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1. Introduction 

Prediction of an adverse health event (AHE) from objective data is of great importance in 
clinical practice. A health event is inherently dichotomous as it either happens or does not 
happen, and in the latter case, it is a favourable health event (FHE).  
In many clinical applications, it is relevant not only to predict AHEs happening (diagnostic 
ability) but also to estimate in advance their individual risk of occurrence using ordered 
multinomial or quantitative scales (prognostic ability) such as probability. An estimated 
probability of a patient’s outcome is usually preferred to a simpler binary decision rule. 
However, models cannot be designed by optimising their fit to true individual risk 
probabilities because the latter are not intrinsically known, nor can they be easily and 
accurately associated with an individual’s data. Classification models are therefore usually 
trained on binary outcomes to provide an orderable or quantitative output, which can be 
dichotomised using a suitable cut-off value.  
Model discrimination refers to accurate identification of actual outcomes. Model calibration, 
or goodness of fit, is related to the agreement between predicted probabilities and observed 
proportions and it is an important aspect to consider in evaluating the prognostic capacity of 
a risk model (Cook, 2008). Model calibration is independent of discrimination, since there 
are risk models with good discrimination but poor calibration. A well-calibrated model 
gives probability values that can be reliably associated with the true individual risk of 
outcomes.  
Many models have recently been proposed for diagnostic purposes in a wide range of 
medical applications and they also provide reliable estimates of individual risk 
probabilities. Two different approaches have been used to predict patient risk. The first 
approach is based on estimation of risk probability by sophisticated mathematical and 
statistical methods, such as logistic regression, the Bayesian rule and artificial neural 
networks (Dreiseitl & Ohno-Machado, 2002; Fukunaga, 1990; Marshall et al., 1994). 
Despite their great accuracy, these models are unfortunately not widely used because they 
are hard to design and call for difficult calculations, often requiring dedicated software 
and computing knowledge that doctors do not welcome, besides being difficult to 
incorporate in clinical practice. The second approach creates scoring systems, in which the 
predictor variables are usually selected and scored subjectively by expert consensus or 
objectively using statistical methods (den Boer et al., 2005; Higgins et al., 1997; Vincent & 
Moreno, 2010).  
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Despite their lower accuracy, scoring models are usually preferred to probability models by 
clinicians and health operators because they allow immediate calculation of individual 
patient scores as a simple sum of integer values associated with binary risk factors, without 
the need for any data processing system. It has also been demonstrated that in most cases, 
where a considerable amount of clinical information is available, their diagnostic accuracy is 
similar to that of probability models (Cevenini & P. Barbini, 2010, as cited in Cevenini et al., 
2007). Computation facility of score models should be carefully evaluated in conjunction 
with their predictive performance. Too many simple models can lead to misleading 
estimates of a patient’s clinical risk, which can be useless, counterproductive or even 
dangerous. 
Any risk model, even if sophisticated and accurate in the local specific condition in which it 
was designed, loses much of its predictive power when exported to different clinical 
scenarios. Locally customized scoring models generally provide better performances than 
exported probability models. This reinforces the clinical success and effectiveness of scoring 
systems, the design and customisation to local conditions and/or institutions of which are 
usually much easier.  
A limit of many scoring systems is their complex, involuted and even arbitrary design 
procedure that often involves contrivances to round off parameters of more sophisticated 
probability models to integer values. This can make their design even more complicated 
than that of probability models. Scoring often involves dichotomisation of continuous 
clinical variables to binary risk factors by identifying cut-off values from subjective clinical 
criteria not based on suitable optimisation techniques. However, whatever the design 
procedure, the main weakness of scoring models regards the interpretation of individual 
scores in terms of prognostic probabilities (model calibration), the reliability of which 
depends on the availability of a sufficient proportion of adverse outcomes and of a design 
procedure that provides precise individual risk estimation (Cevenini & P. Barbini, 2010). The 
Hosmer-Lemeshow test is commonly used to assess the calibration of probability models 
and therefore to manage their learning, but its results are unreliable when applied to models 
with discrete outputs, such as scoring systems (Finazzi et al., 2011). 
This chapter provides an initial brief overview of general issues for the correct design of 
predictive models with binary outcomes. It broadly describes the main modelling 
approaches, then illustrates in more detail a method for creating score models for predicting 
the risk of an AHE. The method tackles and overcomes many of the above-mentioned limits. 
It uses a well-founded numerical bootstrap technique for appropriate statistical 
interpretation of simple scoring systems, and provides useful and reliable diagnostic and 
prognostic information (Carpenter & Bithell, 2000; DiCiccio & Efron, 1996). The whole 
design procedure is set out and validated by a simulation approach that mimics realistic 
clinical conditions. Finally, the method is applied to an actual clinical example, to predict the 
risk of morbidity of heart surgery patients in intensive care. 

2. Model issues 

Various pattern recognition approaches can be used to design models for separating and 
classifying patients into the two independent classes of adverse or favourable health 
outcome, AHE and FHE. The approaches fall into two main categories.  
1. Probability models estimate a class-conditional probability, P(AHE|x), of developing 

the adverse outcome AHE, given a set of chosen predictor variables or features x 
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(Bishop, 1995; Dreiseitl & Ohno-Machado, 2002; Fukunaga, 1990; Lee, 2004). A 
probability threshold value, Pt, is identified for classification, over which AHE is 

recognized to occur, that is when P(AHE|x)>Pt; the choice of Pt depends on the clinical 

cost of a wrong decision and influences model classification performance (E. Barbini et 
al., 2007). 

2. Score models evaluate risk by a discrete scale of n positive integer values si 

(i = 0, 1, 2, ..., n) which includes zero to represent null risk, but rarely provides a 
threshold value for classification purposes (Cevenini & P. Barbini, 2010; Vincent & 
Moreno, 2010).  

2.1 Discrimination and calibration 

Whatever the risk model, its prediction power is generally expressed by discrimination and 
calibration (Cook, 2008; Diamond, 1992).  
Discrimination is the capacity of a classification model to correctly distinguish patients who 

will develop an adverse outcome from patients who will not. It must be optimized during 

model design by ascertaining that the model learns all the discrimination properties valid 

for the population, correctly from the training sample and therefore shows similar 

performance in different samples (generalisation ability) (Dreiseitl & Ohno-Machado, 2002; 

Vapnik, 1999). Though many criteria exist for evaluating model discrimination capacity 

(Fukunaga, 1990), sensitivity (SE) and specificity (SP), which measure the fractions of 

correctly classified sick and healthy patients, respectively, are commonly used for statistical 

evaluations of binary diagnostic test performance. SE end SP are combined in the receiver 

operating characteristic (ROC) curve which is a graphic representation of the relationship 

between the true-positive fraction (TPF = SE) and false-positive fraction (FPF = 1-SP) 
obtained for all possible choices of Pt. The area under the ROC curve (AUC) is the most 

widely used index of total discrimination capacity in medical applications (Lasko et al., 

2005). 

Calibration, or goodness of fit, represents the agreement between model-predicted and 
true probabilities of developing the adverse outcome (Hosmer & Lemeshow, 2000). 
Retrospective training data only provides dichotomous responses, that is presence or 
absence of the AHE, so true individual risk probabilities cannot intrinsically be known. 
The only way to derive them directly from sample data is to calculate the proportion of 
AHEs in groups of patients, but this obviously becomes less accurate as group size 
decreases. Nevertheless, from a health or clinical point of view, it is often useful to have 
an estimation of the level at which each event happens, using a continuous scale, such as 
probability. For probability models with dichotomous outcomes, calibration capacity can 
be evaluated by the Hosmer-Lemeshow (HL) goodness-of-fit test, based on two 
alternative chi-squared statistics, Ĥ and Ĉ (Hosmer & Lemeshow, 2000). The first 
formulation compares model-predicted and observed outcome frequencies of fixed deciles 
of predicted risk probability; the second compares by partitioning observations into ten 
groups of the same size (the last group can have a slightly different number of cases) and 
calculating model-predicted frequencies from average group probabilities. The Ĉ-statistic 
is generally preferred because it avoids empty groups, although it depends heavily on 
sample size and grouping criterion (den Boer et al., 2005). The HL test cannot really be 
applied to models with discrete outputs, such as score systems, because group sizes 
should themselves be adjusted on the basis of discrete values (Finazzi et al., 2011). 
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Calibration can be improved, without changing discrimination capacity, by suitable 
monotonic mathematical transformations of model predicted probabilities (Harrell et al., 
1996). The mean squared error between model predicted probability and observed binary 
outcomes is sometimes calculated as a global index of model accuracy, and has been 
demonstrated to incorporate both discrimination and calibration capacities (Murphy, 
1973). 

2.2 Generalisation, cross-validation and variable selection 

Generalisation is defined as the capacity of the model to maintain the same predictive 
performance on data not used for training, but belonging to the same population. A high 
generalisation power is of primary importance for predictive models designed on a sample 
data set of correctly classified cases (training set). Many different procedures, which involve 
different correctly classified data sets for testing model performance (testing sets), have been 
used to control model generalisation (Bishop, 1995; Fukunaga, 1990; Vapnik, 1999). A model 
generalises when differences between errors of testing and training sets are not statistically 
significant.  
Theoretically, the optimal model is the simplest possible model designed on training data 

and has the highest possible performance on any other equally representative set of 

testing data. Excessively complex models tend to overfit, i.e. give significantly lower 

errors on the training data than on the testing data. Overfitting produces data storage 

rather than learning of prediction rules. Models must be designed to avoid overfitting and 

improve generalisation through efficient control of the training process. This control often 

includes suitable techniques for the selection of predictor variables (Guyon & Elisseeff, 

2003).  

Computer algorithms for properly controlling overfitting are known as cross-validation or 

rotation techniques and make efficient use of all available data to train and test the model 

(Vapnik, 1999). The most common type of cross-validation procedure is k-fold, where the 

original sample is randomly partitioned into k subsamples, one of which is used as testing 

set and the other k–1 as training set. The process is then repeated k times, changing the 

testing set each time so that all subsamples are used for testing. A convenient variant, more 

appropriate in dichotomous classification, selects each subsample to contain approximately 

the same proportion of cases in the two classes. When k is equal to sample size, n, the 

procedure is called leave-one-out. One case is tested at a time at each of the n training 

sessions using n–1 training cases. Resampling methods also exist, and include bootstrap 

methods that produce different data samples by randomly extracting cases with 

replacement from the original dataset (Chernick, 2007).  
Cross-validation can be used to compare the performance of different predictive modelling 
procedures and, specifically, to select different sets of predictor variables with the same 
model. In fact, it is convenient to select the best minimum subset of predictor variables to 
control generalisation and to avoid information overlap due to correlation between 
variables. Computer-aided stepwise techniques are usually used to obtain optimal nested 
subsets of variables for this purpose. To train the model, a variable is entered or removed 
from the predictor subset on the basis of its contribution to a significant increase in 
discrimination performance (typically the AUC for dichotomous classification) at each step 
of the process. The stepwise process stops when no variable satisfies the statistical criterion 
for inclusion or removal (Guyon & Elisseeff, 2003). 
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3. Probability models 

We now provide an overview of four approaches for estimating AHE risk probability: the 
Bayesian classification rule (Lee, 2004), k-nearest neighbour discrimination (Beyer et al., 
1999), logistic regression (Dreiseitl & Ohno-Machado, 2002; Hosmer & Lemeshow, 2000), 
and artificial neural networks (Bishop, 1995; Dreiseitl & Ohno-Machado, 2002). Linear and 
quadratic discriminant analyses and related Fisher discriminant functions were not 
considered because they are strictly classification methods, and although they also enable 
easy derivation of prediction probabilities, they have been demonstrated to be equivalent to 
Bayesian methods (Fukunaga, 1990).  

3.1 Bayesian classifiers 

Bayes’s rule allows the posterior conditional probability of AHEs to be predicted as follows 
(Lee, 2004):  

 
P(AHE) p(x|AHE)

P(AHE|x)=
P(AHE) p(x|AHE)+P(FHE) p(x|FHE)

 (1) 

where P(AHE) and P(FHE) = 1–P(AHE) are the prior probabilities of the adverse and 
favourable health events, respectively, p(x|AHE), and p(x|FHE) are the corresponding 
class-conditional probability density functions (CPDFs) of selected features x. Posterior 
probability of class FHE is simply P(FHE|x) = 1–P(AHE|x). 
Setting the posterior class-conditional probability threshold Pt at 0.5, the Bayes decision rule 
gives minimum error. It amounts to assigning patients to the class with the largest posterior 
probability. A higher/lower value of Pt gives rise to a smaller/larger number of patients 
classified at risk.  
Lack of knowledge about prior probability P(AHE), i.e. the prevalence of AHE, does not 
affect the discrimination performance of the Bayesian classifier since it can be 
counterbalanced by different choices of Pt. On the contrary, a reliable estimate of prognostic 
probability P(AHE|x) can be obtained only if all prior probabilities and CPDFs are correctly 
known.  
Statistical assumptions are usually made about whether CPDFs have parametric or non 
parametric structure. In many cases they are assumed to be of the parametric Gaussian type, 
because this has been proven to provide good discrimination performance, especially if a 
subset of predictors can be optimally selected from a large set of clinically available 
variables (E. Barbini et al., 2007; Fukunaga, 1990). 

3.2 K-nearest neighbour algorithms 

The k-nearest neighbour algorithm is among the simplest non parametric methods for 
assigning patients based on closest training examples in the space of features x (Beyer et al., 
1999). Euclidean distance is usually used to measure between-point nearness but other 
metrics must be introduced if non continuous variables are considered.  
In our binary classification scheme, the training phase simply consists in partitioning feature 
space into the two regions or classes, AHE and FHE, based on the positions of training cases. 
Each new patient is assigned to the region in which the greatest number of its k neighbours 
occurs, where k is of course a positive integer.  
With two classes, it is convenient to choose an odd k to avoid situations of equality. 
Typically, the choice of neighbourhood size depends on the type and size of the training set; 
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larger values of k generally reduce the effect of noise on classification at the expense of 
distinction between classes.  
Heuristic techniques are used to obtain the optimal value of k. A common choice is to take k 
equal to the square root of the total number of training cases, but cross-validation methods, 
such as bootstrap, are often preferred.  
Although k-nearest neighbour is not strictly a probability method, it has been demonstrated 
that the fraction of k neighbourhood training cases falling in the AHE region is a good 
estimate of class-conditional risk probability (Beyer et al., 1999).  

3.3 Logistic regression  

Logistic regression is perhaps the most popular method for estimating risk probabilities in 
the medical field (Hosmer & Lemeshow, 2000). Logistic regression is a variation of ordinary 
regression: it belongs to the family of methods called generalized linear models, which 
include a linear part followed by some associated function. It can be considered a predictive 
model to use when the dependent response variable is dichotomous and the independent 
predictor variables are of any type, i.e. continuous, categorical, or both. In d-dimensional 
feature space, the form of the model is: 

 0 1 1 2 2 d d

P(AHE|x)
log =c +c x +c x +...+c x

1-P(AHE|x)
 (2) 

where “log” is the natural logarithm function, xk (k = 1, 2, …, d) the observation data set and 

ck (k = 0, 1, 2, ..., d) regression coefficients estimated from training data using maximum 

likelihood criteria.  
The inverse of eq. 2 allows the posterior probability of AHE risk, P(AHE|x), to be modelled 
by a continuous S-shaped curve, even if all predictor variables are categorical. The argument 
of the logarithm of eq. 2 defines the probability of the outcome event occurring divided by 
the probability of the event not occurring and is known as the odds ratio. When it is 
specifically associated with dichotomous predictor variables (risk factors), it is a useful 
measure of the relative risk due to single risk factors. The reliability of logistic regression 
results is affected by linear correlations and interaction effects between predictor variables, 
dependence between error terms, and especially outliers.  

3.4 Artificial neural networks 

Artificial neural networks (or simply neural networks) are mathematical models miming the 
physiological learning functions of the human brain. They can be designed and trained to 
create optimal input-output maps of any physical or statistical phenomenon, the 
relationships of which may even be complex or unknown. They do not require sophisticated 
statistical hypotheses and account for all possible interrelations between predictor variables 
in a natural way. In this sense, neural networks can be considered universal approximators 
(Bishop, 1995).  
A preliminary definition of network architecture is needed and should include number of 
neurons, number of layers, number and type of connections among neurons, type of 
neuronal activation functions and so on. Learning is the trickiest phase of neural networks: 
it consists of estimating network parameters (connection weights and activation thresholds) 
iteratively from training data, to minimize error between actual and model-estimated 
outputs. Feed-forward neural networks can be designed to directly estimate class-
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conditional posterior probabilities from predictor variables, without requiring sophisticated 
statistical hypotheses. Their architecture can be variably complex, but should provide one 
output neuron with a logistic sigmoid activation function, generating an output between 0 
and 1. Neural networks have been demonstrated to provide reliable estimates of class-
conditional posterior probabilities, such as the AHE risk probability, P(AHE|x), that is 
(Bishop, 1995): 

 

1 1 2 2 n n

1
P(AHE|x)=

1+exp(-f)

f=b+w u +w u +...+w u

 (3) 

where f is a linear function of n neuron inputs uk (k = 0, 1, 2, ..., n), originating from the 

outputs of n preceding connected neurons, the parameters of which are connection weights, 

wk, and neuron activation bias, b. 

Under-learning can lead to high prediction errors, whereas over-learning can cause 

overfitting which produces loss of generalisation. Artificial neural network design is 

therefore anything but simple. Experience is necessary to manipulate heuristic procedures 

for suitable definition of network architecture and to correctly use iterative numerical 

training techniques that stop learning when the network begins to overfit.  

4. Direct score model 

A scoring model is a formula that assigns points based on known information, in order to 

predict an unknown future outcome. Many integer score systems have been designed for 

clinical application to critical patients. The most popular were derived from simplification of 

any of the above probability models by rounding their parameters to integer values. In 

particular, many approximate the coefficients of logistic regression models to the nearest 

integer values (Higgins et al., 1997). We do not dwell on the methodology of these score 

models here, directing readers to the specialised literature (Vincent & Moreno, 2010). Our 

main interest is to identify score values that give reliable probabilities of individual risk for 

prognostic purposes. We discuss on the design of a very simple score system that we call a 

“direct score model”. We also provide a correct and useful statistical interpretation of model 

prognostic capacity, which can easily be extended to any other score model, even more 

sophisticated ones (Cevenini & P. Barbini, 2010).  

4.1 Model design 

Only binary predictor variables (risk factors) are used in this score model. The automatic 
computer procedure and model training is described by the following steps:  

 All quantitative predictor variables are dichotomised by ROC curve analysis, 
identifying cut-off values giving equal sensitivity and specificity in relation to adverse 
outcomes. 

 Risk factors over or under the cut-off value are coded 0 or 1, depending on whether the 
risk of AHE decreases or increases, respectively. 

 The odds ratio of each binary variable is evaluated on the basis of the corresponding 
confidence interval (CI) (Agresti, 1999): variables with odds ratios not significantly 
greater than 1 are discarded.  
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 A forward iterative procedure is applied to a data sample (training set) which sums 
selected binary variables stepwise. 

 All binary factors are reconsidered at each step, so that multiple selection of one factor 
gives rise to a multiple integer contribution to the score. 

 At each step the risk factor providing the highest increment to AUC is included. 

 Training is stopped when the cumulative increment in AUC obtained in five 
consecutive steps is less than 1%. This rather soft stopping criterion is used instead of 
well-established statistical methods (Zhou et al., 2008) to avoid selecting too few 
predictors, which reduces the possibility of associating an effective probability of AHE 
with each integer score.  

 A testing dataset of the same size as the training set is used to evaluate model 
generalisation and to guide conclusive selection of the optimal predictor set.  

Backward sessions and cross-validation trials cannot be applied because the model is non-
parametric. Optimal model selection is carried out by a step-by-step analysis of model 
prognostic and diagnostic power. At each step w, the conditional probability of the adverse 
outcome (prognostic risk probability), Pw(AHE|Sk), associated with each kth integer score 

value Sk, is estimated from sample data as the ratio of adverse events to the total number of 

events determining a model score Sk.  
The bias-corrected and accelerated bootstrap method is applied to estimate 95% CIs of 
Pw(AHE|Sk) using 2000 bootstrapped samples. This method makes it possible to infer 

complex statistics that are difficult or even impossible to represent mathematically and have 
proven to be theoretically and practically more accurate than other bootstrap methods 
(Cevenini & P. Barbini, 2010; DiCiccio & Efron, 1996). By graphic inspection of results, the 
convenience of grouping close scores having large 95% CI because of excessively low data 
frequencies is considered. The model is chosen to correspond to the iteration providing the 
largest number of score values or classes having sufficiently narrow and separate 95% CIs 
with respect to the training data, and at the same time giving testing-data probabilities 
falling within their 95% CIs.  
Once the model is created, the score, S, associated with a generic patient is simply given by: 

 
d

i i
i=1

S= p s  (4) 

where d is the number of predictors in the model, pi the binary value of the ith predictor, and 

si, its model-identified associated score. Finally, model discrimination and calibration 

performance are compared with a logistic regression model designed on the same training 
data. 
All statistical procedures are evaluated at a significance level of 95%. 

4.2 Simulation  

Many realistic simulation experiments are carried out to validate and optimise model 
design. Predictor variables are all taken in binary form, skipping the dichotomisation of 
continuous variables. In particular, we consider d dichotomised binary predictors, obtaining 

n = 2d different combinations of these predictors. Each combination identifies one value of a 
discrete variable xj = j/n (j = 0, 1, 2, ..., n-1) ranging from 0 to 1. In this way two different 

beta probability density functions can be associated with adverse and favourable outcomes.  
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Beta distribution is particularly suitable for representing multinomial phenomena, such as 
that described by the above n discrete values. In detail, we refer to the discrete probability 
distribution of a multinomial variable x, the probability values of which are calculated using 
a beta probability density function.  
Figure 1 shows an example with two different choices of the beta probability density 

function shape parameters,  and ┚, to simulate healthy and sick subjects. When the class-
conditional probability density functions of a two-class classification problem are known, 
the highest achievable discrimination level is related to the areas of overlap. The lowest 

error probability of classification, , is given by:  

  1 1 2 2ε= min P(C )p(x|C ),P(C )p(x|C ) dx




  (5) 

where P(Ch) and p(x|Ch) are the prior probability and the class-conditional probability 

density function for class Ch (h = 1, 2), respectively. Prior probability of an adverse outcome, 

P(AHE), is also known as prevalence, π, and prior probability of favourable outcome, 
P(FHE), is 1-π. Because of the discrete nature of variable x, in our simulation study, eq. 5 can 
be approximated as: 

 

  
n-1

j j
j=0

j j AHE AHE

j j FHE FHE

1ε= min π×p(x|AHE),(1-π)×p(x|FHE)
n

p(x|AHE)=Β x ,┙ ,┚

p(x| FHE)=Β x ,┙ ,┚

( )

( )

 (6) 

where AHE, ┚AHE, FHE and ┚FHE are the corresponding shape parameters of beta functions, 

ΒAHE = )( AHEAHEj ┚,┙,xΒ  and ΒFHE = )( FHEFHEj ┚,┙,xΒ , related to adverse and favourable 

outcomes, respectively.  

Eq. 6 shows that  depends on prevalence and beta parameters. At any iteration w of the 

above-mentioned stepwise procedure, for any kth integer value of score Sk, the simulated 

“true” conditional risk probability, )S|AHE(P k
t
w , can be calculated using the Bayes 

theorem, considering AHE prevalence, π, and the class-conditional score probabilities, 

)AHE|S(P k
t
w  and )FHE|S(P k

t
w , of adverse and favourable outcomes, respectively: 

 
t

t w k
w k t t

w k w k

π P (S |AHE)
P (AHE|S )=

π P (S |AHE)+(1-π) P (S |FHE)
 (7) 

By assuming mutually exclusive xj events, the true class-conditional probabilities are simply 

obtained from the two simulated beta distributions as the sum of all the discrete 
probabilities corresponding to the xj values giving the score Sk, that is: 

 

t
w k j AHE AHE

t
w k j FHE FHE

1
P (S |AHE)= Β x ,┙ ,┚

n

1
P (S |FHE)= Β x ,┙ ,┚

n

( )

( )

j k

j k

x S

x S








 (8) 
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Fig. 1. Simulated probability density functions, ΒFHE and ΒAHE, for favourable and adverse 

outcomes, respectively: example with beta parameters FHE = 1, AHE = 3, ┚AHE = ┚FHE = 5 

4.2.1 Simulation experiments 

Simulation experiments are performed by randomly extracting N = NAHE + NFHE data items 

from beta distributions of adverse and favourable outcomes, ΒAHE and ΒFHE, respectively, to 

form two samples of size NAHE = π·N and NFHE = (1-π)·N. Each extracted item xj 

(j = 1, 2, ..., N) is represented as a d-dimensional point in the discrete space of binary 

variables.  

We use d = 12 binary variables and simulate nine different conditions corresponding to the 

combinations of three prevalence values and three levels of separation between event 

classes, obtained by changing the parameters of beta distributions. Low, medium and high 

separation between AHEs and FHEs are reproduced by increasing only the values of 

parameter AHE, specifically equal to 2, 3 and 5, respectively. The other three beta 

parameters are kept constant at FHE = 1, ┚AHE = ┚FHE = 5. Prevalence values of 5%, 20% and 

40% are tried. For each condition, six samples with progressively doubled sizes, namely 

N = 250, 500, 1000, 2000, 4000 and 8000, are extracted for a total of 54 simulation experiments 

covering a wide range of actual clinical situations (see also Table 1). Training data is not 

used because the simulation process enables the true probabilities, described above, to be 

evaluated exactly.  

All computations are performed using MATLAB code. 
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4.2.2 Simulation results 

The method is illustrated in detail by describing the results of a simulation of the 54 

experiments performed. The experiment corresponding to N = 1000, π = 20% and AHE = 3 is 

illustrated, because it is similar to an actual clinical condition that will be shown below. 
Figure 2 shows the AUC values obtained using the forward selection of model features from 
simulated training data described above. The stopping criterion arrested the stepwise 
algorithm at the eleventh step, after 5 out of 12 predictor variables had been selected. In fact, 
the cumulative increment in AUC was about 0.8% in the last five steps (nos. 7-11). The 
variables are numbered in order of decreasing discrimination power. The most 
discriminating variable, no. 1, was entered five times (s1 = 5) in the model, variable no. 2 
three times (s2 = 3) and variables nos. 3-5 only once each (s3-5 = 1).  
Figure 3 shows the 95% confidence interval of score-associated risk probabilities identified 
by the bias-corrected and accelerated bootstrap method applied to simulated sample data, 
from step no. 2 to step no. 9. For each integer score value, the estimated 95% CI is plotted 
together with the corresponding true probability of AHE (calculated from the beta 
distribution) and the percentage of cases. The discrimination capacity of the model can be 
detected at every step by observing the growth of estimated AHE probability with the score, 
whereas calibration is demonstrated by true risk probabilities (stars), which fall in the 
corresponding 95% confidence interval of the training data, with the sole exception of 
certain high scores, where there may be too few cases.  
 

 
 

Fig. 2. Area under the ROC curve (AUC) during stepwise selection of model features from 
simulated data. The predictor variables entered are also indicated 
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Fig. 3. 95% confidence intervals of AHE score probability, estimated from simulated training 
data, percentages of score cases and true probabilities (stars) 
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Now it is necessary to identify a model that reconciles calibration and discrimination. 
Excessively simple score models (few steps) have low discrimination power (low AUC) and 
give inopportunely separated 95% CIs. This can be observed at steps nos. 2 and 3 of Fig. 3 
where only three score values (0, 1 and 2) are obtained: CIs between scores have very large 
gaps, suggesting that finer partitioning of the score axis can be achieved with a larger 
number of steps. Figure 2 indicates poor discrimination capacity of the scoring system at 
these initial steps.  
On the contrary, if too many scores are used, as in steps nos. 7-9, the CIs are either too wide 
or overlap, worsening calibration accuracy. The width of score CIs increases significantly 
with decreasing observed frequency. For example, at step no. 4, score of 3 has only 16 cases 
(1.6%) and the corresponding 95% CI is so large that it completely overlaps with the 
previous score of 2. When the number of cases is even lower, as in step no. 9, where the 
highest scores of 6 and 7 have four and one cases, respectively, the bootstrap method fails to 
correctly estimate the CIs and the corresponding scores are totally unreliable in prognostic 
terms. Hence the need to combine neighbouring scores with too few cases. It is particularly 
convenient to pool the highest scores, which often have few cases, into a single class having 
a sufficient data frequency to significantly narrow the 95% CIs. For example, at step no. 6 it 
is useful to pool the last two scores of 4 and 5 into a single class. The pooling of adjacent 
scores with small data frequency enhances model prognostic reliability, usually with an 
insignificant reduction in discrimination capacity. 
From the simulated experiment of Fig. 3, five score classes were identified as a suitable 
compromise between calibration and discrimination. At any step from no. 6 to no. 9, it is 
worthwhile combining scores greater than or equal to 4 and leaving the lower scores of 0-3 
ungrouped, so as to form five score classes: 0, 1, 2, 3 and ≥ 4.  
Figure 4 shows the results of pooling the three highest scores of step no. 8, which is 
preferred to the previous steps no. 6 and no. 7, because besides having higher discrimination 
capacity, the pooled class contains a greater number of cases, which narrows the related 95% 
CI to a greater extent. Just a small gap and a slight overlap can be observed in Fig. 4 between 

scores of 1 and 2, and between scores of 3 and the class of scores  4, respectively. Step no. 9 
and subsequent steps not reported in Fig. 3 are discarded because no improvement can be 
obtained with respect to step no. 8 and CI overlap increases. Indeed, to improve the 
accuracy of estimates of individual probability of AHE, it could be worthwhile increasing 
the number of classes, tolerating a greater CI overlap. This can be done by analysing and 
selecting a step beyond the eighth, where the observed frequency in each class is of course 
significantly reduced, especially for high scores.  
Comparison of the results of the three-step model with those of the eight-step pooled model 
shown in Fig. 4 indicates that the scoring system with five classes effectively fills the gaps 
between adjacent CIs of the simpler score model. At step no. 8, pooling of the highest scores 
does not significantly influence the discrimination capacity of the scoring system: the 
estimated AUC decreases slightly from 0.838 (95% CI, 0.781-0.885) to 0.827 (95% CI, 0.777-
0.869).  
Stepwise logistic regression applied to the training data used for the simulation example, set 
at statistical significance levels of 95% and 90% to enter and remove variables, respectively, 
selected the first five binary variables. Figure 5 compares ROC curves of the logistic model 
and the score model of Fig. 4. The ROC curve of true probability values, calculated from 
training data using beta distributions and the Bayes theorem, is also plotted (dashed line). 
AUCs of true data and the logistic model were 0.845 and 0.849, respectively.  
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Fig. 4. 95% confidence intervals of AHE score probabilities estimated from simulated 
training data, percentages of score cases and true probabilities (stars) for the model 
identified at step no. 8  

 

 

Fig. 5. ROC curves from simulated sample data. 95% CI refers to score model 
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When comparing model discrimination power by AUC, we have to consider that the ROC 
curve of the score model (continuous line) is drawn by connecting only 5 discrete points 
(score classes), whereas the logistic model curve (gray line) is based on more probability 
values. Figure 5 shows that the score model is close enough to the logistic and true ROC 
curves. Clearly, discretisation leads to a lower AUC, resulting in underestimation of score-
model discrimination capacity. In addition, the true and logistic curves are to a large extent 
within the 95% CI of the score curve. Finally, in real clinical applications, logistic regression 
often includes continuous variables that may improve discrimination performance.  
The HL goodness-of-fit test (Hosmer & Lemeshow, 2000) showed good calibration 
performance of the logistic model (p = 0.751). However, 95% of the training-data errors 
between model-estimated and true percentage risk probabilities were from about -10.5% 
(underestimation) and +12.0% (overestimation), revealing similar uncertainty to that of the 
score model. 
Table 1 gives the number of score values or classes identified by the same procedure, for 
each of the 54 simulation experiments. It shows that the number of score classes increases 
with increasing sample size, prevalence and separation between event classes (decreasing 

error ). The importance of estimating uncertainty suggests to keep 95% CIs of between-class 
probabilities separate, or slightly overlapping. This limits the identifiable number of score 
classes and provides reliable probability estimates. Enlargement and overlapping of 95% CIs 
and consequent loss of prognostic probability information depends heavily on the data 
frequency of score values or classes and their rate of AHEs influenced by prevalence. Small 
samples and/or low prevalence make it necessary to pool neighbouring scores to form 
classes with a sufficient number of cases to ensure a reliable estimate (narrow CI) of class 
probabilities.  
 

 
Low separation 

AHE = 2 

Medium separation 

AHE = 3 

High separation 

AHE = 5 

Π% 5 20 40 5 20 40 5 20 40 

% 
N 

5.0 20.0 32.9 5.0 17.7 23.9 4.6 11.4 13.7 

250 2 3 3 3 4 4 3 4 4 

500 3 4 4 4 5 5 4 5 5 

1000 4 4 4 4 5 5 4 5 6 

2000 4 5 5 5 5 6 5 6 6 

4000 5 5 5 5 6 6 5 6 6 

8000 5 6 6 6 6 7 6 7 7 

Table 1. Simulation experiments: largest number of score classes having sufficiently narrow 

and separate 95% confidence intervals of prognostic probability. AHE = shape parameter 

of AHE beta distribution; Π = prevalence;  = lowest error probability of classification; 
N = sample size  
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Simulation experiments suggests grouping scores into classes when frequencies are less than 
about 3% and 10% of the whole sample for N = 8000 and N = 250, respectively. Only two 
classes are recognised in the worst condition of minimum sample size (N = 250), minimum 

prevalence (Π = 5%) and low separation between health events (AHE = 2). A maximum of 

seven score-classes is identified in conditions of large sample size (N = 8000), high 
prevalence and high separation between event classes. Although more score classes could be 
achieved with greater CI overlap, the cost would be unreliable estimates.  
The discrimination of the different simulation experiments is assessed by AUC of true 
simulated probability calculated using beta functions. Conditions of large overlap between 

areas of beta functions (AHE = 2) lead to values of true AUC ranging from 0.72 to 0.75; 

medium overlap (AHE = 3) gives AUC values in the range 0.82-0.85 and the conditions of 

greatest separation (AHE = 5) produce AUCs between 0.92 and 0.95. 

4.3 Clinical example 

The approach was applied to actual clinical data of critical patients in the intensive care unit 
to evaluate their risk of morbidity after heart surgery.  
We used a sample of 1040 adult patients younger than 80 years, who underwent coronary 
artery bypass grafting and were admitted to the intensive care unit of the Department of 
Surgery and Bioengineering of Siena University. 212 patients developed at least one serious 
postoperative complication (cardiovascular, respiratory, neurological, renal, infectious or 
hemorrhagic), corresponding to a morbidity of 20.4% (Cevenini & P. Barbini, 2010, as cited 
in Cevenini et al., 2007). The data was split randomly into a training and a testing set of the 
same size (520 cases), with the same number of patients with morbid conditions in each set 
(106 cases) to avoid misleading bias in the results. 
Table 2 describes the 15 clinical variables used for score model design, six of which were 
binary in origin. The other nine continuous variables were dichotomised using cut-off 
values associated with the point of equal sensitivity and specificity on the respective ROC 
curves. Three of the resulting 15 binary variables were discarded because their odds ratios 
of morbidity were not significantly greater than 1. This left a total of 12 variables for training 
the score model, as in the simulation experiments.  
This real clinical situation was similar to the simulation experiment with N = 500  
and Π = 20% (see Table 1). Consulting Table 1, we expected to develop a score model with 
4 or 5 classes, depending on the level of data separation between normal and morbid 
patients.  
Figure 6 shows the stepwise procedure used to select the model variables. After step no. 8, 
AUC values of testing data (dashed line with stars) decreased and diverged from training 
data AUCs (continuous line with dots). This indicated overfitting that was possible 
because the criterion used to stop the training procedure was deliberately soft, to allow 
inclusion of more steps than needed for generalisation. In fact, as previously illustrated in 
the simulation results, investigation of extra steps can be useful to optimise model 
prognostic power through score pooling. Steps nos. 6, 7 and 8 gave similar prognostic 
performance, so we chose step no. 8, thus obtaining higher discrimination (greater AUC). 
A convenient class was formed by pooling scores greater than 3, as shown in Fig. 7. All 
95% CIs of adjacent scores or classes were well-separated and all testing score 
probabilities (stars) fell within their corresponding CIs, thereby ensuring high prognostic 
reliability of the model. The pooling of the highest scores of the eight-step model led to a 
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slight but not statistically significant reduction in discrimination performance: the 
estimated training and testing AUCs decreased from 0.851 (95% CI, 0.781-0.909) to 0.835 
(95% CI, 0.764-0.895) and from 0.841 (95% CI, 0.775-0.900) to 0.816 (95% CI, 0.743-0.879), 
respectively.  
 
 
 
 

Variable description Acronym Type Cut-off Steps 

Inotropic heart drugs IHD  Binary  1,4,10  (LR) 

O2 delivery index DO2I Continuous < 280 ml/min/m2 2        (LR) 

Peripheral vascular disease PVD Binary  3,9      (LR) 

O2 extraction ratio O2ER Continuous  38% 5        (LR) 

Emergency EM Binary  6 

CO2 production VCO2 Continuous  180 ml/min 7 

Pulmonary artery 
hypertension 

PAH Binary  8        (LR) 

Cardio-pulmonary bypass 
time 

CPB Continuous  2 hours 11       (LR) 

Intra aortic balloon pump IABP Binary  12       (LR) 

Creatinine Cr Continuous  1 mg/l NE      (LR) 

Potassium K Continuous  4.1 mEq/l NE      (LR) 

Haemoglobin Hb Continuous < 9.6 g/dl NE 

Cardiac index CI Continuous < 2.4 l/min/m2 NS      (LR) 

Mean arterial pressure MAP Continuous > 95 mmHg NS 

Previous heart surgery Re-do Binary  NS 

 

 
 

Table 2. Clinical variables, cut-off values for the dichotomisation of continuous variables 
and score-model entry steps. NE = not entered; NS = not statistically significant; 
LR = variable selected by stepwise logistic regression  
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Two logistic regression models were designed to compare the score model results on the 
same training data with the 15 clinical variables of Table 2. The first model, named 
LogCV, used the original continuous variables and the second (LogBV) dichotomised 
them (see Table 2). The stepwise regression procedure selected ten clinical variables (see 
Table 2) and provided training-data AUC values of 0.906 (HL test, p = 0.135) and 0.871 
(HL test, p = 0.557) for LogCV and LogBV, respectively. Figure 8 compares the ROC 
curves. The LogCV ROC curve (continuous gray line) showed the greatest discrimination 
performance, mainly because the model selected many continuous variables (6 out of 10). 
Except for the highest specificity values, where the discretisation effect of scoring was 
more evident, the score model ROC curve (continuous black line) did not differ 
significantly from that of LogBV (dashed gray line), which was inside the respective 95% 
CI and close enough to the score-model points. Model scores computed using the testing 
data gave a ROC curve (dashed black line) not significantly different from the training 
data curve. Finally, it should be noted that the discrimination performance of logistic 
models decreased considerably when applied to testing data (ROC curves not reported in 
Fig. 8): AUCs of logCV and logBV were reduced to 0.879 and 0.826, respectively, thus 
suggesting a possible overfitting. 
 
 
 
 

 
 
 

Fig. 6. Area under the ROC curve (AUC) during the stepwise selection of model features 
from clinical data. The predictor variables entered are also indicated 
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Fig. 7. Estimated 95% confidence intervals of AHE score probabilities from clinical training 
data, percentages of score cases and testing-data probabilities (stars) for the eight-step 
model chosen 

 

 

Fig. 8. ROC curves from clinical data. 95% CI refers to the score model. CV = also with 
continuous variables; BV = with binary variables only  
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5. Discussion 

Many quantitative methods for assessing the health risk of critical patients have been 

developed in past and recent literature (E. Barbini et al., 2007; den Boer et al., 2005; Vincent 

& Moreno, 2010). They aim to provide objective and accurate information about patient 

diagnosis and prognosis. Experience has shown that simplicity of use and effectiveness of 

implementation are the most important requirements for their success in routine clinical 

practice. Scoring systems respond well to these requirements because their outcomes are 

accessible in real time without the use of advanced computational tools, thus allowing 

decisions to be made quickly and effectively. Many clinical applications can profit from their 

simplicity. For example, they are often used to suggest alternative treatments and organize 

intensive care resources, where surveillance of vital functions is the primary goal. 

Other important benefits of score models are their easy updating and customisation to local 

institutions. In fact, because the standardisation of local practices is difficult and patient 

populations may differ, it is now accepted that predictive models must be locally validated, 

tuned and periodically updated to provide correct risk-adjusted outcomes. All models suffer 

from the limitation of foreseeing better future treatments and improving prognosis (den 

Boer et al., 2005). Even very accurate predictive models, when exported to clinical contexts 

different from those in which they were designed, have often proved unreliable (Murphy-

Filkins et al., 1996). Appropriate design and local customisation of excessively sophisticated 

models is often easier said than done, especially in health centres where there is little 

technical expertise in developing models that can generalise, i.e. preserve their predictive 

performance on future data. On the contrary, simple score models can easily and frequently 

be updated to learn from new correctly-classified cases and are quite tolerant to missing 

data. This is very useful in clinical practice where data is usually scarce and training on as 

much available data as possible is of fundamental importance (Cevenini & P. Barbini, 2010, 

as cited in P. Barbini et al., 2007).  

A major problem with score models is that they are difficult to calibrate, i.e. associate 

reliable estimates of prognostic risk probability with each score. Nevertheless, correct 

estimation of individual probability of adverse outcome for hospitalized critical patients is 

useful for prevention, treatment and quantification of health problems and costs. It can help 

experienced physicians to improve clinical management by optimizing the monitoring of 

patient status and enhancing the quality of care, and allow new generations of doctors to be 

better trained during postgraduate specialization and internship. Moreover, reliable 

knowledge of risk factors and their impact on clinical course and future quality of life can 

encourage public health policy for risk reduction (Hodgman, 2008).  

The proposed method offers a simple risk-assessment system that associates a reliable 

estimate of the individual probability of developing an adverse event with predicted 

scores. The model is a very simple score of risk factors chosen, one or more times, by a 

stepwise procedure based on maximising discrimination through ROC analysis. No 

hypotheses or statistical models are involved. Since conventional methods for evaluating 

calibration, such as the Hosmer-Lemeshow test (Hosmer & Lemeshow, 2000), are 

unreliable for scoring systems, we analysed the 95% confidence interval of sample-

estimated risk probabilities associated with each score step by step. The experimental 

score probability is easily evaluated by calculating the sampling rate of adverse outcomes 

having that score.  
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Unfortunately, the statistics of the sampling error are not simple to derive. We therefore 
preferred to use bootstrap resampling, a method commonly used in statistical inference to 
estimate confidence intervals (Carpenter & Bithell, 2000; DiCiccio & Efron, 1996). The 

bootstrap method is simpler and more general than conventional approaches; it requires no 
great expertise in mathematics or probability theory and is based on assumptions that are 
less restrictive and easier to control. The method can be used to evaluate statistics that are 
difficult or impossible to determine by conventional methods. We used an elaboration of the 

simplest bootstrap method of percentile intervals, known as bias–corrected and accelerated 
intervals, which avoids estimate bias and offers substantial advantages over other bootstrap 
methods, both in theory and practice (Chernick, 2007). Our simulation experiments 
confirmed the method’s accuracy in estimating 95% CI of prognostic probabilities: when 

true probabilities were related to score values, or classes, with a sufficient number of 
sampled training data, they always fell within bootstrap-estimated 95% CIs (see Fig. 3). 
Bootstrap techniques are not too complex in a clinical environment, since nowadays many 

available packages for data processing include them for calculating confidence intervals. In 
any case, they are used exclusively during model design.  
As shown in Fig. 3, step by step graphical inspection of probability CIs made it possible to 

choose the best model to compromise between calibration and discrimination, also 

suggesting convenient pooling of adjacent scores that gave large and overlapping CIs due to 

an insufficient number of cases or adverse events. The controlled simulation experiments 

showed that good calibration was achieved with a limited number of score classes, up to a 

maximum of seven in experiments with the biggest sample size, and high prevalence and 

separation between event classes (see Table 1). More classes could be identified if greater 

overlap of close scores were allowed, but when the number of classes became excessive, 

there were problems of overfitting. We also saw that a logistic model designed on the same 

training data provided nearly continuous probability estimates, the uncertainty of which 

was similar to that achieved by the score model. Significant improvement of discrimination 

performance could only be appreciated when continuous variables were also included in the 

logistic model, as in the clinical example described. This analysis can enable medical staff to 

select the best scoring system for any specific clinical context. 

6. Conclusion 

In critical care medicine, scoring systems are often designed exclusively on the basis of 

discrimination and generalisation characteristics (diagnostic capacity), at the expense of 

reliable individual probabilities (prognostic capacity). Our proposed approach that weighs 

both these capacities is validated by suitable simulation experiments, which also allow 

design conditions and application limits of scoring systems to be investigated for correct 

prediction of critical patient risk in a real clinical context. 

The bias-corrected and accelerated bootstrap method for evaluating the 95% confidence 
interval, CI, of individual prognostic probabilities provides reliable estimates of true 
simulated probabilities. CIs are calculated for each score and at each step of scoring-system 

design. By increasing the number of steps, model discrimination power (greater AUC) and 
prognostic information (greater number of different score values) increases but widening 
and overlap of 95% CIs soon occurs, so that it becomes convenient to pool adjacent scores 

into score classes. The maximum number of different score classes giving distinct prognostic 
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information, that is having narrow and less overlapping 95% CIs, increases with increasing 
sample size and prevalence of adverse outcome and decreasing error probability of 
classification. It is strongly limited by reduced frequency of score cases and the respective 

rate of adverse events: in our simulated experiments, which covered a wide range of real 
conditions, it varied from 2 to 7. 
Application of the method to a real clinical situation demonstrated that the technique can be 
a simple practical tool, providing useful additional prognostic information to associate with 
classes of scores, and enabling doctors to choose the best risk score model to use in their 
specific clinical context. 
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