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1. Introduction  

Synthetic fibers, mainly polyethylene terephthalate (PET), polyamide (PA), polyacrylonitrile 
(PAN) and polypropylene (PP), are the most widely used polymers in the textile industry. 
These fibers surpass the production of natural fibers with a market share of 54.4%. The 
advantages of these fibers are their high modulus and strength, stiffness, stretch or elasticity, 
wrinkle and abrasion resistances, relatively low cost, convenient processing, tailorable 
performance and easy recycling. The downside to synthetic fibers use are reduced wearing 
comfort, build-up of electrostatic charge, the tendency to pill, difficulties in finishing, poor soil 
release properties and low dyeability. These disadvantages are largely associated with their 
hydrophobic nature. To render their surfaces hydrophilic, various physical, chemical and bulk 
modification methods are employed to mimic the advantageous properties of their natural 
counterparts. This review is focused on the application of recent methods for the modification 
of synthetic textiles using physical methods (corona discharge, plasma, laser, electron beam 
and neutron irradiations), chemical methods (ozone-gas treatment, supercritical carbon 
dioxide technique, vapor deposition, surface grafting, enzymatic modification, sol-gel 
technique, layer-by-layer deposition of nano-materials, micro-encapsulation method and 
treatment with different reagents) and bulk modification methods by blending polymers with 
different compounds in extrusion to absorb different colorants.  
Nowadays, the bulk and surface functionalization of synthetic fibers for various 
applications is considered as one of the best methods for modern textile finishing processes 
(Tomasino, 1992). This last stage of textile processing has employed new routes to 
demonstrate the great potential of nano-science and technology for this industry (Lewin, 
2007). Combination of physical technologies and nano-science enhances the durability of 
textile materials against washing, ultraviolet radiation, friction, abrasion, tension and fading 
(Kirk–Othmer, 1998). European methods for application of new functional finishing 
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materials must meet high ethical demands for environmental-friendly processing (Fourne, 
1999). For this purpose the process of textile finishing is optimized by different researchers 
in new findings (Elices & Llorca, 2002). Application of inorganic and organic nano-particles 
have enhanced synthetic fibers attributes, such as softness, durability, breathability, water 
repellency, fire retardancy and antimicrobial properties (Franz, 2003; McIntyre, 2005; 
Xanthos, 2005). This review article gives an application overview of various physical and 
chemical methods of inorganic and organic structured material as potential modifying 
agents of textiles with emphasis on dyeability enhancements.  
The composition of synthetic fibers includes polypropylene (PP), polyethylene terephthalate 
(PET), polyamides (PA) or polyacrylonitrile (PAN). Synthetic fibers already hold a 54% 
market share in the fiber market. Of this market share, PET alone accounts for almost 50% of 
all fiber materials in 2008 (Gubitz & Cavaco-Paulo, 2008). Polypropylene, a major 
component for the nonwovens market accounts for 10% of the market share of both natural 
and synthetic fibers worldwide (INDA, 2008 and Aizenshtein, 2008). It is apparent that 
synthetic polymers have unique properties, such as high uniformity, mechanical strength 
and resistance to chemicals or abrasion. However, high hydrophobicity, the build-up of 
static charges, poor breathability, and resistant to finishing are undesirable properties of 
synthetic materials (Gubitz & Cavaco-Paulo, 2008).  
Synthetic textile fibers typically undergo a variety of pre-treatments before dyeing and 
printing is feasible. Compared to their cotton counterparts, fabrics made from synthetic fibers 
undergo mild scouring before dyeing. Nonetheless,  these treatments still create undesirable 
process conditions which can result in increased waste production, unpleasant working 
conditions and higher energy consumption. Therefore reducing pollution in textile production 
is becoming of utmost importance for manufacturers worldwide. In coming years, the textile 
industry must implement sustainable technologies and develop environmentally safer 
methods for textiles processing to remain competitive (Agrawal et. al., 2008).  

1.1 Fiber-forming synthetic polymers  

Fibers comprising at least 85% by weight of a substituted aromatic (or aliphatic) carboxylic 
acid ester are termed polyesters. The most important representative of this category is 
polyethylene terephthalate or PET (BISFA, 2009). PET is a hydrophobic fiber with maximum 
moisture regain of only 1% at 100% relative humidity. Until the development of disperse 
dyes, dyeing of polyester was difficult. Disperse dyes with very low water solubility can 
sublime into PET fibers by heat through Thermosol and/or thermofixation processes. It can 
be applied with heat, pressure or via carriers by an exhaust process (Cavaco-Paulo & 
Gubitz, 2003). Alkali treatment can be used to etch the PET surface to increase the 
hydrophilicity of the fiber resulting in better dyeability. However, the rate of hydrolysis is 
very low without a catalyst and surface-limited (BISFA, 2009). 
In generic terms, aliphatic polyamides (PA) are called nylons and aromatic PAs are called 
aramids. The first important PA was Nylon 66 as produced by the reaction of adipic acid 
and hexamethylene diamine monomer (Cavaco-Paulo & Gubitz, 2003). Several structural 
modifications with differing temperature capabilities have become commercially available, 
including Nylon 46, 610, 612, 6, 11, and so on. Polyamides have applications in many areas, 
the most important being in the production of fiber-based materials (BISFA, 2009). Nylons 
are dyeable with disperse dyes or with acid dyes under mild acidic conditions. Aqueous 
acids (below pH 3) as well as bases cause the rupture of the polymer backbone. In the case of 
acid dyeing, dye molecules only attach to available amino end groups, thus shade depth is 
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determined by the ratio of negatively charged groups of the dye molecule to positively 
charged end groups in the fiber.  

2. Classification of methods used for synthetic textiles modification 

Synthetic fibers have relatively high levels of orientation and crystallinity that impart the 
desired properties. These same characteristics contribute to their structural resistance to 
coloration by dye compounds and finishing with various materials necessitating 
enhancement of the fiber surface for improved dye receptivity. In this sense, a large body 
exists to improve fiber dyeability via physical methods (corona discharge, plasma, laser, 
electron beam and neutron irradiation functionalizations), chemical methods (enzymatic 
modification grafting of different monomers, utilization of supercritical carbon dioxide as 
the solvent carrier for disperse dyes, sol-gel technique, layer-by-layer deposition and 
treatment with different reagents) and bulk modification methods using various additives 
during fiber processing. In last decade, traditional methods that consume high amounts of 
energy and water are under pressure for replacement due to high manufacturing costs and 
negative environmental impact. In addition, some processing negates the bulk properties of 
fibers, require harsh process conditions, and produce undesirable side effects and ⁄or waste 
disposal problems. Recent methods address these challenges and deficiencies of traditional 
techniques and will be discussed in this chapter (Textor et al., 2003).  

2.1 Physical methods 

Traditional transformation of a hydrophobic polymer such as poly(dimethylsiloxane) 
(PDMS) to a hydrophilic state has been achieved via techniques such as corona and plasma 
treatments (Ferguson et al., 1993; Owen, 2005). Corona, plasma, irradiation, and laser 
technologies are ideal for textile surface modifications due to the energy-efficient dry-state 
processing, continuous on-line applicability, and minimal precursor quantity requirements. 
In addition, surface modification does not ingress to the bulk fiber’s mechanical properties 
although physical alterations are generally realized on the fiber’s outermost surface layer. 
Depending on the treatment duration, the changes can propagate several microns below the 
surface. X-ray photoelectron spectroscopy (XPS) analysis on oxygen plasma treated samples 
demonstrated a rapid substitution of carbon atoms by oxygen atoms, which led to the 
formation of hydrophilic surfaces (Hillborg & et al., 2000). This treatment will propagate 
several hundred nanometers below the surface with irreversible chemical changes at the 
near-surface region (Hillborg & Gedde UW, 1999; Hillborg & et al., 2000; Owen & Smith, 
1994). The various physical methods all have their merits with some processes, such as 
corona, more applicable to simple on-line installation. This section will highlight each 
technique with some examples on their resultant properties. 

2.1.1 Corona discharge 

Corona discharge is the breakdown of a gas between two electrodes. When the gas is anything 
but air, it is termed plasma modification to be discussed in the next section. The generation of 
the initial hydrophilic surface is the same in both modifications with just different outcomes 
based on the introduced gas stream. Figure 1 (Borcia, 2006) depicts a typical schematic for 
dielectric discharge modification. When the high voltage or electric field is applied in a gas 
layer exposed to a polymer surface, the gas molecules, in this case air, breakdown to ions to 
conduct electricity. It is the bluish air glow from the electric source that is termed corona. This 
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phenomenon starts with a few stray electrons colliding with other gas molecules. The collision 
rapidly generates several multiple electrons, positive ions, and excited molecules. The unstable 
excited molecules decompose to radicals, ions and photons, i.e. reactive species. When the gas 
is oxygen (or air), the reactive species are elemental oxygen (O), ozone (O3) and activated 
oxygen (O2*). Scheme 1 shows the general reactions of polyethylene terephthalate (PET) in the 
presence of either UV or corona as the mechanisms are believed to be the same. The terminal 
phenols and hydroxy phenolics are rapidly formed on the surface of corona-exposed PET 
between the reactive oxygen species and moisture in the air (Owens, 1975; Valk, Kehren, & 
Daamen, 1970; Zhang, Sun, & Wadsworth, 1998). Other polar moieties that are formed during 
corona treatment include carbonyls (-CO) and  carboxyls (-COO). This change in surface 
polarity has been widely studied for increases in adhesion, wettability, printing, and as the 
subject of this chapter, dyeing. Several excellent reviews are referenced here that detail the 
specific and mechanisms of the treatment (Nitschke, 2008; Podhajny, 1987; Zhang, Sun, & 
Wadsworth, 1998}). 
 

 

Fig. 1. Typical setup for corona discharge modification to a polymeric surface (Borcia, 2006). 

 

 

Scheme 1. Phenolic hydroxy groups in PET after exposure to physical treatment such as 
corona or oxygen plasma (Owens, 1975). 
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A recent study evaluated not just how corona discharge affects conversion to hydrophilicity 

in terms of enhanced dyeability of synthetic fibers but also in how the fiber topography 

changes as a result of physical treatment ultimately influencing dyeability as well 

(Brzezinski et al., 2010). The study postulated that without fully understanding topography, 

specifically fiber roughness, correlating the varying results of the many conflicting studies of 

fiber dyeing with respect to corona treatment is too convoluted. To this extent, three 

synthetic fibers in separate woven mats were evaluated 1) polyester (PET), 2) polyamide 

(PA6) and 3) polypropylene (PP). The corona generator was unique in that its construction 

afforded a high degree and uniform surface modification to the fibers. This was by 

designing a multi-segmented electrode system where continuous low energy doses equated 

the larger required total energy dose for adequate surface modification. The process 

conditions previously determined for each fiber resulted in total activation energies Ej of 

75.6 J/cm2 for PET, Ej of 18.9 J/cm2 for PA6, and Ej of 22.7 J/cm2 for PP fabrics. Figure 2 

depicts the difference via atomic force microscopy (AFM) before and after modification for 

the PP fabric sample where clear disruption of the fiber surface is apparent. In addition to 

increased roughness, the change in free surface energy was approximately 10, 4, and 30 

J/cm2 for PET, PA6, and PP respectively. Dyeability for the modified samples was assessed 

with two techniques; 1) exhaustion and 2) the preferred Thermosol continuous method. The 

results between unmodified and modified samples showed little difference in the dyeing 

attributes via the exhaustion methods, as measured by degree of dye exhaustion, E or color 

difference, and dyeing fastness. This was attributed to the fact that corona discharge does 

not modify the entire fiber depth but rather only the first 200nm from the surface of the 

approximately 6500nm diameter fiber. Therefore in the dyeing techniques, such as 

exhaustion, where the entire fabric is immersed into the bath batch-wise, the dye pick-up 

rate is minimal. In contrast, dyeing methods that are applied only to the surface of the fiber, 

as in the case with the Thermosol method, surface hydrophilicity and roughness are far 

greater parameters to gauge the receptivity of the dye. In this case, the dye intensity for the 

corona-modified samples was significantly enhanced as measured by the color difference E 

for the two dyes studied, C.I. Disperse Blue 73 and C.I. Disperse Red 54 (Brzezinski et al., 

2010). 

 
 

a)    b)   

Fig. 2. AFM images of polypropylene woven fabric a) before and b) after corona discharge 
treatment (Brzezinski, Kaleta, Kowalczyk, Malinowska, & Gajdzicki, 2010). 
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2.1.2 Plasma functionalization 

As mentioned, when the dielectric discharge occurs in environments besides air, the 
technology is referred to as plasma treatment; it has been studied at both vacuum and 
atmospheric pressures. The various gases employed include oxygen, nitrogen, argon, 
ammonia and reactive monomers. The hydrophilicity of poly(ethylene terephthalate) (PET) 
was greatly improved with the plasma method where the discharge barrier occurred in 
argon, nitrogen and air (Hsieh & Chen, 1985). The surface wettability enhancements were 
due to two reactions; 1) direct reaction (i.e. oxidation) of reactive gases (oxygen plasma) and 
2) free radical formation and their subsequent reactions such as degradation and 
crosslinking (Hsieh & Chen, 1985). In this study, it was determined that a nitrogen 
atmosphere with a glow discharge of 30W provided the most durable and wettable surface 
finish for PET. The optimum power level of 30W was chosen from experiments in air at 
power levels ranging from 10-30W. Figure 3 illustrates the differences of wettability at the 
optimum power level. 
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Fig. 3. Advancing water contact angles for PET modified as a function of plasma exposure 
time in air (■), argon (▲), and nitrogen (●). The bar at time zero is the contact angle for 
virgin PET. Replotted from data in (Hsieh & Chen, 1985). 

Plasma treatment has also been performed on PET fiber prior to coating with a PDMS 
surfactant. In this case the efficacy of the surfactant was greatly enhanced with plasma 
activation at 1kW, 10 kHz, in the presence of air. It was determined by scanning electron 
microscopy that the plasma treated fibers were rougher allowing increased PDMS 
deposition via observation of a smoother coating, less moisture regain after coating with 
PDMS which is hydrophobic in nature, better drape recovery and more wrinkle resistance 
(Parvinzadeh & Ebrahimi, 2011).  

2.1.3 Laser treatment 

Laser induced surface modification of polymers provides a unique and powerful method for 
the surface modification without any changes in their bulk properties. The smooth surface of 
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synthetic fibers can be modified by this technique to a regular, roll-like structure, which has 
a striking effect on adhesion of particles and coatings, wetting properties and optical 
appearance (Knittel & Schollmeyer, 1998; Watanabe & Takata, 1996; Ondogan et al., 2005; 
Shaohua et al., 2003). 
Yip et al. applied a 193 nm argon fluoride excimer laser on polyamide (nylon 6) fabrics. 

Micrometer-sized ripple like structures were developed on the surface of irradiated fabric 

and chemical analysis indicates that carbonization has occurred. It is believed that the laser 

treatment breaks the long chain molecules of nylon, thus increasing the number of amine 

end-groups (Yip et al., 2002). 

Kan stated that properties such as wettability and air permeability of polyester were 

positively affected by laser while fiber weight and diameter, tensile strength, yarn abrasion 

and bending were adversely affected (.cf Figure 4). In this study, laser irradiation was not 

found to affect the bulk properties of polymer due to its low penetration depth (Kan, 2008a; 

2008b). 

 
 

    

Fig. 4. Surface structure of polyester fiber before and after laser treatment  
(Kan, 2008a)  

2.1.4 Other physical methods 

Exposing fibers to a stream of high-energy electrons is another method for surface 

modification. The dyeability of hydrophobic polypropylene fibers was enhanced by Kim 

and Bae using electron beam irradiation and sulfonic acid incorporation. The color strength 

of polypropylene fibers after irradiation was examined according to the dyeing conditions 

including the pH of the dye bath, absorbed doses, and the introduction of a functional group 

to the fiber substrate. The best dyeing result was obtained with cationic dyes at alkaline 

conditions (Kim & Bae, 2009; Alberti et al. 2005). 

Neutron irradiation significantly changes the material properties by displacement of lattice 

atoms and the generation of helium and hydrogen by nuclear transmutation. Mallick et al. 

considered the shift in some of the Raman peak positions to a higher value with the 

development of micro-stresses due to neutron irradiation of synthetic fibers. The defects due 

to irradiation were confirmed by SEM micrographs of virgin and irradiated fibers (Mallick 

et al., 2005). 
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Critical temperature and pressure describes a fluid at temperatures and pressures higher 
than those at which the liquid and gaseous states of the given substance would have the 
same density. Prorokova et al. showed modification of the surface of PET fabrics by 
application of a water-repellent coating in supercritical carbon dioxide medium. It was 
believed that in treating PET fiber materials with a solution of low-molecular-weight 
poly(tetrafluoroethylene) in supercritical carbon dioxide, an ultrathin layer of fluoropolymer 
is formed on the surface. This layer gives the fabric a high degree of water repellency 
(Prorokova et al., 2009).  
Another potentially attractive approach would take advantage of UV light’s ability to 
transform chemistry of the polymer surface. Zhu and Kelley modified the surface of PET by 
deep UV (172 nm) irradiation. The main effects were increased conversion of the C=O 
moiety to carboxylic acid with negligible change to fiber topography. Other studies revealed 
that surface chemical composition, morphology, adhesion, thermomechanics, and 
stiffness/modulus of PET are strongly influenced by UV irradiation in the presence of bi-
functional media (Zhua & Kelley, 2004; Gao et al., 2005).  

2.2 Chemical methods 

The methods discussed in the following sections include ozonolysis, supercritical carbon 
dioxide, chemical vapor deposition, “grafting to”, enzymatic modification, sol-gel 
deposition, layer-by-layer, micro-surface modification by alkaline or acidic means, and 
macro-encapsulation of dye molecules. In many instances, the best performance is obtained 
from a combination of physical and chemical methods, especially for poly(propylene). 

2.2.1 Ozone gas treatment 

Hydrophilicity of synthetic polymer surfaces can be achieved with functionalization of 

peroxide molecules via exposure to ozone (O3). An advantage of ozone treatment is the 

uniform coverage of the reactive molecules on 3-D structures. It is also well-known that 

ozone will treat not only the surface but diffuse through the polymer bulk (Fujimoto et al., 

1993; Ko et al., 2001; Kulik, Ivanchenko, Kato, Sano, & Ikada, 1995). The process is often 

done in the gas phase but aqueous treatment has also been employed with good results (Gu, 

Wu, & Doan, 2009). In an early study by Fujimoto et al., the surface oxidation of 

polyurethane (PU) and polyethylene (PE) films were evaluated by both ozone and plasma 

treatment(Fujimoto et al., 1993). The process conditions for ozone treatment followed typical 

gas reactor set-up as illustrated in Figure 5. Of the process variables to control, gas mass 

flow rate, voltage and time are the most common to control ozone concentration. The 

formed polymeric peroxides on the surface and in the bulk were quantified by iodide (Frew, 

Jones, & Scholes, 1983), DPPH (Frew et al., 1983), and peroxidase spectrophotometric 

methods (Suzuki, Kishida, Iwata, & Ikada, 1986). Additional surface analysis to confirm 

reactivity of the ozone included wettability measurements, Fourier infrared spectroscopy in 

the attenuated reflectance mode (FTIR-ATR), and X-Ray Photoelectro Spectroscopy  

(XPS/ ESCA). Subsequent to oxidation was the graft polymerization of acrylamide which 

will be discussed in Section 2.2.4. The surface oxidation efficiency was evaluated based on 

water contact angle (cf. Figure 6) and peroxide concentration. Of interest is that the 

wettability of the plasma exposed films is much higher than the ozonated films but the 

peroxide concentration in the plasma  treated   polyurethane   film (Power = 24W, exposure 

time = 20 seconds) is lower than its ozone counterpart (Voltage =100V, exposure  
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time =20 minutes, O2 flow = 50 L· hr-1). It should also be noted the concentration of peroxide 

decreases with polymer rigidity and nonpolar constituents (C-F). 

 

 

Fig. 5. Typical set-up for ozonolysis of substrates. Redrawn from (Fujimoto, Takebayashi, 
Inoue, & Ikada, 1993) 

 

 

Fig. 6. Decrease in contact angle of PE and PU films by ozone oxidation and plasma 
exposure. Ozone (60V, 50 Lhr-1): (○) PE, (●) PU. Plasma (Ar, 24 W): (∆) PE, (▲) PU. Virgin: 
() PE, (■) PU. From (Fujimoto et al., 1993). 
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Ozone self-decomposes rapidly in water producing free radicals, a stronger oxidant than 
ozone itself (Hoigne & Bader, 1976). This property was utilized to produce hydrophilic and 
highly reactive high-density polyethylene (HDPE) films (Gu et al., 2009). The O2 gas rate in 
this study was about twelve times higher with exit ozone concentrations ranging between  
1-3.7 weight percent. 
Figure 7 illustrates the difference of ozone treatment in the aqueous phase versus the gas 
phase. While initially there is no apparent difference in the media treatment, the peroxide 
generation (as measured by the iodometric method (Kokatnur & Jelling, 1941)) is greater 
and faster for ozonation in the aqueous phase. For all samples, it was demonstrated that the 
stability of the generated peroxides lasted at least 15 days with no change in concentration. 
The subsequent grafting of acrylamide on the aqueous ozone treated samples was successful 
but its performance in terms of surface energy was not contrasted to acrylamide graft 
polymerization on gas-phase ozone treated samples. 
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Fig. 7. Peroxides generated after different ozonation times in different media (Gu et al., 2009) 

Specific to fabrics, chemical modification via gas-phase ozone treatment was performed on 
nylon 6 taffeta, polyester taffetas (Lee et al., 2006), cationic dyeable polyester (CDP) and 
poly(butylene terephthalate) fibers (Lee et al., 2006, 2007). The surface analysis via ESCA 
was very comparable to the plasma studies by others (Fujimoto et al., 1993), the reader is 
referred to previous methods for process conditions (Wakida et al., 2004). Notable is that the 
processing time was only 10 minutes with similar surface chemistries for operations at 
atmospheric pressure and 0.1 MPa. The ozone-modified fabrics were treated with Disperse 
Red 60 and Disperse Blue 56 dyes in batch immersion at 100oC for up to 120 hours. The 
authors found that the internal structure of the fibers increased in crystallinity (as measured 
by a density gradient column and X-ray diffraction), wettability and moisture uptake upon 
ozone treatment. These characteristics of the modified fibers were attributed to the increase 
in dye uptake rate, especially for polyester fibers. The equilibrium dye uptake increased for 
PBT fibers, polyester taffeta and nylon 6 taffeta but remained unchanged for CDP fibers. 
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2.2.2 Supercritical carbon dioxide technique 

In recent years, waterless dyeing in supercritical carbon dioxide (scCO2) fluid has been 
gaining much interest to textile chemists. This process is deemed an environmentally safe 
solvent as opposed to the traditional solvent of choice, water. Application of these 
techniques can result in reducing waste and cost for the entire dyeing process of synthetic 
textiles (Kikic  & Vecchione, 2003).  
The possible advantages of this process are  
1. Plasticizing effect due to CO2 on textiles decreasing the glass transition temperature. 
2. Elimination of contaminated waste water streams. 
3. Elimination of chemicals, such as leveling agents, pH regulations and dispersants, to 

solubilize disperse dyes in medium. 
4. Controllable solubilities of disperse dyes via pressure.  
5. Diffusion of dyes and penetration of voids within the fiber structure in the fluid is 

higher/ faster due to zero surface tension between air and scCO2 carbon dioxide.  
6. Generation of effluents due to dyeing or recycling of contaminated gas streams does not 

exist.  
7. Energy consumption is low for heating up dyeing liquor.  
8. For polyester, elimination of reduction clearing process, short dyeing times, and high 

diffusivities resulting in high extraction/ reaction rates.  
Figure 8 shows the supercritical carbon dioxide apparatus which is usually used for dyeing 
of synthetic fibers. Fabric and dye are put in the container before starting the process. The 
apparatus is then sealed and heated to a pre-selected dyeing temperature and CO2 is 
pumped simultaneously to the set pressure. The dyeing is carried out on textile depending 
on the type of fiber and then the pressure is slowly reduced to atmospheric at isothermal 
conditions (Li-qiu et al., 2005). 
 

 

Fig. 8. The supercritical carbon dioxide apparatus used for dyeing of synthetic fibers 1. 
Liquid CO2,  2. Pump, 3,5,9. Pressure-control valves, 4. Manometer, 6.Autoclave, 7. 
Temperature sensor, 8. Dyepot, 10. Adjust valve (Li-qiu et al., 2005) 

Bach et al. dyed PP fibers in scCO2 with different disperse dyes. They showed that disperse 
azo dyes with a naphthalene moiety gave much deeper colors on PP versus benzo-azo or 
anthraquinone dyes. They stated that improvement in dyeability is due to the changes in the 
crystal network of PP by the treatment in CO2 as contrasted with PP dyed in water or air 
(Bach, 1998). 
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FTIR and NMR results obtained from Nylon 6,6 fabric samples that underwent scCO2 
dyeing of with a disperse-reactive dye confirmed a covalent bond with the fibers. Wash and 
light fastness of the fabrics showed satisfactory results. Their results indicated that fabric 
immersed in scCO2 does not undergo any fiber damage (Liao et al., 2000). Shim et al. studied 
sorption of disperse dyes in PET and PTT textiles in the presence of scCO2. They found that 
the dyeing rate increased monotonically with pressure at isothermal conditions and 
increased with temperature isobaric conditions (Shim et al., 2003). Generally, this method 
plasticizes the polymeric fibrous chains enhancing dye diffusion rates and increasing the 
ease of solvent removal. Moreover, it replaces water in dyeing processes, overcoming the 
problem of wastewater treatment. 

2.2.3 Textile surface functionalization by vapor deposition methods (VDM) 

Sputter coating is a significant technique producing functional nanostructured fibers. These 
functionalized fibers are essential for realizing their applications in microelectronic 
elements, photonics devices, and medical implants (Wei et al., 2006). Wei et al. used 
magnetron sputter coatings to generate functional nanostructures on polymer fiber surfaces. 
Conducting aluminum (Al) film, piezoelectric aluminum nitride (AlN) film, and ceramic 
film of aluminum oxide (Al2O3) were deposited onto PET fibers at low temperature. These 
nanostructured fibers have great potential for applications ranging from conductive shields, 
packing, and protective materials to electronic sensors. 
 

 

Fig. 9. Surface morphology of textile fiber: (a) original polypropylene fiber; (b) 20nm copper 
coated polypropylene fiber; (c) 50nm copper coated polypropylene fiber; and (d) 100nm 
copper coated polypropylene fiber (Wei et al., 2008). 

Copper (Cu) nanocomposite textiles were prepared by magnetron sputter coating as 
discussed by other researchers. The surface conductivity of the textiles coated with Cu 
nanostructures showed a significant increase compared to the uncoated ones. The increased 
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coating thickness improved electrical conductivity (.cf Figure 9). The coated textiles also 
showed considerable improvement in UV and visible light shielding as examined by 
UV/Vis spectrometer (Wei et al., 2008). 

2.2.4 Surface grafting 

Covalent bonding of a molecule to most non-reactive synthetic surfaces such as polyolefins 

typically requires surface activation via one the physical methods described earlier. To this 

extent, graft peroxide-initiated polymerization of acrylamide (AAm) proceeded successfully 

on the ozonated surfaces described in Section 2.2.1. The SEMs in Figure 10  clearly show the 

progression of the surface treatment to the final brush-like topography of AAm-grafted 

HDPE film (Gu et al., 2009). FTIR confirmed the presence of the amide groups with peak 

intensity at 1667 cm-1 increasing for the samples exposed longer to ozone treatment. Finally 

contact angle of the samples proceed from 74.92o for virgin HDPE to 38.55o for the AAm-

grafted HDPE (cf. Inset of Figure 10 ). Grafting of AAm to the PU and PE films by Fujimoto 

et al. was favorable although the methodology was different (Fujimoto et al., 1993). In this 

case, thermal activation of the peroxide for AAm grafting occurred at lower temperature 

(60oC versus 85oc) for less time (3 hr versus 24 hr). The end result was still an outermost 

layer of polyacrylamide on the PU film as measured by FTIR, optical microscopy, and graft 

density determination by the ninhydrin method (150 g·cm-1). It was also demonstrated, 

however, that the grafting efficiency was reduced when the procedure was performed on PE 

film. This is attributed to lower levels of peroxides incorporated to the more chemically-

resistant PE film as compared to PU film (Gu et al., 2009). These two surface modifications 

are categorized as “grafting from“ methods as the peroxide initiator was tethered to the fiber 

surface prior to the polymerization reaction. When polymer chains are absorbed (and then 

subsequently reacted) to a solid surface, the correct term is “grafting to”. A thorough 

overview of this subject is provided by Minko (Minko, 2008). 

 

a)  = 74.92o b)  = 69.71o c)  = 38.55o

 

Fig. 10. SEM images of the morphology of the film surfaces (x 5000): a) Virgin HDPE film, b) 
HDPE film after ozonation in distilled water at 3.7 wt% for 1 hour, and c) AAm-grafted 
HDPE film ozonated in distilled water at 3.7wt% for 1 hour. Adapted from (Gu et al., 2009). 

Polymerization processing parameters for the grafting of 4-vinyl pyridine to PET fiber was 

done to increase wettability and heavy-metal capture from aqueous media (Arslan, 

Yigitoglu, Sanli, & Unal, 2003). Similar to previous work (Hebeish, Shalaby, & Bayazeed, 

1979; Shalaby, Allam, Abouzeid, & Bayzeed, 1976; Shalaby, Bayzeed, & Hebeish, 1978), 

benzoyl peroxide was used as the initiator. The researchers pre-swelled the fibers in 

dichloroethane to aid in the absorption of initiator and monomer prior to polymerization. 

They evaluated monomer concentration, initiator concentration, reaction temperature and 
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time to determine the optimum grafting conditions for a maximum yield of 70%. The 

incorporation of 4-vinyl pyridine resulted in a 40% increase of water absorption at the 

maximum graft yield. The chemical initiator immersion technique for benzoyl peroxide and 

ammonium persulphate was implemented for grafting acrylic acid onto polylactide fibers. 

Both techniques for grafting were inefficient to produce significant improvement in 

dyeability. They do note that layer-by-layer deposition provided surprising results in that 

the alternative barrier layer impeded the diffusion of oxygen thus prevention of polymer 

(PLA) degradation fibers. Dyeability as observed by K/ S values was also the highest for the 

layer-by-layer modification technique. 
Table 1 contrasts four chemical reaction schemes to modify PET surfaces without physical 
modification (Chen & McCarthy, 1998; Nissen, Stevens, Stuart, & Baker, 2001). PET 
modification by glycolysis was determined most effective as measured by percent 
concentration of hydroxyl groups. The quantity of hydroxyl groups was assessed by X-ray 
photoelectron spectroscopy (XPS), dynamic contact angle (DCA) and labeling reactions. The 
labeling reactions combined with DCA are key results to conclude the increase effectiveness 
of glycolysis over hydrolysis and reduction of PET surfaces for incorporating hydrophilicity. 
Although XPS is surface sensitive to the first 100 angstroms, it is also performed in vacuum. 
Functionalizing the surface with non-polar moieties (fluorine) insure that their preferred 
orientation state is at the non-polar interface (air then vacuum) versus buried beneath the 
polymer surface. One final chemical reaction to be discussed for PET modification is 
aminolysis (Nissen et al., 2001). This reaction forms amide groups through the reaction of 
polyester's carbonyl with a primary amine. This reaction was done in the early 1960’s to 
improve wettability, reduce static electricity and increase dyeability (Farrow, Ravens, & 
Ward, 1962; Kim & Ko, 1989). This reaction can be quite severe to the fibers with complete 
degradation as a result. To temper fiber degradation, long chain multifunctional amines 
such as tetraethylenepentamine (TTEPA) has been employed with favorable results (Nissen 
et al., 2001). While XPS showed no difference in % nitrogen content with reaction time, 
titration and DCA methods show an optimum wettability or amide content at 180 minutes. 
This indicated that the reaction was proceeding through the depth of the fiber which can 
also positively impact the diffusion of a dye throughout the fiber. 

2.2.5 Enzyme surface modification of textiles 

Processing with enzymes is one of the best environmental friendly applications of 

biotechnology in textile industry (Cavaco-Paulo & Gubitz, 2003; 2008; Agrawal et. al., 2008; 

Parvinzadeh et. al., 2009). Enzymes are biological catalysts that mediate virtually all of the 

biochemical reactions that constitute metabolism in living systems. They accelerate the rate 

of chemical reaction without themselves undergoing any permanent chemical change. 

All known enzymes are proteins and consist of one or more polypeptide chains. The 

influence of many chemical and physical parameters such as salt concentration, temperature 

and pH on the rate of enzyme catalysis can be explained by their influence on protein 

structure. Some enzymes require small non-protein molecules, known as cofactors, in order 

to function as catalysts (Palmer & Bonner, 2007). Enzymes differ from chemical catalysts in 

at least two ways. Enzymes have far greater reaction specificity than chemically catalyzed 

reactions rarely forming by-products. In contrast to chemical catalysis, enzymes catalyze 

reactions under milder reaction conditions (temperatures way below 100°C), at atmospheric 

pressures and at neutral pHs (Cavaco-Paulo & Gubitz, 2003).  
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Reaction or molecule 
Contact Angle of 

Water 
%C/ %O/ %N 
(XPS) 

a) Virgin PET surface 

a = 77o 

r = 55o 
71.5/ 28.5 

 
b) Modification via Hydrolysis 

a = 62o 

r = 16o 
69.9/ 30.1 

 

c) Modification via Reduction 

a = 72o 

r = 32o 
70.7/ 29.3 

 

d) Modification via Glycolysis 

a = 63o 

r = 25o 
69.1/30.9 

 
e) Modification via Aminolysis 

a = 39.4o 

@minutes 

75.0/ 21.0/ 4.3 

@ 180 minutes 

Table 1. Chemical reactions to the surface of PET film or fiber with corresponding 

wettability (as measured by DCA) and XPS results; a)-d) adapted from (Chen & McCarthy, 

1998) and e) from (Nissen et al., 2001). 

In this section, we summarize how enzymes can be used to increase the hydrophilicity of 

selected synthetic polymers. Increase in hydrophilicity often leads to improved dyeability of 

the textile products. Enzymes are also used for the synthesis, surface functionalization and 

grafting of polymers that are used as textile fibers, however it is beyond the scope of this 

book chapter. We will discuss both the enzymes for hydrolysis of synthetic fibers as well as 

the test methods utilized for their characterization and performance. 
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2.2.5.1 Enzymatic hydrolysis of polyesters / PET 

Enzymes are potential tools for PET hydrolysis (Vertommen et. al., 2005). As illustrated in 
Table 2, PET hydrolyzing enzymes belong to the hydrolase class (EC 3.1) such as cutinases, 
lipases and esterases (Vertommen et. al., 2005; Wang et. al., 2004; Battistel et al., 2001). PET 
was hydrolyzed by cutinases from organism F. solani, F. oxysporum and from Pencillium 
citrinum. Other PET-hydrolyzing enzymes are lipases, such as those from Humicola sp., 
Candida sp., Pseudomonas sp. and Thermomyces lanuginosus (Gubitz & Cavaco-Paulo, 2008). In 
addition to enzymatic hydrolysis, the simple adsorption of enzyme protein to the polymer 
can also increase the hydrophilicity of PET owing to the hydrophilicity of the protein. High 
crystallinity of PET polymers negatively affects the ability of the enzymes to hydrolyze 
which has already been shown for enzymes from F. solani and from T. fusca (Vertommen et. 
al., 2005; Cavaco-Paulo & Gubitz, 2008).  

2.2.5.2 Enzymatic hydrolysis of polyacrylonitrile (PAN) 

PAN (.cf  Figure 11) is a collective name for all polymers that consist of at least 85% 
acrylonitrile monomer (BISFA, 2009). The homopolymer (100% acrylonitrile) is difficult to 
process and dye thus is only for industrial applications. The co-monomers in acrylic fibers 
are selected for fiber specific properties, such as dyeability with sodium methallyl sulfonate, 
sodium sulfophenyl methallyl ether, etc (Cavaco-Paulo & Gubitz, 2003).  
Acrylic fibers comprising negative groups can be dyed with basic (cationic) dyes under 
carefully controlled conditions. Dyeing is usually performed in the presence of a retarder, 
which decreases the dyeing process rate for uniform shade reproduction. Finishing 
processes for PAN are limited since desirable properties can be more easily incorporated by 
copolymerization or by modification on the fiber level. For example, highly absorbent fibers 
are made by inclusion of a hydrophilic co-monomer which is subsequently removed by 
hydrolysis. 
 

 

Fig. 11. Polyacrylonitrile 89-95% homopolymer, R = CN and up to 10% copolymer, R = vinyl 
acetate, COOH, SO3H, OSO3H etc 

It has been shown that bacterial strains, such as Micrococcus luteus, can degrade PAN fibers. 
During this process, poly(acrylic acid) is released from PAN as confirmed by NMR analysis 
(Fischer-Colbrie et al., 2007). The release of poly(acrylic acid) from PAN, together with the 
formation of ammonia, was also shown for commercial nitrilases (Matama et. al., 2007). 
Several researchers converted the nitrile groups of PAN to the corresponding acids or 
amides by nitrilases or by an enzyme system comprising nitrile hydratase and amidase, 
respectively resulting in major increases in hydrophobicity (Tauber et. al., 2000; Fischer-
Colbrie et al., 2007) (.cf Table 2). These changes in surface properties corresponded to an 
80% increase in the surface oxygen-to-carbon (O/C) ratio attributed to enzymatic hydrolysis 
of the nitrile groups (Matama et. al., 2007). Commercial PAN-based materials usually 
contain around 7% vinyl acetate to reduce rigidity of the polymer. The vinyl acetate moieties 
in PAN can be hydrolyzed by cutinases and lipases, making this approach applicable to 
most commercially available PANs (Matama, et. al., 2006). 
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2.2.5.3 Enzymatic hydrolysis of polyamides (PA) 

Enzymes such as proteases, amidases and cutinase can hydrolyse PA (.cf Table 2). A model 
substrate (adipic acid bishexyl-amide) has been developed for screening PA hydrolysis 
activity of given enzymes. It has been found that protease from Beauveria sp., an amidase 
from Nocardia sp. and a cutinase from F. solani pisi can degrade the model substrate and 
correlated with PA hydrolysis activity (Heumann, et. al., 2006). For actual PA substrates; it 
has been demonstrated by Parvinzadeh et.al (2009) that protease treated Nylon 66 fabrics 
shows higher dye bath exhaustion with reactive and acid dyes. The intensity of major peaks 
in FTIR spectra of the protease treated samples is in favor of chemical changes of the 
polypeptide functional groups in the fabric. The results of color measurements showed that 
there is a direct co-relation between the concentrations of enzyme against the darker shade 
of the dyed fabric. In a separate study performed by the same researchers, it was confirmed 
that acid and disperse dyes showed higher exhaustion on the protease (Parvinzadeh, 2009) 
& lipase (Kiumarsi & Parvinzadeh, 2010) treated Nylon 6 samples. 
 

Key  
Synthetic  
Fibers 

EC 3: Hydrolase class of enzymes 

Key 
Analysis  
Methods 

EC 3.1: 
enzyme 
acting on 
ester bond 

EC 3.4: 
enzymes 
acting on 
peptide 
bond 

EC 3.5: enzymes 
acting on carbon-
nitrogen bonds, 
other than peptide 
bonds 

PET – Polyethylene 
terephthalate 

Cutinase  
[1]  
Lipase [3] 
Serine 
esterase [4] 

- - 

XPS, HPLC, 
NH3 formation,  
dye-binding assay 
[1,3,4] 

PAN – 
Polyacrylonitrile 

Cutinasea [6] - 

Nitrile hydrolase 
[2] 
 
 
Nitrilase [5] 

XPS, NH3 formation, 
dye-binding assay [2] 
 
XPS, FTIR, SEM, dye-
binding assay [5] 

PA – Polyamide 

Cutinase [3] 
 
 
Lipase [9] 

Proteases  
[4, 9] 

Amidase [7] 

Release of oligomers, 
reactive dye-binding 
assay, hydrophilicity 
[3,7] 
 
FTIR, SEM, UV-vis 
spectrophotometer, 
thermal, dyeability, 
hydrophilicity [8-10]. 

aPAN co-polymer with 7% vinyl acetate,  FTIR: Fourier-transform infrared spectroscopy,  
SEM: scanning electron microscopy, HPLC: High Performance Liquid Chromatography,  
[1] = Vertommen et. al., 2005; [2] = Tauber et. al., 2000; [3] = Wang et. al., 2004; [4] = Battistel et al., 2001; 
[5] = Fischer-Colbrie et. al., 2006; [6] = Matama, et. al., 2006 ; [7] = Heumann, et. al., 2006;  
[8] = Parvinzadeh, 2009; [9] = Kiumarsi & Parvinzadeh, 2010; [10] = Parvinzadeh et. al., 2009 

Table 2. Enzymatic modification of synthetic polymers 
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To conclude, in coming years, the textile industry will go towards sustainable technologies 

and developing environmentally safer methods for textiles processing. One way is the 

processing with enzymatic system, rather than conventional chemical methods. There are 

several ways to improve the dyeability of any synthetic fibers. However, enhancement of 

the hydrophilicity of synthetic polymers is a key requirement for better dyeability. Enzymes 

have proved to be environmental friendly tools for hydrolysis of synthetic polymers, 

specifically on the polymer surface, without compromises in polymer bulk properties. In 

general hydrolases class of enzymes (EC 3.1: cutinase, lipase, esterase, EC 3.4: protease and 

EC 3.5: nitrilase, nitril hydrolase, amidase etc) are used for improving hydrophilicity of 

synthetic fibers such as PET, PAN and PA respectively. 

2.2.6 Modification of textile surfaces using sol-gel technique 

A sol-gel technology is probably one of the most important developments in material 

science during the last decades. The sol-gel technique offers far reaching possibilities for 

creating new surface properties. Scientific literature demonstrates a wide array of 

functionalities that have been achieved by application of sol-gel coatings on textile surfaces. 

Its inorganic nature makes sol–gel layers very strong with nanometer-thick layers (Mahltig 

& Textor, 2008). Sol gel applications for textiles includes manipulation or changing  

 Key textile properties e.g. stiffness, handle, absorbency, permeability etc.  

 Surface properties e.g. hydrophobicity, hydrophilicity, abrasion resistance, 

photocatalytic activity, other barrier functions etc.  

 Optical properties e.g. improving dyeability, photochromic effect, UV-absorption 

properties.  

 Bio-active systems such as biocidal coatings, controlled release systems, immobilization 

of biological materials (enzyme, cells) etc.  

 And other physical properties e.g. heat resistance, conductivity etc.  

Sol-gel technology offers the possibility of tailoring surface properties to a certain extent, 

and combining different functionalities into a single material. The added advantage is that 

the application of sols can be carried out with techniques commonly used in the textile 

industry such as, a simple dip or padding process followed by a thermal treatment in a 

stenter frame. 

2.2.6.1 The sol gel principle 

The preparatory material or precursor used to produce the "sol" usually consists of 

inorganic metal salts or metal organic components, such as metal alkoxides (Mahltig & 

Textor, 2008; Chládová1, et. al., 2011). These precursors are subjected to a series of 

hydrolysis and polymerization reactions to create a colloidal suspension or "sol". This sol is 

deposited on the surface of materials, transferred into a gel and finally into a layer of oxide 

by heat treatment. In production and for research purposes, SiO2 and TiO2 layers are 

deposited most often. Also, layers of many other compositions containing Al2O3, B2O3, ZrO2, 

PbO and other oxides are often prepared. Next to the clearly inorganic layers, hybrid 

inorganic-organic layers have also been developed (production terms ORMOCER, 

ORMOSIL and NANOMER), which contain both chemical bonding of organic substances 

and functional groups next to silicon, titanium, zirconium and oxygen (Chládová, et. al.,  

2011). 
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2.2.6.2 Dyeing of textiles based materials 

Currently, we are observing an intensive increase in the production of textiles made of 
synthetic polymers. Synthetic fibers have high mechanical properties and are extremely 
rigid apart from other properties such as having low porosity and lower swelling etc. These 
properties are directly related to low dyeability with the standard dyeing technology. 
Synthetic fibers normally have a high glass transition temperature which makes it 
impossible for the dye molecule to penetrate into the fibers, especially when using water 
(H2O) as a solvent. In some cases, it is possible to use other solvents or other fiber-swelling 
compounds to reduce the glass transition temperature of fibers. Table 3 illustrates some key 
examples of sol gel method applied on textile based materials to improve it dyeability.  
 

Materials/ 
Fabric 

Dye(s) Technique / key results Reference 

Polyester 
/Viscose 

Rhodamine B, 
Naphthol Blue Black, 
Metanil Yellow & 
Bismarck Brown R

Dyes immobilized modified silica sol to 
reduce dye leaching from the substrate.  

(Nedelčev 
et. al., 2008) 

Polyester 
(PET) 

Disperse Blue 56 

Sol was prepared by hydrolysis of 
tetraethoxysilane (TEOS) in presence of 
HNO3 and H2O, for deposition of porous 
SiO2 film on polyester fabric.

(Barabi et. 
al., 2010) 

Glass fibers 

Total 12 dyes belongs 
to cationic dyes, 
disperse dyes & 
metal complex dyes

The sol is the blending of 3-
trimethoxysilyl propyl methacrylate in 
isopropanol with supporting chemicals 
(water, HCl, benzoyl peroxide).

(Chládova, 
et. al., 2011) 

Glass 

pH sensitive dye 
methyl red (MR),  
tropaeolin  (TO) and 
bromocresol 
green (BCG).

The sol–gel consisted of 50% 
tetraethoxysilane (TEOS) and 50% 
methyltriethoxysilane (MTEOS) (w/w). 

(Ismail, et. 
al., 2011) 

Titanosilicates Azo dye Orange II 

Functionalization of the titanosilicates 
with ethylenediamine groups was 
carried out via the sol gel process, using 
the hydrolytic route followed by dyeing.

(Marc¸al, L. 
et. al., 2011) 

Table 3. Improving dyeability of various textile based materials using sol gel method. 

In the surface treatment of polymer structures, it is necessary to use hybrid layers based on a 
mixture of inorganic and organic polymer compounds, which are connected at the end of 
the process to a single macromolecular network (.cf Table 3). The inorganic part is linked 
with chemical, mechanical and thermal stability. The application of sol gel technology for 
improving dyeability is still at relatively early stage of development. However, looking at 
the trends, it is expected that sol gel technology will play important role towards improving 
dyeability and bringing new functionality together. 

2.2.7 Nano-modifications of textiles surfaces using layer-by-layer deposition methods 

A variety of functional thin films can be produced using the layer-by-layer (LbL) assembly 
technique (Ariga, Hill, & Ji, 2007; Decher, 2003). LbL-based thin films are currently being 

www.intechopen.com



 
Textile Dyeing 

 

280 

evaluated for properties that include antimicrobial (Dvoracek, Sukhonosova, Benedik, & 
Grunlan, 2009; J. H. Fu, Ji, Yuan, & Shen, 2005; J. Fu, Ji, Fan, & Shen, 2006), anti-reflection 
(Hiller, Mendelsohn, & Rubner, 2002), electrical conductivity (Park, Ham, & Grunlan, 2011), 
anti-flammable (Carosio, Laufer, Alongi, Camino, & Grunlan, 2011; Li et al., 2010; Li, 
Mannen, Schulz, & Grunlan, 2011), gas barrier (Priolo, Gamboa, & Grunlan, 2010; Priolo, 
Gamboa, Holder, & Grunlan, 2010; Yang, Haile, Park, Malek, & Grunlan, 2011), and UV 
resistance (Dawidczyk, Walton, Jang, & Grunlan, 2008). These films, typically < 1µm thick, 
are created by alternately exposing a substrate to positively- and negatively-charged 
molecules, polymer electrolytes, or particles, as shown in Figure 12. Steps 1 – 4 are 
continuously repeated until the desired number of “bilayers” (or cationic-anionic pairs of 
layers) is achieved. Figure 12b provides an illustration of a film deposited with cationic and 
anionic polymers. Individual layers may be 1 – 100+ nm thick depending on chemistry, 
molecular weight, charge density, temperature, deposition time, counterion, and pH of 
species being deposited. The ability to control coating thickness down to the nm-level, easily 
insert variable thin layers without altering the process, avoid disturbing intrinsic mechanical 
behavior of the substrate, and process under ambient conditions are some of the key 
advantages of this deposition technique. In nonwovens, each thread can be individually 
coated with a uniform LbL nanocoating and still remain soft and flexible. 
 

a)                b)  

Fig. 12. a) Schematic of layer-by-layer deposition process used to prepare functional thin 
films and b) steps 1 – 4 are repeated until the desired number of bilayers are generated on a 
substrate. From (Jang & Grunlan, 2005) 

Surface roughness of materials has been intensely studied over the last decade. When this 
aspect is coupled with low surface energy components, “rough” materials become 
superhydrophobic. Olephobicity also comes into play when the material becomes 
nanoporous,  minimizing void volume between molecular substituents, preventing wetting 
of low surface tension liquids in addition to polar liquid (i.e. water) (Zenerino, Darmanin, de 
Givenchy, Amigoni, & Guittard, 2010). Designing superhydrophobic surfaces via the layer-
by-layer assembly method have included covalently bonded interlayers (Amigoni, de 
Givenchy, Dufay, & Guittard, 2009), integrated organic and inorganic components, and 
induced micro-roughness from the underlying substrate to mimic the back of the Stenocara 
beetle where the hydrophilic/ superhydrophobic regions allow self-cleaning surfaces 
(Garrod et al., 2007; Zhai et al., 2006). Interesting alternating layers of the anionic and 
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cationic mixtures have allowed for facile fabrication of the resultant surface chemistries. To 
further enhance the viability of the LbL technique for organic polymers, pH-amplified 
exponential growth LbL self-assembly was implemented for poly(ethylenimine) (PEI) and 
poly(acrylic acid) PAA as the polycation and polyanion respectively. This technique takes 
advantage of the synergistic effect of the pH-dependent tunable charge density and weak 
polyelectrolyte diffusivity. The end result is fast LbL layer formation in a limited number of 
deposition cycles. This research proved that only three bilayers were necessary to achieve a 
lotus-like superhydrophobic surface (.cf Table 4) (Sun, Shen, Wang, Fu, & Ji, 2010). 
 

Property Polycation Polyanion 

Super-
Hydrophobicity 
 
From (Sun et al., 
2010) 

PEI 

 
Polyethylenimine 

PAA  

Super-
Hydrophilicity 
 
 
From (Grunlan, 
2011) 

PDDA 

 
Poly(diallyldimethyl ammonium 
chloride) 

PAA  

 
Poly(acrylic acid) 

Switchable –philic/ 
-phobic  
 
 
From  
(Lim et al., 2006) 

PAH 

 
poly(allylamine hydrochloride) 
Inorganic-Organic Hybrids to induce 
roughness with azofunctional moieties 

SiO2 

 
 

Table 4. Polyelectrolytes for LbL formulations with imparted functionality. 

LbL deposition of polyelectrolytes can also be used to impart a hydrophilic surface to 

polyolefins. In the case of polyethylene, this would be useful for high performance fibers 

that might eventually be used for athletic clothing to wick away moisture as well as increase 

dye receptivity. With a contact angles (dH20) around 70o, polyethylene (PE) surfaces could 

actually be called slightly hydrophilic. In reality, contact angles below 45o are typically 

needed for a surface to exhibit facile wetting by a water droplet or hydrophilic behavior. 

Table 4 shows a matrix of polymer polyelectrolytes that are used for imparting various 

finishes to substrates via LbL deposition. Specifically implemented by the Grunlan 

laboratory to determine the possible hydrophilic coatings onto PE, 2.5 bilayers were needed 

to achieve a dH20 of 22o when using the system of poly(diallyldimethylammonium chloride) 

(PDDA-PAA) as compared to other systems comprising 6 or more bilayers. The elevated pH 

of PAA (pH = 5) created an increased negative charge density and thinner deposition 

relative to unmodified PAA (pH < 3). Additionally, stopping deposition at half bilayers, 

where PDDA was at the surface, proved much more hydrophilic than full bilayers due to its 
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high charge density (Grunlan, 2011). They also noticed  upon further evaluation, full 

bilayers of PDDA-PAA (pH = 5) had a contact angle of 11 degrees. This near super-

hydrophilic value is much lower than the initial screening attributed to a more pristine PE 

film cleaning and controlled polyelectrolyte deposition. The half bilayer protocol, with 

PDDA at the film’s surface, had contact angles that could no longer be measured (i.e., < 5 

degrees), suggesting a superhydrophilic surface. This was shown to be reproducible and 

unchanging as the assembly was built from 2.5 to 6.5 bilayers. 

Another unique utilization of LbL deposition was demonstrated by Cho and researchers 
(Lim, Han, Kwak, Jin, & Cho, 2006). They formed a nanoporous substrate with microscale 
roughness through alternating electrostatic deposition of poly(allylamine hydrochloride) 
(PAH) as the polycation and SiO2 nanoparticles as the polyanion for a substrate with 
reversible wetting properties. The exposed SiO2 layer was treated with 3-
(aminopropyltrichlorosilane) providing reactive binding sites (-NH2) for photo-switchable 
moieties (7-[(trifluoromethoxyphenylazo)phenoxy]pentanoic acid (CF3AZO)). The CF3AZO 
moieties in vis (440nm) light are in a hydrophobic trans orientation but orient to a cis state 
upon exposure to UV (365 nm) light. After the LbL-CF3AZO fabrication, the surface 
measured contact angles up to 1560, as dictated by the number of bilayers (.cf Figure 13a). In 
contrast, the contact angle of water for a CF3AZO-functionalized flat film measured 76o 

(dH2O). The flat surface after exposure to UV light for 10 minutes, demonstrated a contact 
angle change of 5o, whereas the LbL functionalized surface could switch between being 
superhydrophobic at 1560 to superhydrophilic at < 5o, for nine bilayers. This reversibility 
was repeated up to 5 cycles with essentially zero hysteresis (see Figure 13b). 
 

 

Fig. 13. a) the number of LbL bilayers necessary to induce super-hydrophobicity/ super 
hydrophilicity on CF3AZO-LBL surfaces and b) corresponding reversibility for the nine 
bilayer surface after UV/Vis exposure. Adapted from (Lim et al., 2006). 

To conclude, LbL deposition is a unique surface modifying technique that gives ultimate 
flexibility for the design of the surface. Challenges for this technique include cost-effective 
commercial implementation at high on-machine line speeds for continuous operations. 
Engineering creativity to meet this challenge holds promise for a facile surface treatment 
technology for textiles. 
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2.2.8 Micro-encapsulation method to enhance dyeing process 

Microencapsulation is actually a micro-packaging process involving the production of 
microcapsules. These materials act as barrier walls of different solids or liquids as cores. The 
wall has the ability to protect the core from hazardous environments, i.e. oxidization, heat, 
acidity, alkalinity, moisture or evaporation. They are produced by depositing a thin polymer 
coating on small solid particles or liquid droplets, or on dispersions of solids in liquids. The 
core contents are released under controlled conditions to suit a specific purpose (Cheng et 
al., 2008). 
The most commonly methods used for preparation of microencapsules are complex 

coacervation, polymer-polymer incompatibility, interfacial polymerization and in situ 

polymerization, spray drying, centrifugal extrusion, air suspension coating, pan coating and 

emulsion hardening method (Cheng et al., 2008). In dyeing of synthetic fibers, the major 

interest in microencapsulation is currently in the application of dyes as core and liposome as 

shell. Liposomes are artificially prepared vesicles made of lipid bilayer that can be filled 

with various materials. They comprise naturally-derived phospholipids with mixed lipid 

chains (.cf Figure 14 ). 

 

 

Fig. 14. Structure of liposome. 

Gomez and Baptista studied microencapsulation of the dye in liposomes with lecithin from 

soy as an alternative to retarding and leveling agents. Liposomes were prepared with soy 

lecithin at different concentrations, containing the commercial acid dye C.I. Acid Blue 113. 

The effect on the dyeing rate of the microencapsulated dyes was compared with that from 

common retarding and leveling agents. The influence of surfactants on the stability of the 

liposomes and hence on the exhaustion curves of the dyeing was also evaluated. Interesting 

results obtained from exhaustion curves of anionic and non-ionic surfactants compared with 

commercial retarding and leveling agent (Gomez & Baptista, 2001). 

Marti et al. used phosphatidylcholine liposomes instead of synthetic surfactants as 
dispersing agent for disperse dyeing. They calculated the turbidity ratio to assess the 
dispersion behavior of different liposome-dispersed dye preparations compared with 
commercial dye forms. Results indicated that liposomic preparations diminish the 
aggregation of dye molecules that normally occurs at high temperatures. They also found 
the potential efficacy of liposomes as natural surfactants which can be applied to disperse 
dye formulations to dye polyester fibers with good dye exhaustion and washing fastness. 
This environmentally friendly biological surfactant, phosphatidylcholine, duly structured as 
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liposomes, can substitute high amounts of synthetic dispersing agents in disperse dye 
formulations (Marti et al., 2011).  
Yan et al. suggested microencapsulated disperse dyes to dye PET in the absence of 
auxiliaries and without reduction clearing. They studied the dyeing behaviors and dyeing 
kinetic parameters of microencapsulated disperse dye on PET compared with those of 
commercial disperse dyes with auxiliary solubilization. Their results showed that the dyeing 
behaviors of disperse dye are influenced greatly by microencapsulation. The diffusion of 
disperse dyes from microcapsule onto fibers can be adjusted by the reactivity of shell 
materials and mass ratios of core to shell. The disparity of diffusion between two disperse 
dyes can be reduced by microencapsulation. In addition, the microencapsulation improves 
the utilization of disperse dyes due to no auxiliary solubilization (Yan et al., 2011). 

2.2.9 Micro surface modification of textiles by aqueous solutions 

Alkaline, acidic and solvents hydrolysis is another method to improve various physical and 

chemical properties of synthetic fibers (Shcherbina et al., 2008; Park et al., 2009; Veronovski 

et al., 2009; Barantsev et al., 2007; Konovalova & Rabaeva, 2007; Chapurina et al., 2005; Hou 

et al., 2009). Alkaline hydrolysis has been studied extensively to overcome some problems of 

low water absorption properties and softness as alkaline hydrolysis improves the water 

absorption properties and softness of the PET fiber to give it a character similar to that of 

natural fibers (Prorokova et al., 2009; Chu et al., 2005). The alkaline hydrolysis of PET fibers 

is usually carried out with an aqueous alkaline solution, such as sodium hydroxide. In the 

alkaline hydrolysis process, PET undergoes a nucleophilic substitution. Chain scission of 

PET occurs, resulting in a considerable weight loss and the formation of hydroxyl and 

carboxylate end groups, which improves the handling, moisture absorption and dyeability 

of the fabric with enhanced softness (Mikhailova et al., 2008; Prorokova & Vavilova, 2004; 

Sohn et al., 2007; Stakne et al., 2003, Akbarov et al., 2006; Pavlov et al., 2001). 

The effects of pretreatment reagents on the hydrolysis and physical properties of PET fabrics 

were investigated under various alkaline hydrolysis treatment and pretreatment conditions 

by Kim and his colleagues. Solvents used for pretreatment included benzyl alcohol and 2-

phenyl ethanol. Results indicated that fabric weight loss, crystallinity, the initial and 

maximum water absorption increased with increasing hydrolysis time (Kim et al., 2009).  

Jain et al. reduced multi-filamentous polyacrylonitrile (PAN) fibers to amino groups using 

lithium aluminum hydride for immobilization of antibodies and detection of analyte. 24 h 

reduced fibers gave the most stable and reproducible results on immobilization of 

antibodies. Modified PAN fibers had a strong potential to be used as matrix for the 

detection of pathogenic bacteria and medical diagnostics (Jain et al., 2009). Another 

approach carried out by Cui and Yoon to modify the surface of PET film by treatment with 

ethoxylated hexylaminoanthraquinones synthesized by the reaction of 1-

aminoanthraquinone with poly(ethylene glycol)s via hexamethylene spacer. The 

ethoxylated hexylaminoanthraquinones were adsorbed only onto the extreme surface of 

PET and water contact angle was decreased by the adsorption (Cui & Yoon, 2003). 

A comprehensive collection of wet-chemical analyses of oxidized surfaces of poly(ethylene 

terephthalate) or polyolefin was presented by Knittel and Schollmeyer. Advanced oxidation 

of textile samples has been done using ozone and UV functionalization. They claimed that 

method presented uses inexpensive equipment and can be done quickly in a normal lab 

even as a process control (Knittel & Schollmeyer, 2008). 
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3. Bulk modification of synthetic textiles using nanomaterials 

In recent years, synthetic polymer-nanometric filler composites have generated significant 
attention in diverse applications such as transportation vehicles, construction materials, 
electronics, sporting goods, packaging, household and textile industries (Sinha Ray & 
Okamoto, 2003; Leszczy´nska et al., 2007a). The aim is to enhance a wide range of properties 
including mechanical properties (modulus, stiffness and strength), barrier, flame retardancy, 
solvent and heat resistance, biodegradability, chemical and thermal stability as well as 
improvement in dyeability relative to a virgin polymer (Leszczy´nska et al., 2007b, Pesetskii 
et al., 2007). In order to obtain these specifications, fillers such as cellulose, clay, calcium 
carbonate, carbon, metal oxides and various forms of silica have been developed by 
different researchers. In this regard, the geometrical shape of the particles plays an 
important role in determining the properties of composites (Bhat et al., 2008; Njuguna et al., 
2008; Ma et al., 2003).  
Processing of such polymeric nanocomposites are more difficult compared to the 
corresponding pure polymers since such inorganic nanoparticles have strong tendencies to 
agglomerate. To overcome such difficulties, the sol-gel method, LbL deposition, in situ 
polymerization and melt processing are put into practice. The last method is still the most 
cost effective, simple, feasible and environmentally benign process for the mass production 
of polymeric nanocomposite (Burgentzle´ et al., 2004; Modestia et al., 2007). 
Considerable efforts have been devoted to improve various physical, mechanical and barrier 

properties of PET through mixing it with nanoclays (Phang et al., 2004; Chang et al., 2004; 

Chang et al., 2005; Jawahar et al., 2005). The layered clays used are mica, fluoro-mica, 

hectorite, saponite, etc., but one of the most commercially interesting clay is bentonite 

belonging to a structural family known as the 2:1 phyllosilicates (Calcagno et al., 2007). It is 

well known that the clay minerals have also been used as adsorbent for removal of acid, 

reactive, disperse and basic dyes from aqueous solutions due to the fact that they are 

globally abundant and inexpensive (Xiao et al., 2005). Their inner layers comprise an 

octahedral sheet, which is situated between two tetrahedral sheets. The substitutions of 

Al3+ for Si4+ in the tetrahedral layer and Mg2+ or Zn2+ for Al3+ in the octahedral layers 

result in a net negative surface charge ion in water which cause the repulsion interaction 

with anionic dyes (Parvinzadeh & Eslami, 2011). 

The dyeability of synthetic fibers depends on their physical and chemical structure. Dyeing 
process consist of three steps including the diffusion of dye through the aqueous dye bath 
on to the fiber, the adsorption of dye into the outer layer of the fiber and the diffusion of dye 
from the adsorbed surface into the fiber interior. It was shown by researchers that functional 
groups of PET and water molecules play a great role in this process. The terminal carboxylic 
and hydroxyl groups in PET chains interact with water molecules. This makes a swelled 
fiber resulting to increase the attraction of disperse dye by these functional groups of fiber 
(Kirk–Othmer, 1998).  
The proportion of crystalline and amorphous regions of polymer is another factor 
influencing the dyeability. Researchers are concerned with the development and 
implementation of new techniques in order to fulfill improvement in dyeability of various 
polymers. Blending of polymeric fibers with nanoclays as inexpensive materials is still 
claimed as cost effective method to enhance dyeability (Geoghegan & Krausch, 2003). Up to 
now, only two research articles are focused on dyeing properties of polypropylene- and 
polyamide 6- layered clay incorporated nanocomposites prepared by melt compounding 
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(Razafimahefa et al., 2005; Toshniwal et al., 2007). Toshniwal et al. suggested that 
polypropylene fibers could be made dyeable with disperse dyes by addition of nanoclay 
particles in polymer matrix (Toshniwal et al., 2007). Another research work done by 
Razafimahefa and her colleagues showed that the introduction of the nanoclay improves the 
dyeing ability of nylon with disperse dyes. Nevertheless, because of the interactions 
between the anions in montmorillonite and the amino groups on the polyamide, the dyeing 
sites are occupied with the nanoclay. This led to inferior dyeing with acid or metal complex 
dyes than in the case of the unfilled polymer (Razafimahefa et al., 2005). 
Our previous study on dyeability of PET/clay nanocomposites stated the following type of 
interactions between the disperse dye and clay surfaces: 
- Hydrogen bonding between OH groups of modified clays and the NH2 and CO groups 

of disperse dye molecules. 
- Electrostatic bonding between the negatively charged oxygen atom of carbonyl groups 

in disperse dye molecule and positively charged nitrogen atom of quaternary 
ammonium salt in modified clays.  

- Direct π interactions and van der Waals forces between methyl and ethyl groups of 
modified clays on one hand and methoxy group and benzene rings of disperse dye 
molecule on the other hand. 

The second reason for improving disperse dye absorption of PET/clay nanocomposites 
could be the relatively large voids between clay platelets after modification with quaternary 
ammonium salts (Parvinzadeh et al., 2010a; Parvinzadeh et al., 2011). It was shown that the 
surface morphology of PET/clay nanocomposites has great influence on water contact angle 
of the resultant nanocomposite (.cf Figure 15).  
 
 

 

Fig. 15. 3d topographic images of atomic force microscopy for various composites:  
(a) Pure PET, (b) PET=15A, (c) PET=30B, (d) PET=Na+  
(Parvinzadeh et al., 2010a). 
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Another applicable nanofiller is silica nanoparticle which impacts high stiffness, tensile 
strength, modulus, toughening, crystallinity, viscosity, creep resistance, coefficient of 
friction, wear resistance, toughness and interfacial adhesion in various polymer 
nanocomposites (Xanthos, 2005, Parvinzadeh et al., 2010b). Recently, a research program 
to explain dyeability of PET/silica nanocomposite was done by Yang and Gu. They used 
in situ polymerization to prepare PET/SiO2 nanocomposites. According to the results, the 
color strength of the dyeing increased with increasing SiO2 content in polymer (Yang & 
Gu, 2007).  
Over the last 20 years polymer chemistry has created a non-linear polymeric structure 
coined dendritic polymers. Their architecture arises from the introduction of a large number 
of branches with many functional end groups (Froehling, 2001).  
 
 

 

Fig. 16. Incorporation of hyperbranched polymers into the fiber structure  
(Froehling, 2001) 

Two classes of these polymers are dendrimers with a perfectly branched uniform structure 

and hyperbranched polymers with non-uniform ones. It was already suggested by different 

authors that highly branched molecules should be able to act as a host for the encapsulation 

of guest molecules of dyes or a dendritic box. This structure can lead to industrial 

development of dyeable poly(propylene) fiber (Froehling, 2001) (.cf Figure 16). Other 

authors suggested that an improvement in dyeability of the polymeric- hyperbranched 

additive nanocomposites can be attributed to the decrease in glass transition temperature 

and the lower crystallinity of the polymers (Khatibzadeh et al., 2010).  

4. Remarks and outlook 

Various types of physical and chemical finishing methods have been described in this 
chapter. Most of them are developed to solve problems with synthetic fibers to expand their 
usefulness. Examples of such problems are their insufficient fabric softness, low absorbency 
of water, flammability, and pilling, low dyeability, slipping and static problems during 
production and usage. New finishing processes using physical and chemical methods can 
solve these problems and restrictions. Both the improved and the newly developed finishes 
based on nano-science are valuable tools that can project an enhanced image of the finish 
producers for the next textile industry revolution. 
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