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1. Introduction 

1.1 Cell signalling and tumorigenesis 
In multi-cellular organisms, cells have to communicate with each other in order to control 
their proliferation, differentiation, survival and to perform diverse physiological functions. 
Cells release and receive signals to induce these different states of growth either by direct 
cell-to-cell interaction or via secreted molecules. This communication is elicited through so-
called signaling molecules such as transmembrane receptors that are embedded in cell 
membrane and can activate intracellular signal transduction cascades which ultimately lead 
to gene activation or repression and a cellular response. According to the specificity, 
strength and duration of the signal received, the cell will proliferate, differentiate, change 
shape, migrate, and enter into growth arrest or undergo apoptosis. These complex signaling 
networks are highly regulated and alterations of the normal intracellular signals can lead to 
the development of diseases such as cancer. It is now known that a series of genetic 
mutations are required for the progressive conversion of normal human cells into cancerous 
cells. Hanahan and Weinberg have proposed a model of tumorigenesis, whereby several 
physiological conditions are required before cells become tumorigenic (Hanahan and 
Weinberg, 2011). These include self-sufficiency in growth signals, insensitivity to growth-
inhibitory signals, evasion of programmed cell death, limitless replicative potential, 
sustained angiogenesis, tissue invasion and metastasis. In proliferative signaling pathways 
for example, numerous proto-oncogenes or tumor suppressors have been identified, the 
mutation of which cause amplification of signaling or loss of negative regulation resulting in 
over-proliferation and eventual tumor formation. Unlike normal cells, which tightly 
regulate extracellular ligand levels, receptor expression and secondary signaling molecules, 
cancer cells often lose the ability to regulate these signaling events. For example, 
overexpression of receptor tyrosine kinases (RTKs) (Libermann et al., 1985), mutation of RAt 
Sarcoma (Ras) protein (Marshall, 1996) or the overexpression of PI3K (phosphatidylinositol 
3-kinase) (Sulis and Parsons, 2003) are thought to lead to cell transformation. 

1.2 Correlation between tumor secreted proteins and cancer  
During tumor metastasis, cell-cell interactions are decreased leading to cell dissociation and 

detachment from the primary tumor. On the other hand, cell-extracellular matrix 
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interactions are increased facilitating tumor cell migration and metastasis. Thus, during 

tumorigenesis and metastasis, the secreted proteins in the extracellular space are majorly 

responsible for growth control, cell adhesion/migration, matrix-degradation, invasion and 

angiogenesis (Mbeunkui et al., 2006b). Importantly, these tumor cell secreted proteins 

majorly enter body fluid system such as blood, urine, lymph fluid and can be measured by 

non-invasive tests. Thus, analysis the tumor secreted proteins is a promising strategy to 

discover cancer biomarkers.  

1.3 Detection of breast cancer markers with high-throughput technologies 
Breast cancer is one of the leading causes of death among women around the world. The 5-
year survival rate for breast cancer is near 97% when tumors are confined to breast tissue, 
but decrease dramatically to 23% when tumors have metastasized to other organs at the 
time of diagnosis (Kulasingam and Diamandis, 2007b; Jemal et al., 2004). Previous studies 
indicated that the transformation and metastasis of normal breast cells are correlated to 
altered expression in both transcription and translation levels (Nuyten and van de Vijver, 
2008; Morrow, 2007; Lee et al., 2007; Kulasingam and Diamandis, 2007a; Hondermarck et al., 
2002). To better understand the molecular mechanisms associated with tumorigenesis and 
metastasis, it is necessary to identify gene expression signatures and protein expression 
markers among non-tumorigenic breast cells, non-invasive breast cancer cells, and invasive 
breast cancer cells. At the transcription level, microarray strategies have been used to 
classify breast tumors as highly invasive and non-invasive cancer (Sorlie et al., 2003; 
Nagaraja et al., 2006). At the translation level, proteomic strategies have been used to discern 
cancer markers from non-invasive and invasive breast cells (Nagaraja et al., 2006; Pawlik et 
al., 2006; Pucci-Minafra et al., 2002; Varnum et al., 2003). Nagaraja et al. compared the 
proteomic profiling of cell lines corresponding to healthy breast cells, non-invasive breast 
cancer cells, and invasive breast cancer cells using two-dimensional gel electrophoresis (2-
DE). Pucci-Minafra et al. compared a ductal infiltrating carcinoma-derived cell line with a 
non-tumoral mammary epithelial cell line using 2-DE, silver staining, immunodetection, 
and N-terminal sequencing and identified 58 differentially expressed proteins. In contrast to 
these cell line based studies, Pawlik et al. and Varnum et al. analyzed differentially expressed 
proteins among nipple aspirate fluid samples from tumor-bearing and disease-free breasts. 
Although these identified proteins are primarily abundant proteins, few of them have been 
validated as biomarkers. 
During tumorigenesis and metastasis, secreted proteins in the extracellular space are major 
factors in growth control, cell motility, cell invasion, angiogenesis and matrix-degradation 
(Mbeunkui et al., 2006a). Consequently, the analysis of tumor secreted proteins is a 
promising strategy for identifying cancer biomarkers. In the past few years, researchers have 
used proteomic analysis to identify some secreted biomarker candidates for human cancer 
using 2-dimensional differential in-gel electrophoresis (2D-DIGE) and liquid 
chromatography-tandem (LC-tandem) mass spectrometry. These markers have been found 
in lung cancer, liver cancer, pancreatic cancer and colorectal cancer (Xue et al., 2008b). In 
breast cancer research, Kulasingam and Diamandis used a liquid chromatography-mass 
spectrometry/mass (LC-MS/MS) strategy to analyze and compare the expression of 
extracellular and membrane-bound proteins in conditioned media of three breast cell types 
corresponding to a normal control and cell lines derived from stage 2 and stage 4 patients. 
Their studies identified numerous marker proteins from conditioned media (Kulasingam 
and Diamandis, 2007b). 
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1.4 Utilization of 2D-DIGE / MALDI-TOF MS-based strategies in the global analysis of 
breast cancer markers  
2-DE is currently a key technique in profiling thousands of proteins within biological 
samples and plays a role complementary to LC/MS-based proteomic analysis (Timms and 
Cramer, 2008a). However, reliable quantitative comparisons between gels and gel-to-gel 
variations remain the primary challenge in 2-DE analysis. A significant improvement in the 
gel-based analysis of protein quantitation and detection was achieved by the introduction of 
2D-DIGE, which can co-detect numerous samples in the same 2-DE. This approach 
minimizes gel-to-gel variations and compares the relative amount of protein features across 
different gels using an internal fluorescent standard. Moreover, the 2D-DIGE technique has 
the advantages of a broader dynamic range, higher sensitivity, and greater reproducibility 
than traditional 2-DE. This innovative technology relies on the pre-labeling of protein 
samples with fluorescent dyes (Cy2, Cy3 and Cy5) before electrophoresis. Each dye has a 
distinct fluorescent wavelength, allowing multiple experimental samples with an internal 
standard to be simultaneously separated in the same gel. The internal standard, which is a 
pool of an equal amount of the experimental protein samples, helps provide accurate 
normalization data and increase statistical confidence in relative quantitation among gels 
(Timms and Cramer, 2008b; Westermeier and Scheibe, 2008; Marouga et al., 2005; Lai et al., 
2010; Chou et al., 2010; Huang et al., 2010; Chan et al., 2005; Chan et al., 2009). 
Followed the separation of the proteins from biological samples by 2-DE and proteolysis of 

interested spots by a specific protease, subsequently mass spectrometry is an accurate and 

sensitive tool to identify these interesting proteins/peptides. Basically, there are two major 

types of approach used in the identification of proteins and peptides. The first one is matrix-

assisted laser-desorption/ionization mass spectrometry (MALDI-TOF-MS) (Karas and 

Hillenkamp, 1988) and the other one is electrospray ionization mass spectrometry (ESI-MS) 

(Fenn et al., 1989; Whitehouse et al., 1985). MALDI-TOF-MS relies on ions generated from a 

solid phase using laser pulses. The sample is usually applied in a matrix solution [eg. 2,5-

dihydroxybenzoic acid (DHB) and alpha-cyano-4-hydroxycinnamic acid (CHCA)] that 

facilitates the ion formation by absorption of photon energy from a laser source. ESI-MS 

generates ions from a liquid phase. The sample, in a solvent mixture is directly sprayed into 

the mass spectrometry where an electrostatic field is formed between the capillary and the 

walls of the mass spectrometer. As the droplets form and travel, they evaporate and the 

resulting charged particles enter into the gas phase. Each ion is separated in the mass 

spectrometry according to its mass-to-charge ratio (m/z ratio). Protein identification by 

mass spectrometry can be carried out by peptide mass mapping using MALDI-TOF-MS or 

by further peptide fragmentation to generate sequence data using tandem mass 

spectrometry (MS/MS) (Henzel et al., 1993; James et al., 1993; Mann et al., 1993; Yates, III et 

al., 1993). 

1.5 Application of luminal epithelial cell models with various invasive stages in the 
discovery of breast cancer markers 
A direct comparison of cancer tissue with normal tissue is the best theoretical method of 

obtaining protein expression signatures during tumor progression. However, a direct 

comparison of clinical samples increases the amount of false positives due to the 

heterogeneity of tumor specimens, which interferes with the identification of tumor-specific 

markers. For this reason, well-characterized model cell lines established from normal and 
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tumor tissue are recognized as more informative in cancer proteomics research. In the field 

of breast cancer research, MCF-10A, MCF-7 and MDA-MB-231 are widely used to represent 

non-tumorigeneic breast luminal epithelial cells, non-invasive breast cancer cells derived 

from the luminal duct and metastatic breast cancer cells derived from the same tissue, 

respectively (Singh et al., 2006; Lu et al., 2006). Accordingly, we are introduced a proteomics 

strategy to discover the putative diagnostic markers and therapeutic targets from this cell 

model system. To achieve these goals, it is necessary to identify potential biomarkers that 

reflect the progression of tumorigenesis. Thus, we compared the proteomic profiles of total 

cellular proteins and secreted proteins of this cell model system using 2D-DIGE to 

quantitatively identify putative transformation markers in breast cancer. 

2. 2D-DIGE and MALDI-TOF MS analysis of secretomes across MCF-10A, 
MCF-7 and MDA-MB-231 cells  

Secreted proteins, plasma membrane bound proteins and extracellular proteins mediate cell 

attachment, cell motility, cell-cell interactions and cell invasion. These proteins have the 

highest possibility of being found in the circulation system, including the blood, and thus 

serve as cancer markers or important markers involved in cancer formation (Xue et al., 

2008a). To identify potential proteins that may be involved in tumor formation and 

metastasis, this study develops a strategy for preparing secreted proteins from normal and 

cancer cell lines with minimal cytosolic protein contamination. Although these cell lines are 

generally grown in serum-supplemented media, a serum-free conditioned medium is 

necessary to prevent serum protein contamination and to allow accurate detection of 

proteins secreted by cells. A serum-free medium is believed to affect the growth of cells and 

the production of secreted proteins; however, recent studies indicate that the serum-free 

condition does not significantly affect the composition of the secreted proteins (Yamaguchi 

et al., 1990; Inoue et al., 2000). In addition, it is impossible to prevent cell death, and the 

release of considerable amounts of cytosolic proteins into culture media in either the serum-

free condition or the serum-supplemented medium. Accordingly, an intensive wash step 

was performed prior to incubating these cells in serum-free media to remove both cytosolic 

proteins and serum proteins. Meanwhile, the incubation time in serum-free media was 

optimized in advance, minimizing the serum-free induced autolysis of the cells, and 

enabling the recovery of an adequate amount of secreted proteins for 2D-DIGE analysis. The 

concentration of secreted proteins in this study was extremely low at approximately 1~2 µg 

/ ml. For this reason, a concentration step was essential to enrich secreted proteins enough 

for proteomics analysis, and a desalt step was also required for the 2D-DIGE experiment. In 

this secretomic analysis, MCF-10A, MCF-7 and MDA-MB-231 were grown on cell culture 

dishes and the confluency of cells was checked prior to incubation in serum-free culture 

media to ensure that no other exogenous proteins were present. To minimize cell autolysis 

induced by starvation and to maximize secreted protein concentration in the media, the 

starvation time of each cell line has to be optimized. Through immunoblotting, the lactate 

dehydrogenase (LDH) and β-tubulin levels were detected in the 1000-fold concentrated 

serum-free media starting at 48~60 hrs and at 60~72 hrs, respectively (Figure 1). LDH and β-

tubulin are both cytoplasmic proteins and their levels in the media represent the amount of 

cell death taking place in cell culture. Accordingly, a starvation period of 30 hrs was chosen 

for further 2D-DIGE based secretomic analysis. 
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Fig. 1. Optimization of starvation time for secretomic analysis. MCF-10A, MCF-7 and MDA-
MB-231 on cell culture dishes were used to check starvation induced cell autolysis by 
detecting the release of cytoplasmic proteins, LDH and β-tubulin in serum-free media. The 
serum-free media were harvested and concentrated 1000-fold at indicative starvation 
periods prior to performing immunoblotting analysis. 

Subsequently, proteins secreted from each cell type were enriched from the serum-free 
medium followed by labeling with CyDyes for 2D-DIGE analysis. The secretomic profiling 
of MCF-10A, MCF-7 and MDA-MB-231 were visualized using a fluorescence scanner and 
the images were superimposed using ImageQuant software (Figure. 2). To investigate the 
potential involvement of secreted proteins in tumorigenesis and metastasis for human 
breast cancer, biological variation analysis of spots showing greater than 1.5-fold change in 
expression with a t-test score of less than 0.05 were visually checked before confirming the 
alterations for protein identification. MALDI-TOF MS identification revealed 50 unique 
differentially expressed proteins across MCF-10A, MCF-7 and MDA-MB-231 (Table 1). Of 
the proteins identified, 42 were differentially expressed between MCF-7 / MCF-10A, 44 of 
them were differentially expressed between MDA-MB-231 / MCF-10A, and 37 proteins 
were differentially expressed between MDA-MB-231 and MCF-7. In the three cell lines 
investigated, 39% of the total proteins identified were extracellular and plasma membrane-
anchored proteins (Figure 3A) indicating that these membrane-associated proteins might be 
trimmed off the plasma membrane by proteases or might not be completely integrated into 
the plasma membrane. Most of the identified proteins were involved in signaling 
transduction, redox-regulation and metabolism (Figure 3B). To our knowledge, 14 out of 
these identified spots, including tetratricopeptide repeats 3 (IFIT3), have not been reported 
in any breast cancer related studies. Consequently, these proteins might have the potential 
to be putative breast cancer markers. As expected, this 2D-DIGE experiment also identified a 
number of reported breast cancer markers, including Cathepsin D (Zhang et al., 2007) and 
Insulin-like growth factor-binding protein 4 (IGFBP4) (Mita et al., 2007). These results 
demonstrate that the proposed approach significantly enriches secreted proteins and 
membrane proteins in comparison with the previous report that only 2% of the entire 
mammary epithelial cell proteomes are classified as secreted and membrane proteins (Jacobs 
et al., 2004). On the other hand, 61% of the total identified proteins in the medium were 
neither secreted proteins nor membrane-bound proteins. Most of them were sub-located in 
the cytoplasma, implying that some level of cell necrosis or autolysis was taking place.  
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Fig. 2. Secretomic comparisons across MCF-10A, MCF-7 and MDA-MB-231 cells using 2D-

DIGE. Protein samples (50µg each) enriched from serum-free media were labeled with 
CyDyes and separated using 24 cm, pH 3-10 non-linear IPG strips. 2D-DIGE images of MCF-
10A, MCF-7, and MDA-MB-231 at appropriate excitation and emission wavelengths were 
pseudo-colored and overlaid with ImageQuant Tool (GE Healthcare). 
 
 
 

 
 
 

Table 1. Identification of differentially expressed secreted proteins across MCF-10A, MCF-7, 
and MDA-MB-231 breast cells obtained after 2D-DIGE coupled with MALDI-TOF mass 
spectrometry analysis. The functional classes of identified proteins were obtained from the 
Uniprot website (http://www.uniprot.org/). The average ratio (≧2 fold) of differentially 

expressed proteins across MCF-7 / MCF-10A and MDA-MB-231 / MCF-10A were 
calculated considering 3 replica gels (p < 0.05) and listed in this table. 
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Fig. 3. Percentage of secreted proteins identified from serum-free media by 2D-DIGE / 
MALDI-TOF MS for MCF-10A, MCF-7 and MDA-MB-231 cells according to their sub-
cellular locations (A) and biological functions (B). 

3. 2D-DIGE and MALDI-TOF MS analysis of total intracellular proteomes 
across MCF-10A, MCF-7 and MDA-MB-231 cells 

To identify the altered abundances of proteins and relate them to the tumorigenesis of breast 
cancer, the proteomic profiles of MCF-10A, MCF-7 and MDA-MB-231 were analyzed. 
Triplicates of the three different cell lysates were compared using 2D-DIGE to obtain an 
overview of breast cell tumorigenesis. Image analysis using DeCyder v7.0 clearly defined 
more than 2500 protein spots (Figure 4). To reduce the intrinsic variability derived from 
protein samples and gel-to-gel variation, only those protein spots that appeared in all of the 
triplicate gel images were used for statistical analysis. Furthermore, biological variation 
analysis of spots showing greater than 1.5-fold change in expression with a t-test score of 
less than 0.05 were visually checked before confirming the alterations for protein 
identification. MALDI-TOF MS identification revealed 133 unique differentially expressed 
proteins across MCF-10A, MCF-7, and MDA-MB-231 (Table 2). Of the 133 proteins 
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Table 2. Identification of differentially expressed total cellular proteomes across MCF-10A, 
MCF-7, and MDA-MB-231 breast cells obtained after 2D-DIGE coupled with MALDI-TOF 
mass spectrometry analysis. The functional classes of identified proteins were obtained from 
the Uniprot website (http://www.uniprot.org/). The average ratio (≧2 fold) of 

differentially expressed proteins across MCF-7 / MCF-10A and MDA-MB-231 / MCF-10A 
were calculated considering 3 replica gels (p < 0.05) and listed in this table. 

identified, 107 of them had differential expressions between MCF-7 / MCF-10A, 63 were 

differentially expressed between MDA-MB-231 / MCF-10A and 96 had differential 

expressions between MDA-MB-231 and MCF-7. Almost half of the total proteins identified 

in this breast cell model were cytosolic proteins (Figure 5A), and most of the identified 

proteins were involved in signaling transduction, metabolism, protein folding, and cell 

motility (Figure 5B). To our knowledge, 51 of these identified spots, including calumenin, 

have not been reported in any breast cancer related studies. As such, these proteins might 

have the potential to be putative breast cancer markers. As expected, some well-known 

breast cancer markers, such as 14-3-3 proteins (Danes et al., 2008), annexins (Cao et al., 

2008a), calmodulin (Gallo et al., 2008), anterior gradient homolog 2 (AGR-2) (Zweitzig et al., 

2007; Fritzsche et al., 2006), Galectin-1 (Jung et al., 2007) and Rho-associated protein kinase-2 
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(ROCK2) (Fu et al., 2008b), were also identified in this 2D-DIGE experiment, lending 

credence to the reliability of early phase biomarker detection using this experimental 

strategy. 
 

 

Fig. 4. Proteomic comparisons across MCF-10A, MCF-7 and MDA-MB-231 cells using 2D-

DIGE. Protein samples (150µg each) purified from total cell lysates were labeled with Cy-
dyes and separated using 24 cm, pH 3-10 non-linear IPG strips. 2D-DIGE images of MCF-
10A, MCF-7 and MDA-MB-231 at appropriate excitation and emission wavelengths were 
pseudo-colored and overlaid with ImageQuant Tool (GE Healthcare). 

4. Validation of characterized breast cancer markers through immunoblotting 
and immunofluorescence  

The secretomic study indentified some of the well-characterized breast cancer related 
cytosolic proteins such as Cyclophilin A, 14-3-3delta and peroxiredoxin 2 in culture media 
(Harding and Handschumacher, 1988; Aitken, 2006; Fujii and Ikeda, 2002). It is essential to 
validate the levels of these cytosolic proteins in the medium from independent experiments. 
To this end, the expression level of cyclophilin A, 14-3-3delta and peroxiredoxin 2 from the 
culture media of MDA-MB-231, MCF-7 and MCF-10A were validated with immunoblotting. 
The results indicate that both the proteomic and immunoblot analysis showed cyclophilin A 
and 14-3-3 delta down-regulated in MCF-7 in comparison to the levels in MCF-10A. In 
contrast, peroxiredoxin 2 showed up-regulation in MCF-7 in comparison to the levels in 
MCF-10A. Comparing the secreted protein levels between MCF-10A and MDA-MB-231 
indicates that the peroxiredoxin 2 and 14-3-3 delta expression levels increased in MDA-MB-
231 and MCF-10A, respectively; however, the cyclophilin A level showed no significant 
change (Figure 6 A~C). This observation confirmed that cyclophilin A, 14-3-3delta and 
peroxiredoxin 2 were differentially secreted across the breast cells. 
Immunoblot and immunofluorescence analysis were carried out to further confirm the 
differential protein levels observed in total cellular proteins (annexin-2, cathepsin D, 
profilin, protein disulfide isomerase A1 and Histone deacetylase 1 (HDAC1)) across MDA-
MB-231, MCF-7 and MCF-10A (Figure 6 D~H). These proteins have been reported to play 
important roles in cytoskeleton regulation, proteolysis, calcium regulation, protein disulfide 
bond rearrangement and chromatin assembly during tumorigenesis (Feldner and Brandt, 
2002; Liaudet-Coopman et al., 2006; Sharma and Sharma, 2007; Fu et al., 2008a; Kawai et al., 
2003). The results of the immunoblotting indicate that cathepsin D and protein disulfide 
isomerase (PDI) showed up-regulation in MCF-7 cells but down-regulation in MDA-MB-231 
compared to the two protein expressions in MCF-10A. The expression levels of the profilin 
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and annexin 2 proteins showed down-regulation in MCF-7 but no significant changes in 
MDA-MB-231 compared to the levels in MCF-10A. These immunoblotting results 
demonstrate a positive correlation with the 2D-DIGE results (Figure 6 D~G). In addition to 
immunoblotting, validation was also performed with immunofluorescent analysis. Figure 
6H shows that most of the HDAC1 signal was distributed within the nucleus, which is 
consistent with the subcellular location of HDAC1 in cells. As expected, the fluorescent 
intensity with the same exposure indicates that HDAC1 showed increased expressions in 
MCF-7 and MDA-MB-231 compared to its expression in MCF-10A. Altogether, the results 
from immunoblotting and immunofluorescent agreed with the results from 2D-DIGE data. 
 

 

Fig. 5. Percentage of total cellular proteins identified by 2D-DIGE / MALDI-TOF MS for 
MCF-10A, MCF-7 and MDA-MB-231 cells according to their sub-cellular locations (A) and 
biological functions (B). 
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Fig. 6. Representative immunoblotting and immunofluorescent analyses for selected 

differentially expressed proteins identified by proteomic analysis in MCF-10A, MCF-7 and 

MDA-MB-231 cells. The levels of identified proteins in serum-free media, (A) Cyclophilin A, 

(B) 14-3-3 delta and (C) Peroxiredoxin 2 and total cellular proteins, (D) Annexin-2,  

(E) Cathepsin D, (F) Profilin and (G) Protein disulfide isomerase A1 in MDA-MB-231 and 

MCF-7 versus MCF-10A confirmed by immunoblot (left top panels), densitometry results 

with normalized values using nonspecific bands (NS) of secreted proteins and -tubulin as 

loading controls (left bottom panels), protein expression map (right top panels) and three-
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dimensional spot image (right bottom panels). (H) MCF-10A, MCF-7 and MDA-MB-231 cells 

were fixed and incubated with anti-HDAC antibody and stained with a Texas Red-

conjugated secondary antibody (Red). Nuclei were stained with DAPI (Blue). Each set of 

three fields was taken using the same exposure, and images are representative of three 

different fields. Scale bar = 20µm. 

5. Validation of unreported identified putative tumorigenic markers through 
immunoblotting and immunofluorescence  

The cellular proteomic and secretomic analyses above reveal that a number of unreported 
identified proteins may be putative breast cancer markers (Tables 1 and 2). To verify this 
observation, immunoblotting and immunofluorescence were used to validate these 
differentially expressed proteins including bestrophin 3, membrane protein, palmitoylated 2 
(MPP2), parvalbumin, PDZ and LIM domain protein 1 (PdLIM1), IFIT3 and barrier to 
autointegration factor 1 (BANF1) as these proteins showed relatively significant changes (> 
3 fold) in comparison with most of the unreported identified proteins across MCF-10A, 
MCF-7 and MDA-MB-231. The immunoblotting analysis of concentrated serum-free media 
shows that more bestrophin 3 was secreted in the cell lines of MCF-7 and MDA-MB-231 than 
MCF-10A, while MPP2 was only detected in MDA-MB-231. Notably, the bestrophin 3 
blotting result did not completely agree with the 2D-DIGE data, where levels in MCF-7 were 
higher than MDA-MB-231 (Figure 7A). Using immunofluorescent staining, the robust 
increase of parvalbumin signal in both the MCF-7 and MDA-MB-231 cells was first 
confirmed after comparison with the signal in MCF-10A. Parvalbumin was primarily 
localized in the nucleus, which coincided with the DAPI stained nucleus. Further 
investigation of parvabumin expression in other breast cancer cell lines indicates that 
parvabumin was over-expressed in MDA-MB-453, a line of non-invasive breast cancer cells, 
and slightly up-regulated in MDA-MB-361, an adenocarcinoma with metastatic ability 
(Figure 7B). These results imply that parvabumin might have the potential to be a breast 
cancer marker. In contrast, PdLIM1, a cytosolic protein, was down-regulated in all breast 
cancer lines: MCF-7, MDA-MB-231, MDA-MB-453 and MDA-MB-361 (Figure 7B). In 
addition, IFIT3, a plasma membrane protein, was down-regulated in transformed cells, 
especially in MCF-7 and MDA-MB-231, and was consistent with the proteomic data from 
2D-DIGE (Figure 7B). Interestingly, BANF1, a major nucleus-located protein, was 
distributed in the cytoplasma of the MCF-10A cells, but was confined within the nucleus in 
MCF-7, MDA-MB-231 and MDA-MB-453 cells; in addition, BANF1 was distributed within 
the cytoplasma and nucleus in MDA-MB-361 (Figure 7B). These results indicate that the 
BANF1 levels were different between healthy breast cells and breast cancer cells, and that 
the subcellular locations of the protein may account for tumorigenesis. 
Nuclear distribution protein nudE homolog 1 (NDE1), GRAM domain containing 2 
(GRAMD2), Parvabumin and bestrophin 3 (Best3), have not been reported in previous 
breast cancer studies, implying that these proteins need to be further investigated to confirm 
them as valuable breast cancer markers. In order to examine the expression levels of the 
newly identified breast cancer markers in clinical specimens, we had used plasma 
specimens from healthy donors and breast cancer patients to compare the expression levels 
of the markers including NDE1, GRAMD2, Parvabumin and Best3. The results showed that 
these identified markers were significantly increased in breast cancer patients rather than in 
the healthy donors and these increases were observed in both non-metastatic and metastatic 
breast cancers (Figure 8). 
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Fig. 7. Immunoblotting and immunofluorescence analyses of the expression and protein 
localization changes of newly identified putative breast cancer markers across MCF-10A, 
MCF-7, MDA-MB-231, MDA-MB-453 and MDA-MB-361 cells. (A) The profile of the secreted 
proteome changes across MCF-10A, MCF-7, MDA-MB-231, MDA-MB-453 and MDA-MB-
361 cells. The serum-free media from the cell lines was concentrated and 10µg of the total 
protein was resolved using SDS-PAGE and immunoblotted for MPP2 and Bestrophin 3. NS 
represents a nonspecific band used to show equal loading of secreted proteins. (B) 5 x 104 
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MCF-10A, MCF-7, MDA-MB-231, MDA-MB-453 and MDA-MB-361 cells were seeded on 
cover slips before fixation and staining for Parvabumin, BANF1, PdLIM1 and IFIT3. Each set 
of three fields was taken using the same exposure, and images are representative of three 
different fields. Scale bar = 20µm. 

 

 

Fig. 8. ELISA analysis of plasma NDE1, GRAMD2, pavabumin and best3 levels in healthy 
donors, breast cancer patients. Plasma samples were obtained from 30 healthy individuals, 
30 breast cancer patients (15 without detectable metastasis and 15 breast cancer patients 

presenting metastasis) at the time of serum collection. 50 g of plasma samples were coated 
onto each well of 96-well plate for ELISA analysis and the absorbance was measured at 450 
nm using Stat Fax 2100 microtiterplate reader. 

6. Functional classifications of the identified breast cancer markers  

With the basis of a Swiss-Prot search and KEGG pathway analysis, numerous potential 
biological functions of the identified proteins across MCF-10A, MCF-7 and MDA-MB-231 
were determined. The information should be useful for studying the mechanisms of breast 
cancer tumorigenesis and metastasis. Figure 9 compares the expression profiles of the 
identified differentially expressed proteins in these 3 cell lines. Proteins known to regulate 
cell cycle are found to be upregulated in both MCF-7 and MDA-MB-231 (Figure 9A), and are 
associated with the promotion of tumorigenesis (Dictor et al., 1999). In addition, the 
expression of proteins linked to redox-regulation increased in the MCF-7 cells in comparison 
to the levels in MCF-10A (Figure 9B). Induced expression of these proteins may be able to 
account for cancer development and progression. For example, Noh et al. showed that 
peroxiredoxins are greatly over-expressed in most breast cancer tissues (Noh et al., 2001). 
Proteomic analysis also reveals that proteins involved in carbohydrate metabolism are 
significantly over-expressed in MCF-7 cells (Figure 9C). This demonstrates that cancer cells 
rely heavily on glycolysis to obtain ATP for proliferation and tumorigenesis in the presence 
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of adequate oxygen levels (Lopez-Lazaro, 2008); this mechanism has been implicated in 
numerous cancer therapies (Gatenby and Gillies, 2007; Rivenzon-Segal et al., 2003). Figures 
9D~F show the downregulated profiles of proteins in both MCF-7 and MDA-MB-231 cells. 
These proteins are involved in calcium regulation, vascular transport and protease 
inhibition. Calcium-binding proteins, such as annexin-1, whose function is modulated by an 
estrogen receptor, have been reported to show decreased expression in correlation with 
breast cancer development and progression(Ang et al., 2009; Cao et al., 2008b; Shen et al., 
2006; Shen et al., 2005). The S100 protein family is a family of low molecular weight calcium-
binding proteins that is responsible for the regulation of protein phosphorylation, intracellular 
calcium homostasis, the dynamics of cytoskeleton constituents and cell proliferation (Donato, 
2003). The S100 family has become a major interest because of its deregulated expression in 
human diseases, especially in cancer. According to Ji et al. (2004), S100 families exhibit 
significantly reduced expression in esophageal squamous cell carcinoma (Ji et al., 2004) and are 
hence recognized as a prognostic esophageal cancer marker. In here, S100A14 was identified as 
downregulated in MCF-7 and MDA-MB-231, suggesting their potential roles in breast cancer. 
Interestingly, proteins involved in vascular transport, including Rab GTPase-binding effector 
protein and vacuolar protein sorting-associated protein 54, were decreased in expression in 
MCF-7 and MDA-MB-231 (Figure 9F). This may be explained by a previous report indicating 
that the downregulation of Rab5 GDP/GTP exchange factor enhances receptor tyrosine kinase 
signaling and promotes the growth factor-directed migration of tumor cells (Hu et al., 2008). 
However, there are few studies on tumorigenesis regarding the roles of the Rab GTPase-
binding effector protein and the vacuolar protein sorting-associated protein 54. Serpin is a 
group of proteins able to inhibit protease and block the growth, invasion, and metastatic 
properties of breast tumors. Hence, serpin families function as tumor suppressors in cancer 
research (Sager et al., 1997). The downregulation of serpin is well-correlated with the 
progression of breast cancer (Webber et al., 2008) and our own observations in MCF-7 and 
MDA-MB-231 cells (Figure 9F). 
Other differentially expressed proteins of interest across MCF-10A, MCF-7 and MDA-MB-
231 include cathepsin D, bestrophin-3 and interferon-induced protein with IFIT3. Cathepsin 
D, a lysosomal aspartic protease, is over-expressed in estrogen receptor positive breast 
cancer cells (Rochefort, 1999) and is generally of good prognostic value in comparison with 
estrogen receptor negative breast cancer in clinical studies (Rochefort, 1998). Our study 
indicates that cathepsin D is highly expressed in MCF-7, both in total cellular proteins or in 
secreted fraction. In contrast, cathepsin D is significantly down-regulated in MDA-MB-231 
cells compared with MCF-7. Thus, our proteomic results display good correlation with these 
reports. To our knowledge, bestrophin-3, a cGMP-dependent calcium-activated chloride 
channel, has not been reported to be associated with cancer and shows upregulation in 
MCF-7 and MDA-MB-231 in this study. Nevertheless, the related study in bestrophin-1 
shows the protein improves intracellular Ca2+ signaling and increases cell growth rate in 
colonic carcinoma cells. The proliferation of the cells is significantly suppressed by 
bestrophin-1 RNA interference treatment (Spitzner et al., 2008). This indicates bestrophin-3 
may be a potential target for breast cancer therapy. IFIT3 plays a key role in the 
antiproliferative activity of the interferon-related signaling pathway through inducing 
expression of cell cycle inhibitors, p21 and p27 proteins (Xiao et al., 2006). The 2D-DIGE 
results in this study show that IFIT3 is downregulated in both MCF-7 and MDA-MB-231 
cells, implying that breast cancer cells may maintain a high level of proliferative activity by 
downregulating the expression of IFIT3. 
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Fig. 9. Expression profiles for proteins potentially contributing to (A) cell cycle (B) redox 
regulation (C) carbohydrate metabolism (D) calcium regulation (E) vascular transport (F) 
protease inhibition in comparing MCF-7 and MDA-MB-231 with MCF-10A. White bars 
represent fold change in protein expression in MDA-MB-231 versus MCF-10A. Black bars 
represent fold change in protein expression in MCF-7 versus MCF-10A. The vertical axis 
indicates the identified proteins; the horizontal axis indicates the fold change in protein 
expression. Additional details for each protein can be found in Table 1 and Table 2. 
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7. Different proteomic approaches in the study of breast cancer markers  

Results of this study include the differentially expressed protein profiles of intracellular 
proteins and extracellular secreted proteins in non-transformed and transformed breast cell 
lines. The 2D-DIGE strategy is powerful enough to identify numerous breast cancer signatures 
and offers a complementary role to LC/MS-based proteomic analysis. Even though the global 
coverage of protein mixtures identified by LC-MS based analysis is generally higher than that 
of 2-DE based analysis, 2-DE based analysis offers some distinct advantages, such as direct 
protein quantification at protein isoform levels instead of peptide levels to reduce analytical 
variations (Timms and Cramer, 2008a). Using the LC-MS/MS strategy, Kulasingam and 
Diamandis analyzed and compared the expressions of extracellular and membrane-bound 
proteins in conditioned media of three breast cells corresponding to the normal control cells 
and cell lines derived from stage 2 and stage 4 patients, respectively (Kulasingam and 
Diamandis, 2007b). Their study identified 1062 differentially expressed proteins across these 
three cell lines. A comparison between Kulasingam’s study and our 2D-DIGE secretomic study 
shows that 25 out of 50 identified differentially expressed secreted proteins coincide with 
Kulasingam’s study, indicating that both LC-MS/MS and 2D-DIGE are potential tools for 
discovering breast cancer markers with reasonable reproducibility. However, another 25 out of 
these 50 identified proteins have never been published in Kulasingam’s study or any other 
studies, demonstrating that 2D – DIGE, compared with LC-MS/MS, plays a complementary 
role in the discovery of biomarkers.  
In previous research, Nagaraja et.al. used traditional 2-DE with post-stains (silver stain and 

coomassie blue stain) to reveal 26 differentially expressed proteins among transformed 

breast cells with different levels of invasiveness and normal cells which were the same cell 

lines used in the present study (Nagaraja et al., 2006). Their study showed no evidence of 

visualizing protein spots with sensitive strategies, and protein expression changes were not 

quantifiable because no broader linear-ranged methods and statistical analysis were 

employed. Only six out of those 26 proteins coincide with our statistical 2D-DIGE data, 

which implies that differences might have derived from artificial variations or from results 

with no statistical analysis. 
Mitochondria are key organelles in mammary cells in responsible for several cellular functions 
including growth, division and energy metabolism. In our recent works, mitochondrial 
proteins were enriched for proteomics analysis with the state-of-the-art 2D-DIGE and matrix-
assistant laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) 
strategy to compare and identify the mitochondrial protein profiling changes between three 
breast cell lines with different tumorigenesity and metastatic potential. The mitochondrial 
proteomics demonstrate more than 1500 protein features from equal amount pooled of 
mitochondrial proteins of these three breast cancer lines and 125 differentially expressed 
protein spots were identified by peptide fingerprintings. In which, 33 identified proteins 
belong to mitochondrial proteins. 18 out of these 33 identified mitochondrial proteins such as 
short calcium-binding mitochondrial carrier protein-1 (SCaMC-1) have not been reported in 
breast cancer research in our knowledge. Additionally, mitochondrial protein prohibitin has 
shown to be differentially distributed in mitochondria and in nucleus for healthy breast cells 
and breast cancer cell lines, respectively. This approach provides comprehensive studies 
examining mitochondrial proteins in various stages of breast cancer progression and these 
identified proteins may be further evaluated as potential breast cancer risk factors for breast 
cancer initiation and progression. 
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8. Conclusion 

The transformation of a normal cell into a cancer cell has been correlated with alterations in 

gene regulation and protein expression. To identify altered proteins and link them to the 

tumorigenesis of breast cancer, non-tumorigenic breast epithelial cells (MCF-10A) were used 

to distinguish their proteomes from non-invasive breast cancer cells (MCF-7) and invasive 

breast cancer cells (MDA-MB-231) for the identification of the potential breast cancer 

markers in transformed breast cells. Using the 2D-DIGE and MALDI-TOF MS techniques, 

the differentially expressed extracellular secreted proteins and total cellular proteins across 

MCF-10A, MCF-7 and MDA-MB-231 were quantitatively identified. More than 180 unique 

differentially expressed secreted and intracellular proteins from these three different cell 

lines have been identified by proteomic analysis. In which, 14 of the secreted proteins and 51 

of the total cellular proteins have not been previously reported in breast cancer research. 

Some of these unreported proteins have further been verified in other breast cancer cell 

lines, such as MDA-MB-453 and MDA-MB-361 cells, and clinical specimens. Although 

breast cell lines have been used widely to study the biological and molecular heterogeneity 

of breast cancer, it is important to assess their relation to in vivo genotypes and phenotypes 

of breast cancer. According to gene and protein expression profiling, breast cell lines were 

recently better classified to five major subtypes: luminal-A, luminal-B, ERBB2, basal-like and 

normal-like, which may not completely correspond to biological reality but have shown a 

direct correlation with clinical outcomes of this disease (Kao et al., 2009; Charafe-Jauffret et 

al., 2006; Perou et al., 2000; Chin et al., 2006). It is thus possible to predict the differences in 

proteins identified among MCF-10A (normal-like), MCF-7 (luminal) and MDAMB-231 

(basal-like/post-epithelial mesenchymal transition) are due to the cell lines representing 

different molecular subtypes of breast cancer in addition to reflect different stages of breast 

cancer development. Moreover, these three mammary epithelium cells have been commonly 

selected to compare in many studies as MCF-7 is estrogen receptor positive while MDA-MB-

231 is estrogen receptor negative. Therefore, the identified protein signatures in MCF-7 are 

possible link to estrogen-stimulated progression of non-invasive breast cancer. To sum up, 

proteomics strategy has offered opportunity to investigate the putative breast cancer 

markers from various breast cell lines and may aid in developing identified proteins as 

useful diagnostic and therapeutic candidates in research on cancer and proteomics. 
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