence, gene promoters that are targeted by PML/RARA become constitutively 
repressed, an observation that has led to the general assumption that this oncoprotein 
causes a block in blood cell differentiation through transcriptional inhibition of key genes 
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involved in hematopoietic maturation. Consistent with a role in gene repression, 
PML/RARA has also been shown to recruit the histone methyl transferase SUV39H1 
(Carbone et al., 2006), members of the polycomb repressive complex 2 (PRC2) (Villa et al., 
2007) and DNA methyltransferases (DNMTs) (Di Croce et al., 2002), proteins that are 
known to induce a repressive chromatin structure. In addition to increased repressor 
activity, the PML/RARA fusion also appears to possess a considerable expanded 
repertoire of target genes compared to the normal RARA protein. This notion is 
supported by in vitro binding studies showing that PML/RARA has a broader and more 
relaxed DNA binding specificity compared to RARA (Hauksdottir & Privalsky, 2001; 
Kamashev et al., 2004), and by a genome wide screen revealing a wide range of 
PML/RARA target genes (Hoemme et al., 2008). The altered DNA binding and 
transcription repression properties of PML/RARA are partially due to the ability of this 
chimeric protein to form homodimeres through protein-protein interactions mediated by 
the TRIM motif of PML (Jansen et al., 1995; Perez et al., 1993). In addition, this chimeric 
protein has also been shown to form functional complexes with other transcription factors 
such as RXR and Daxx, a feature that may further contribute to the expanded promoter 
binding capacity (Zeisig et al., 2007; Zhu et al., 2005; Zhu et al., 2007).  
PML/RARA is also thought to contribute to malignant transformation and development of 
APL through inhibition of PML tumor suppressor functions. A dominant negative effect of 
PML/RARA on this protein is evident by studies demonstrating disruption of nuclear PML 
bodies into a dispersed microspeckled pattern in cells expressing this oncoprotein (Dyck et 

al., 1994; Koken et al., 1994; Weis et al., 1994). Interestingly, while disruption of PML NBs by 
PML/RARA in the nucleus is evident, this oncoprotein readily assembles into MAPPS and 
CyPNs, the mitotic and cytoplasmic versions of PML NBs, respectively (Jul-Larsen et al., 
2009). The disruption of PML NBs in the nucleus may reflect the role of this oncoprotein in 
repression of gene activity. 
 

 
Fig. 1. Structural organization of PML, RARA and PML/RARA. PML contains a RING 
domain (R), two B boxes (B), a coiled coil (CC) and a variable C-terminus. RARA consists of 
six regulatory domains (A-F), of which domain C and E harbor the DNA binding domain 
(DBD) and the ligand binding domain (LBD), respectively. The t (15;17) translocation 
produces PML/RARA, which retains the N-terminal PML motifs as well as RARA DNA 
and ligand binding activity. Arrows indicate protein breakpoints. 
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While PML/RARA is constantly expressed in more than 97% of all APL patients, the 
reciprocal fusion protein RARA/PML, which contains the N-terminus of RARA and 
variable lengths of the PML C-terminus, is identified in only 70-80% of the cases (Alcalay et 
al., 1992; Grimwade et al., 1996). Not much is known about the role of this protein in the 
pathogenesis of APL. However, one study has described a possible link between 
RARA/PML fusion gene deletions and resistance to ATRA-based therapy (Subramaniyam 
et al., 2006). 

4. The mechanism of ATRA and ATO-mediated APL therapy  

4.1 The mechanism of ATRA-based APL therapy 

Phenotypically, pharmacological concentrations of ATRA lead to effective differentiation of 
immature APL cells to terminally differentiated granulocytes. From a therapeutic point of 
view this may be beneficial since the immature malignant cells progress from being highly 
proliferative and long-lived to arrested and short-lived. In addition, in vitro cell culture 
experiments have shown that ATRA-induced differentiation also coincides with activation 
of apoptosis (Altucci et al., 2001; Grignani et al., 1998; Martin et al., 1990). The relative 
contribution of apoptotic cell death versus increased turnover of mature granulocytes to 
ATRA-induced clearance of tumorigenic cells is not clear. Although ATRA appears to be 
highly effective in clearing the bulk of proliferative tumor cells, a residual population of 
cells with detectable t(15;17) translocation almost invariably persist following treatment 
with this reagent alone, a feature that probably explains the additional need for 
chemotherapy in order to achieve complete remission (Chen et al., 1991; Chomienne et al., 
1990; Huang et al., 1988; Zhu et al., 1995). 
At the molecular level, therapeutic doses of ATRA reverse the differentiation block caused 
by PML/RARA through a direct interaction with the ligand binding site present on the 
RARA moiety. As for normal RARA, the ligand-receptor interaction induces a change in the 
PML/RARA protein structural conformation, which leads to release of transcription 
repressors and subsequent activation of the basal transcription machinery. Coincident with 
transcription activation, ATRA also induces recruitment of the proteasome to the ligand 
binding transcription activation domain AF2 of RARA, and subsequent proteasome-
dependent degradation (Kopf et al., 2000; Zhu et al., 1999). A protein that has been proposed 
to participate in this pathway is the ubiquitin-activating enzyme E1-like (UBE1L) protein, 
which itself represents one of the ATRA-induced proteins (Kitareewan et al., 2002). ATRA-
mediated degradation appears to affect RARA and PML/RARA equally well and may be 
functionally linked to transcription activation, since mutations in RARA that impairs its 
DNA binding activity also inhibits ATRA-mediated catabolism (Zhu et al., 1999). The 
relative contribution of transcriptional activation, differentiation and degradation on 
therapy remains to be fully elucidated.  

4.2 The mechanism of ATO-based APL therapy 

Compared to ATRA, ATO has a more limited ability to induce terminal differentiation of 
APL cells. In vitro studies using cultured cells have revealed a dose-dependent effect of this 
drug on differentiation and apoptosis (Chen et al., 1997). At high concentrations (0.5-2.0 µM) 
ATO induced cell death by apoptosis, while at low concentrations (0.1-0.25 µM) this drug 
caused partial differentiation of APL cells along the granulocyte linage (Cai et al., 2000; Chen 
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et al., 1997). The results from these experiments appear to be in good agreement with studies 
demonstrating ATO-induced partial differentiation and apoptosis in APL patients or animal 
models, where the effective serum concentrations of ATO generally ranges from 0.1 to 1.0 
µM (Chen et al., 1997; Lallemand-Breitenbach et al., 1999). Interestingly, ATO-mediated 
differentiation has been shown to become dramatically enhanced in the presence of cyclic 
adenosine monophosphate (cAMP). The mechanism responsible for this synergistic effect 
was proposed to be the combined effect of ATO-induced PML/RARA degradation and 
cAMP-mediated inhibition of cell cycle progression (Guillemin et al., 2002; Zhu et al., 2002). 
At the molecular level, ATO exerts its therapeutic effect on APL in part by initiating a 
cascade of biochemical alterations that primarily affect the PML moiety of PML/RARA. 
Firstly, the presence of arsenic in the cell culture medium has been shown to increase PML 
and PML/RARA multimerization, an effect that is manifested by decreased solubility of 
these proteins upon preparation of cell lysates and reduced mobility within PML NBs as 
determined by analysis of GFP-tagged PML in living cells (Jeanne et al., 2010; Zhang et al., 
2010). Concomitant with increased aggregation, PML becomes extensively SUMOylated on 
at least three different lysine residues. All of the three different SUMO isoforms, including 
SUMO1, 2 and 3, appear to participate in this reaction, and both mono and poly-
SUMOylation events have been reported (Lallemand-Breitenbach et al., 2001; Lallemand-
Breitenbach et al., 2008; Muller et al., 1998; Tatham et al., 2008). Subsequent to SUMOylation, 
a protein called RNF4 binds SUMOylated residues on PML in order to catalyze poly-
ubiquitination, a modification that directs PML and PML/RARA to the proteasome for 
degradation (Lallemand-Breitenbach et al., 2008; Tatham et al., 2008). Recently, a direct 
interaction between PML and ATO, that potentially triggers this SUMO-mediated 
degradation pathway, was mapped to cysteine residues located in the TRIM and B-box 
motifs of PML (Jeanne et al., 2010; Zhang et al., 2010). 
In addition to affecting differentiation of leukemic cells, recent studies have also implicated 
ATO in clearance of leukemic-initiating cells (LICs), a small population of malignantly 
transformed cells with stem cell characteristics that frequently are refractory to cancer 
therapeutic drugs. Consistent with this, PML/RARA expression has been reported to 
support properties of self-renewal of LICs (Wojiski et al., 2009), and certain characteristics of 
promyelocytic phenotypes provide the basic properties for the development of APL-
initiating LICs (Guibal et al., 2009). Furthermore, a recent study demonstrated LIC clearance 
in association with ATO-induced PML/RARA degradation by a mechanism that appeared 
to be uncoupled from the observed cell differentiation (Nasr et al., 2008; Shao et al., 1998). In 
addition, ATO has been reported to cause increased proliferation of LICs in a chronic 
myelogenous mouse model, hence sensitizing otherwise therapy-insensitive leukemic cells 
to Ara-C-based treatment (Ito et al., 2008; Ito et al., 2009).  
The proapoptotic activity of ATO is not specific for APL cells (Akao et al., 1998; Bachleitner-
Hofmann et al., 2001; Ishitsuka et al., 1998; Perkins et al., 2000; Rousselot et al., 1999; Wang et 
al., 1996; Zhang et al., 1998; Zheng et al., 1999), although non-APL tumor cells have been 
shown to be less sensitive to this drug (Huang et al., 1999). ATO induces apoptosis by 
downregulation of the antiapoptotic protein Bcl-2, leading to a disturbance in the regulated 
balance between pro- and antiapoptotic proteins (Akao et al., 1998; Chen et al., 1996; Zhang 
et al., 1998). In addition, ATO increases radioactive oxygen species (ROS) production in 
malignant cells. As a consequence, this drug leads to disruption of the mitochondrial 
membrane potential, followed by cytochrome c release, caspase activation and subsequent 
apoptotic cell death (Jing et al., 1999).  
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4.3 The synergy between ATRA and ATO 

While ATRA and ATO on their own are known to be effective in curing APL, it is also 
becoming increasingly clear that treatment regiments based on a combination of the two 
drugs leads to a quicker clinical remission, a more effective clearance of leukemic cells and a 
significantly longer period of relapse free survival (Estey et al., 2006; Hu et al., 2009; Shen et 

al., 2004; Wang et al., 2004). This synergistic effect may result due to the ability of both these 
drugs to cause PML/RARA degradation, a parameter that appears to be critical for the 
success of APL therapy. In addition, the combined effect of ATO and ATRA may also result 
due to the ability of the two agents to act on separate targets, both of which are important 
for disease remission. For example, ATO may be effective in eradicating self-renewable LICs 
through stimulated PML/RARA degradation, while ATRA represents a more effective 
differentiating agent, and hence may lead to a more complete clearance of undifferentiated 
APL cells.  

5. Therapy-induced degradation of PML/RARA  

ATRA and ATO-induced therapy of APL may be connected to the ability of these drugs to 
induce PML/RARA catabolism (Fig. 2.). In agreement with this, reduced PML/RARA 
expression can be observed in both ATRA and ATO-treated cells, and the two drugs 
synergize both for their ability to induce oncoprotein degradation as well as for their 
capacity to promote clinical remission (Hu et al., 2009; Nasr et al., 2008; Shen et al., 2004). An 
important role of protein degradation for effective APL therapy is also supported by 
experiments in mice. For example, treatment of an APL mouse model with the proteasome 
inhibitor bortezomid led to reduced degradation of PML/RARA and concomitant resistance 
to ATRA and ATO-based therapy (Nasr et al., 2008). In addition, PML/RARA mutated in 
critical SUMOylation target sites, were found to be more resistant to ATO-mediated 
degradation compared to unmodified PML/RARA (Lallemand-Breitenbach et al., 2001; 
Lallemand-Breitenbach et al., 2008). 
In addition to proteasome-dependent degradation induced by ATRA and ATO, 
PML/RARA has also been shown to be amenable for degradation by the lysosome-
dependent degradation pathway autophagy (Isakson et al., 2010; Klionsky, 2007). This 
degradation mechanism appears to play a major role both for basal turnover as well as for 
therapy-induced catabolism of PML/RARA. Indeed, pharmacological inhibitors of 
autophagy were found to completely prevent ATRA and ATO-stimulated degradation of 
PML/RARA expressed in the APL cell line NB4 (Isakson et al., 2010). In contrast to 
proteasome-dependent degradation, autophagy-mediated proteolyses of PML/RARA 
appears to be independent of a direct interaction between the drugs and the target protein. 
Instead, ATRA and ATO seem to stimulate autophagy in APL cells primarily through a 
mechanism that involves the mammalian target of rapamycin (mTOR) and Unc-51-like 
kinase 1 (ULK1) (Bøe & Simonsen, 2010; Isakson et al., 2010). Furthermore, PML/RARA is 
highly aggregation prone and therefore a good substrate for this degradation pathway 
(Isakson et al., 2010; Lallemand-Breitenbach et al., 2001). Aggregates of PML/RARA may 
form during the process of protein synthesis. In agreement with this, synthesis of 
PML/RARA has been shown to be associated with endoplasmatic reticulum stress, a feature 
indicative of aberrant folding during protein synthesis (Khan et al., 2004).  
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Fig. 2. Schematic overview of the four main ATRA and ATO-mediated PML/RARA 
degradation pathways: 1. ATO-induced proteasome-dependent degradation,  
2. ATRA-induced caspase cleavage, 3. ATRA-induced proteasome-dependent degradation, 
4. ATRA/ATO-induced autophagy-mediated degradation. 

Two different types of proteases have also been implicated in PML/RARA proteolysis. First, 
PML/RARA has been shown to be susceptible to a caspase 3-like activity expressed in APL 
cells and that becomes induced by the presence of ATRA (Nervi et al., 1998). The second 
protease shown to be involved is neutrophil elastase, a myeloid specific serine protease that 
is maximally expressed in promyelocytes (Lane & Ley, 2003). The contribution of this 
protease to APL development is unclear since one study showed enhanced penetrance of 
PML/RARA in a neutrophil elastase defective mice (Lane & Ley, 2003), while another 
demonstrated decreased tumorigenesis in a mouse model expressing a neutrophil elastase 
cleavage defective PML/RARA protein (Uy et al., 2010).  
PML turnover has also been shown to be regulated by a pathway that involves direct 
phosphorylation by the casein kinase 2 (CK2) and subsequent ubiquitin-mediated 
degradation, a mechanism that was proposed to cause decreased PML tumor suppressor 
activity in lung cancer (Scaglioni et al., 2006). However, the significance of CK2-mediated 
PML phosphorylation in PML/RARA degradation and APL pathogenesis has not been 
elucidated.  
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6. The mechanism of APL therapy resistance 

The second most common translocation associated with APL, the t(11;17) translocation that 
expresses PLZF/RARA fusion instead of PML/RARA, is generally insensitive to ATRA and 
ATO-based therapy (Chen et al., 1993; Licht et al., 1995). The poor response of these patients 
to ATO add support to studies showing that this drug primarily target PML, which is absent 
in PLZF/RARA. In the case of the poor response to ATRA, on the other hand, the 
underlying mechanism has been hypothesized to be due to enhanced co-repressor activity 
conferred by the PLZF moiety of the PLZF-RARA fusion (Grignani et al., 1998; He et al., 
1998; Lin et al., 1998). However, the notion that PLZF/RARA is irresponsive to ATRA 
stimulation has been contradicted in more recent studies demonstrating ATRA-induced 
gene expression and differentiation also in PLZF/RARA expressing APL cells (Nasr et al., 
2008; Petti et al., 2002; Rice et al., 2009). Thus, further work is needed in order to fully 
understand the mechanism underlying the insensitivity of PLZF/RARA positive APL cells 
to ATRA.  
Resistance to ATRA-mediated therapy is also seen in APL patients that have relapsed 
following the first clinical remission. Such acquired resistance may be caused by a number 
of different physiological factors, including increased catabolism, reduced cellular uptake, 
or increased cytoplasmic sequestration of the therapeutic drugs (Freemantle et al., 2003; 
Gallagher, 2002). In addition, in vitro cell culture experiments, using the APL cell line NB4, 
have revealed mutations within the PML/RARA gene of subclones with acquired resistance 
to ATRA. Interestingly, several of these mutations were found clustered at/or near the 
ligand binding domain of RARA leading to defects in ATRA binding. Since these mutants 
generally retain their capacity to form complex with RXR and to bind DNA, they have been 
suggested to act as dominant inhibitors of wild type RARA (Duprez et al., 2000; Kitamura et 
al., 1997; Nason-Burchenal et al., 1998; Rosenauer et al., 1996; Shao et al., 1997). Mutations in 
PML/RARA have also been identified in a subset of ATRA-relapsed patients, and these 
mutations were found to be variably associated with inactivation of ATRA binding (Ding et 
al., 1998; Gallagher et al., 2006; Imaizumi et al., 1998; Marasca et al., 1999; Takayama et al., 
2001; Zhou et al., 2002). Interestingly, one study identified mutations within the intact PML 
locus of APL patients with ATRA-resistance and poor prognosis (Gurrieri et al., 2004). 
Recently, PML/RARA mutations have also been discovered in two APL cases with poor 
response to ATO (Goto et al., 2011). In both cases, the mutations were located within the 
second B-box motif of the PML protein. Since the amino acids affected by these mutations 
were close to a cysteine-rich region, previously proposed to bind ATO (Jeanne et al., 2010), 
the authors of this paper hypothesized that these mutations may affect interactions between 
this drug and PML/RARA. Alternatively, the mutated protein may have defects in 
oligomerization, since the B-box domains are known to function in PML multimerization. 
Combined, the PML/RARA mutations that have been identified in ATRA and/or  
ATO–resistant APL cells support the notion that these drugs interact with separate moieties 
of the fusion protein to induce clinical remission. 

7. Perspectives  

During the past 30 years, APL has progressed from a deadly disease to a highly curable 
malignancy. In addition, the advances that have been made in understanding the pathology 
and cure of APL at the molecular level have led to the emergence of a highly attractive 
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model disease for the development of targeted cancer therapy. For example, the case of APL 
clearly demonstrates the therapeutic effectiveness of targeting a defined oncoprotein, and 
since recurrent translocations and expression of fusion oncoproteins similar to that of 
PML/RARA is a common trait also among other types of cancers (including leukemias and 
sarcomas), a large number of malignancies, in addition to APL, may benefit from similar 
targeted therapies. Thus, it will be important to continue identifying therapeutic concepts 
that contribute to the success of APL therapy and to modulate these concepts for treatment 
of other cancers.  
Since both ATRA and ATO have been shown to exert their therapeutic effects through 
interactions with specific regions of the PML/RARA oncoprotein, it may be assumed that 
these drugs will be effective only against APL. However, one should also keep in mind that 
the ability of ATRA and ATO to mediate cure of APL is regarded as a rather fortuitous 
discovery and not merely as a result of rational therapeutic design. For this reason, these 
drugs are likely to have other yet unidentified cellular targets, beside the APL-associated 
fusion portion, that are important for effective treatment. Evidence for this comes from one 
of the studies mentioned above showing that both ATRA and ATO-stimulated autophagic 
degradation of PML/RARA through a mTOR-dependent pathway that does not seem to 
involve direct interactions between drugs and the oncoprotein (Isakson et al., 2010). In 
addition, it is also becoming increasingly clear that ATO has the potential to cure a subset of 
cancers that don't express PML/RARA. For example, induced clearance of LICs has been 
demonstrated both in PML/RARA positive as well as PML/RARA negative leukemic cells 
(Ito et al., 2008; Nasr et al., 2008). Furthermore, a phase II clinical study was recently 
published that showed promising results of using ATO in combination with interferon 
alpha and zidovudine for treatment of patients with chronic adult T cell leukemia (Kchour et 
al., 2009), and finally, this drug was found to sensitize glucocorticoid-resistant acute 
lymphoblastic leukemia cells to dexamethasone (Bornhauser et al., 2007). Thus, it is likely 
that APL for many years to come will continue to represent an important model disease for 
targeted and non-targeted effects of ATRA and ATO, while increased understanding of the 
molecular pathways involved may lead to discoveries of new therapies that are applicable 
for other types of cancers.  
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