
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

0

Feedback Equivalence and Control of Mobile
Robots Through a Scalable FPGA Architecture

G.P. Moustris1, K.M. Deliparaschos2 and S.G. Tzafestas1

1National Technical University of Athens
2Cyprus University of Technology

1Greece
2Cyprus

1. Introduction

The control of mobile robots is an intense research field, having produced a substantial volume
of research literature in the past three decades. Mobile robots present a challenge in both
theoretical control design as well as hardware implementation. From a theoretical point of
view, mobile robots exert highly non-linear kinematics and dynamics, non-holonomy and
complex operational environment. On the other hand, hardware designs strive for scalability,
downsizing, computational power and low cost.
The main control problems in robot motion control can be classified in three general cases;
stabilization to a point, trajectory tracking and path following. Point stabilization refers to
the stabilization of the robot to a specific configuration in its state space (pose). For example,
if the robot at t = t0 is at p0 = (x0, y0, θ0), then find a suitable control law that steers it to
a goal point pg=(xg, yg, θg). Apparently p0 must be an equilibrium point of the closed loop
system, exerting asymptotic stability (although practical stability can also be sought for). In
the path following (or path tracking) problem, the robot is presented with a reference path,
either feasible or infeasible, and has to follow it by issuing the appropriate control commands.
A path is defined as a geometric curve in the robot’s application space. The trajectory tracking
problem is similar, although there is a notable difference; the trajectory is a path with an
associated timing law i.e. the robot has to be on specific points at specific time instances.
These three problems present challenges and difficulties exacerbated by the fact that the robot
models are highly non-linear and non-holonomic (although robots that lift the non-holonomic
rolling constraint do exist and are called omni-directional robots. However the most interesting
mobile robots present this constraint). The non-holonomy means that there are constraints
in the robot velocities e.g. the non-slipping condition, which forces the robot to move
tangentially to its path or equivalently, the robot’s heading is always collinear to its velocity
vector (this can readily be attested by every driver who expects his car to move at the direction
it is heading and not sideways i.e. slip). For a more motivating example of holonomy, consider
a prototypical and pedagogical kimenatic model for motion analysis and control; the unicycle
robot, described by the equations,

Σ :

⎡

⎣

ẋ
ẏ
θ̇

⎤

⎦ =

⎡

⎣

cos θ
sin θ

0

⎤

⎦ υ +

⎡

⎣

0
0
1

⎤

⎦ ω (1)

20

www.intechopen.com

2 Will-be-set-by-IN-TECH

This model is linear on the inputs and describes a linear combination of vector fields which
evolve on a 3D configuration space M = R3 × S1 (a three dimensional manifold). The robot
is controlled by two inputs υ and ω, expressing the linear and angular velocities respectively.
The generalized velocities live on the manifold’s tangent space Tq M at each point q, thus
the system’s equations express the available directions of movement. The non-holonomic
no-slipping constraint is expressed by the Pfaffian equation,

0 = ẋ sin(θ)− ẏ cos(θ) (2)

which can be put into the general form,

G(q)q̇ = 0 (3)

Here q ∈ M is the state vector and G(q) ∈ R1×3 is the constraint matrix (although in this
case is just a vector). Each row vector (covector) of G lives in the manifold’s cotangent space
T∗

q M at q, which is the dual space of Tq M. Equation 3 describes restrictions on the available
directions of movement. Apparently, since the velocities must satisfy (3), it is evident that they
live in the null space of G. One can move from Eq.(3) to Eq.(1) by solving (3) with respect to
the velocities q̇. Since the system is underdetermined (note that G is a one by three "matrix"),
two generalized velocities can vary freely, which are precisely the two inputs of (1). The
non-holonomy of the system derives from the fact that Eq.(2) is not integrable i.e. does not
express the total derivative of some function. By the Frobenius theorem, if ∆ is the distribution
spanned by the two vector fields of Σ, the system is holonomic if ∆ is involutive under Lie
bracketing, a condition that is not satisfied by (1).
Due to these challenges, the path following problem has been attacked by several researchers
from many angles, ranging from classical control approaches (Altafini, 1999; Kamga & Rachid,
1997; Kanayama & Fahroo, 1997), to nonlinear control methodologies (Altafini, 2002; Egerstedt
et al., 1998; Koh & Cho, 1994; Samson, 1995; Wit et al., 2004) to intelligent control strategies
(Abdessemed et al., 2004; Antonelli et al., 2007; Baltes & Otte, 1999; Cao & Hall, 1998;
Deliparaschos et al., 2007; El Hajjaji & Bentalba, 2003; Lee et al., 2003; Liu & Lewis, 1994;
Maalouf et al., 2006; Moustris & Tzafestas, 2005; Rodriguez-Castano et al., 2000; Sanchez
et al., 1997; Yang et al., 1998). Of course, boundaries often blend since various approaches
are used simultaneously. Fuzzy logic path trackers have been used by several researchers
(Abdessemed et al., 2004; Antonelli et al., 2007; Baltes & Otte, 1999; Cao & Hall, 1998;
Deliparaschos et al., 2007; El Hajjaji & Bentalba, 2003; Jiangzhou et al., 1999; Lee et al., 2003; Liu
& Lewis, 1994; Moustris & Tzafestas, 2011; 2005; Ollero et al., 1997; Raimondi & Ciancimino,
2008; Rodriguez-Castano et al., 2000; Sanchez et al., 1997) since fuzzy logic provides a more
intuitive way for analysing and formulating the control actions, which bypasses most of the
mathematical load needed to tackle such a highly nonlinear control problem. Furthermore,
the fuzzy controller, which can be less complex in its implementation, is inherently robust to
noise and parameter uncertainties.
The implementation of Fuzzy Logic Controllers (FLC) in software suffers from speed
limitations due to the sequential program execution and the fact that standard processors
do not directly support many fuzzy operations (i.e., minimum or maximum). In an effort
to reduce the lack of fuzzy operations several modified architectures of standard processors
supporting fuzzy computation exist (Costa et al., 1997; Fortuna et al., 2003; Salapura, 2000).
Software solutions running on these devices speed up fuzzy computations by at least one
order of magnitude over standard processors, but are still not fast enough for some real-time
applications. Thus, a dedicated hardware implementation must be used (Hung, 1995).

402 Recent Advances in Mobile Robotics

www.intechopen.com

Feedback Equivalence and Control of Mobile Robots Through a Scalable FPGA Architecture 3

Due to the increased number of calculations necessary for the path tracking control, a
high performance processing system to efficiently handle the task is required. By using
a System-on-a-Chip (SoC) realised on an FPGA device, we utilize the hardware/software
re-configurability of the FPGA to satisfy the needs of fuzzy logic path tracking for autonomous
robots for high-performance onboard processing and flexible hardware for different tasks.
FPGAs provide several advantages over single processor hardware, on the one hand, and
Application Specific Integrated Circuits (ASIC) on the other. FPGA chips are field-upgradable
and do not require the time and expense involved with ASIC redesign. Being reconfigurable,
FPGA chips are able to keep up with future modifications that might be necessary. They
offer a simpler design cycle, re-programmability, and have a faster time-to-market since no
fabrication (layout, masks, or other manufacturing steps) time is required, when compared to
ASICs.
The use of FPGAs in robotic applications is noted in (Kongmunvattana & Chongstivatana,
1998; Leong & Tsoi, 2005; Li et al., 2003; Reynolds et al., 2001). A review of the application of
FPGA’s in robotic systems is provided be Leong and Tsoi in (Leong & Tsoi, 2005). A notable
case study is the use of FPGA’s in the Mars Pathfinder, Mars Surveyor ’98, and Mars Surveyor
’01 Lander crafts, analysed in (Reynolds et al., 2001).

Fig. 1. Overview of the general system.

In this chapter we analyse a SoC implementation for the non-holonomic robot path
tracking task using a fuzzy logic controller, along with a non-linear feedback-equivalence
transformation which reduces path tracking to straight line tracking. The major components
of the SoC are a parametrized Digital Fuzzy Logic Controller (DFLC) soft IP core
Deliparaschos et al. (2006) Deliparaschos & Tzafestas (2006), implementing the fuzzy tracking
algorithm, and Xilinx’s Microblaze soft processor core as the top level flow controller. The
system was tied to a differential drive robot and experiments were performed in order to
asses the efficacy and performance of the overall control scheme. This was facilitated using
an image analysis algorithm, presented in the following sections, which calculated the robot’s
position from a video stream captured using an overhead camera. The analysis was made
off-line. The overall system setup can be seen in Fig 1.

2. Kinematics & odometry of the Khepera II robot

The mobile robot used in this work, is the Khepera II differential drive robot, described by the
equations,

403Feedback Equivalence and Control of Mobile Robots Through a Scalable FPGA Architecture

www.intechopen.com

4 Will-be-set-by-IN-TECH

⎡

⎢

⎣

ẋ

ẏ

θ̇

⎤

⎥

⎦
=

⎡

⎢

⎢

⎢

⎢

⎣

r

2
cos θ

r

2
sin θ

r

L

⎤

⎥

⎥

⎥

⎥

⎦

ur +

⎡

⎢

⎢

⎢

⎢

⎣

r

2
cos θ

r

2
sin θ

−
r

L

⎤

⎥

⎥

⎥

⎥

⎦

ul (4)

Here, x, y are the coordinates of the middle point of the axis, L is the axis length (the distance
between the two wheels), r is the wheel radius and ul , ur the angular wheel velocities. A
diagram of the model is seen in Fig.(2). Equations 4 can be transformed to a model more akin
to the unicycle by first noting that the linear velocity of a point on the wheel’s circumference

is v = rω (ωi � ui). It can be easily shown that the linear velocity of the wheel’s center equals
the velocity of its circumference. Thus, denoting the centres’ velocities as vr, vl , then,

vr = rur

vl = rul

(5)

and substituting them into Eq.4, the system takes the form,

⎡

⎢

⎣

ẋ

ẏ

θ̇

⎤

⎥

⎦
=

⎡

⎢

⎣

cos θ/2

sin θ/2

1/L

⎤

⎥

⎦
vl +

⎡

⎢

⎣

cos θ/2

sin θ/2

−1/L

⎤

⎥

⎦
vr (6)

Fig. 2. Depiction of the generalized coordinated for the Differential Drive model

If we further apply a new input transformation,

us =
vr + vl

2

uθ =
vr − vl

2

(7)

404 Recent Advances in Mobile Robotics

www.intechopen.com

Feedback Equivalence and Control of Mobile Robots Through a Scalable FPGA Architecture 5

we get the familiar unicycle model, i.e.

⎡

⎣

ẋ
ẏ
θ̇

⎤

⎦ =

⎡

⎣

cos θ
sin θ

0

⎤

⎦ us +

⎡

⎣

0
0
1

⎤

⎦ uθ (8)

For the physical interpretation of the inputs us, uθ , consider that the robot performs a turn of
radius R with respect to the axis’ middle point (point K), centred at the point O (Fig 3). The
point O is called the Instantaneous Centre of Rotation or ICR. If ω is the robot’s angular velocity
(actually the angular velocity of K), then its linear velocity is vs = ωR. It also holds that,

vr = ω(R + L/2)

vl = ω(R − L/2)
(9)

By adding (9) together and solving for the linear velocity vs, we get,

vs =
vr + vl

2
(10)

Subtracting (9) we come up with the robot’s angular velocity ω,

vθ =
vr − vl

L
= ω (11)

Fig. 3. Depiction of the velocities of the Differential Drive model

Observe that vs, vθ are actually us, uθ , thus the new input variables in Eq.7 are actually the
robot’s linear and angular velocities. What we have proved so far is that the unicycle (or the
Dubins Car, which is the unicycle with a constant speed) is related to the Differential Drive
by an input transformation, hence they are equivalent. This means that the Differential Drive
can emulate these models. Consequently, we can develop a controller for either system and
apply it to the others by using this transformation (this is feasible if the input transformation
is actually bijective. If it is not, then the controller can by ported to one direction i.e. from

405Feedback Equivalence and Control of Mobile Robots Through a Scalable FPGA Architecture

www.intechopen.com

6 Will-be-set-by-IN-TECH

model A to model B, and not the other way around). As mentioned earlier, the Dubins Car is
a simplified model where the velocity is considered constant. Furthermore, the path following
problem involves the tracking of a purely geometric curve, where indeed the velocity is
irrelevant. Hence, the model (8) can be transformed to a more suitable control form by using

the curvature κ � uκ . The curvature is related to the angular and linear velocities by the well
known formula ω = κv, or, using our nomenclature,

uθ = uκus (12)

Since the linear velocity us = v is constant, by applying this transformation to the system (8),
we get,

⎡

⎣

ẋ
ẏ
θ̇

⎤

⎦ =

⎡

⎣

v cos θ
v sin θ

0

⎤

⎦+

⎡

⎣

0
0
v

⎤

⎦ uκ (13)

This model is of control-affine form, with a non-vanishing drift term, where the only input is
the curvature uκ . By controlling the curvature in this model, we expect to control the actual
system i.e. the Khepera robot, which is a differential drive and has two inputs. Thus, starting
with the curvature, in order to calculate the true input vector to the robot, we need a second
equation. This is of course the velocity equation us = v, which is considered known. By
combining (10), (11), (12), the wheel velocities are calculated as,

vr = v(1 + uκ L/2)

vl = v(1 − uκ L/2)
(14)

Equation 14 produces the linear wheel velocities of the robot, given its linear velocity and
curvature. Since the linear velocity is constant, the only input is the curvature which is output
by the fuzzy controller implemented on the FPGA.
In order to calculate its position, MATLAB queries the robot about its wheel encoder readings
every 12.5 msec. The robot returns the 32bit encoder position, expressed in pulse units, with
each unit corresponding to 0.08 mm. Consequently, by multiplying the units with 0.08 we
get the total length each wheel has travelled since the beginning of the experiment. Now let
SR(t), SL(t) be the travel length of the right and left wheels at time t, and SR(t − 1), SL(t − 1)
be the length at t − 1. We assume that in the interval ∆t the robot moves with a constant
curvature, and thus traces an arc. This translates to constant wheel velocities (Eq. 14). Then,
using (11) we have,

ω =
∆θ

∆t
=

vr − vl

L
=

∆SR − ∆SL

∆tL
⇔ ∆θ =

∆SR − ∆SL

L
(15)

If the robot’s initial heading θ0, with respect to the world frame, is known, then at time t it
holds that,

θ(t) = θ0 +
t

∑
τ=0

∆θ(t) = θ0 +
t

∑
τ=0

∆SR(τ)− ∆SL(τ)

L
(16)

Using 10, the length travelled by the point K in ∆t is found to be,

vs =
∆S

∆t
=

vr + vl

2
⇔ ∆S =

∆SR + ∆SL

2
(17)

406 Recent Advances in Mobile Robotics

www.intechopen.com

Feedback Equivalence and Control of Mobile Robots Through a Scalable FPGA Architecture 7

To calculate the robot’s x, y position, we must solve the kinematics for the interval ∆t, setting
the input constant. The solution can be easily shown to be,

∆x(t) = 2
∆S

∆θ
sin(

∆θ

2
) cos(θt−1 +

∆θ

2
)

∆y(t) = 2
∆S

∆θ
sin(

∆θ

2
) sin(θt−1 +

∆θ

2
)

(18)

In the case that the robot moves in a straight line, hence ∆θ = 0, taking the limit of 18 gives
the equations,

∆x(t) = ∆S cos(θt−1 +
∆θ

2
)

∆y(t) = ∆S sin(θt−1 +
∆θ

2
)

(19)

To get the absolute coordinates of the robot at t, Eq.19 must be integrated, leading to the
odometric equations,

x(t) = x0 +
t

∑
τ=0

∆x(τ)

y(t) = y0 +
t

∑
τ=0

∆y(τ)

(20)

Using the previous formulas (Eq.16 and Eq.20) we have succeeded in reconstructing the
robot’s state vector, i.e. the states (x, y, θ). Note that time is absent from the odometry
equations. This has been chosen deliberately since it reduces the estimation error significantly.
To consider this further, suppose that we get the wheel velocities from the robot and use
the odometry equations involving the time ∆t. The use of the velocities in the formulas
inserts two types of errors; the first is the estimation of the velocities themselves from the
robot. In the time between two queries to the robot, which is 12.5 msec, the velocity cannot
be computed with adequate precision; the second error derives from the calculation of the
interval ∆t, which is inserted into the equations. This interval is not constant since there
is always a small computational overhead in the software in order to setup and issue the
command, communication delays etc. Furthermore, the queries to the robot are implemented
in MATLAB using a timer object. The timer period however, is not guaranteed and is affected
by the processes running on the computer at each instant. Thus, ∆t can vary from its nominal
value, something which was also seen in actual experiments and must be minimized.

3. Strip-Wise Affine Map

The Strip-Wise Affine Map (SWAM) is the first step towards constructing a feedback
equivalence relation which transforms the robot’s model to a suitable form, under specific
requirements. The equivalence relation however, exerts the useful property of form invariance
on the mobile robot equations. The SWAM is defined for a robot model and a reference path,
being applied to tracking control. To begin with, consider a reference polygonal path in the
original physical domain, i.e. the actual domain where the robot dwells. Denote this physical
domain as Dp (w-plane) and the transformed canonical domain as Dc (z-plane). Then, the
strip-wise affine map is a homeomorphism Φ : Dc → Dp that sends the real line of the
canonical domain to the reference polygonal path in the physical domain. The SWAM is
a piecewise linear homeomorphism between the two spaces (Groff, 2003; Gupta & Wenger,

407Feedback Equivalence and Control of Mobile Robots Through a Scalable FPGA Architecture

www.intechopen.com

8 Will-be-set-by-IN-TECH

1997) . It acts by inducing a strip decomposition on the planes and then applying an affine
map between them. Note that the map acts on the entire domains, not just on a bounded
region.

Fig. 4. Illustration of the Strip-Wise Affine Map

In more rigorous terms, let A = {w1, w2, . . . , wn} , wi ∈ C be a polygonal chain on the complex
physical domain. This represents the original reference path. Each vertex wi of the chain is
projected to a point ai on the real axis in the canonical domain according to its normalized
length,

ai =
i

∑
k=1

Sk

S
, i = 1, 2,3, ..., n (21)

where Sk = |wk − wk−1| , S = ∑
n
k=1 Sk and S1 = 0. The polygon edge from wk−1 to wk is

linearly projected onto [ak−1, ak]. The transformation of [ak−1, ak] onto its respective polygon
edge is done using the function

fk−1(x) = wk−1 + S · (x − ak−1) · ej·arg(wk−wk−1) (22)

Each interval [ak−1, ak] is transformed by a respective transformation f1, f2, , fn−1. Now,
consider the following rectangle pulse function on the canonical real axis,

ψk =

{

1 , x ∈ [ak, ak+1)

0 , elsewhere
(23)

The pulse is a complex function of z = x + jy in the canonical domain. Each function fk−1

is multiplied by the corresponding pulse and the products are summed to account for the
general transformation that projects the interval [0,1) onto the polygonal chain,

f (x) =
n−1

∑
k=1

fk(x)ψk (24)

Extension to the intervals (-∞,0) and [1,+ ∞) can be performed by appending an edge that
begins from infinity ending at w1, for the first case, and another edge starting from wn escaping

408 Recent Advances in Mobile Robotics

www.intechopen.com

Feedback Equivalence and Control of Mobile Robots Through a Scalable FPGA Architecture 9

to infinity, on the second case. The edges have a direction of θ−∞ and θ+∞ respectively. The
formulas that account for these branches are given by:

f−∞(x) = (w1 + S · (x − a1) · ej·θ−∞)ψ0,

f+∞(x) = (wn + S · (x − an) · ej·θ+∞)ψn

(25)

Here ψ0 is an open-left pulse with a single falling edge at x=a1, and ψn is the open-right
pulse with a single rising edge at x=an. Combining the above and using the conventions

θk = arg(wk+1 − wk), a0 = −∞, an+1 = +∞, w0 � the point at infinity corresponding to

a0, wn+1 � the point at infinity corresponding to an+1, θ0 = arg(w1 − w0) = θ−∞, θn =
arg(wn+1 − wn) = θ+∞, the extended transformation takes the following form,

f (x) =
n

∑
k=0

(wk + S · (x − ak) · ej·θk)ψk (26)

where the functions f−∞, f+∞, correspond to k=0 and k=n respectively. In order to extend
this transformation to the entire complex plane, let z = x + jy be a complex variable in the
canonical domain and consider the mapping,

Φ(z) = y · S · ej·θs + f (x) (27)

where θs is the shifting angle in [-π/2, π/2].The complex variable w = u + jv in the physical
domain, is identified with the transformation Φ(z), i.e. w = u + jv = Φ(z). This
transformation is the direct strip-wise affine map and produces a linear displacement of the
polygon along the direction θs. Each edge of the polygon produces an affine transformation
that applies only in the "strip" that the edge sweeps as it is being translated. Thus, the
transformation Φ(z) can be described as a "strip-wise affine" transformation. The invertibility
of the map depends firstly on the geometry of the chain and secondly on the shifting angle. It
can be shown (Moustris & Tzafestas, 2008) that necessary and sufficient conditions for the
mapping to be invertible are that the chain must be a strictly monotone polygonal chain
(Preparata & Supowit, 1981) and the shifting angle must not coincide with the angle of any
of the chain’s edges i.e. the chain must not be shifted along one of its edges. The inverse
strip-wise affine map can be expressed in matrix form by treating Φ(z) as an R2 to R2 mapping
since it cannot be solved analytically with respect to z. The inverse mapping equations can be
calculated as,

[

x

y

]

= A−1

[

u

v

]

−

[

C/J − ak

−D/J

]

(28)

where C = S ∑
n
k=0 (w

R
k sin θs − wI

k cos θs)ψk, D = S ∑
n
k=0 (w

R
k sin θk − wI

k cos θk)ψk and J is the

map Jacobian given by J = S2 ∑
n
k=0 sin(θs − θk)ψk. A−1 is the inverse system matrix, i.e.

A−1 =

⎡

⎣

sin θs − cos θs

−
n
∑

k=0
ψk sin θk

n
∑

k=0
ψk cos θk

⎤

⎦ /S
n

∑
k=0

sin(θs − θk)ψk (29)

Besides Eq.28, one also needs to know the activated pulse since the rectangle pulses are
functions of the variable x, and thus (28) does not provide a complete solution to the inversion
problem. If this information is provided, the sums in Eq.28 degenerate and the equation
provides the inverse system. The activated pulse can be calculated algorithmically by doing

409Feedback Equivalence and Control of Mobile Robots Through a Scalable FPGA Architecture

www.intechopen.com

10 Will-be-set-by-IN-TECH

a point-in-strip test. Consider an axis orthogonal to the direction θs such that the projection
of w1 corresponds to 0. Furthermore let the projections of each wi onto that axis be denoted
as bi, and the projection of the current mapping point denoted as bc. The projections of wi

apparently partition the axis into consecutive line segments [bibi+1] which are into one-to-one
correspondence with the edges of the polygonal chain. Then, in order to find the current
pulse one needs to find the segment into which the point bc resides. This can be performed
optimally by a binary search algorithm in O(logn).
Since the SWAM transforms the robot’s application space, it also affects its model’s equations.
Denoting all the state variables in the physical and canonical domains with a subscript of p
and c respectively, then the u-v plane (physical domain) is mapped to the x-y plane (canonical
domain), i.e. the state vector qp = [xp, yp, θp]T is transformed to q′p = [xc, yc, θp]T . The
homeomorphism Φ defines an equivalence relation between the two states. Notice that the
state θp remains unaffected. By introducing a new extended homeomorphism Ψ that also
maps the heading angle θp, one can send the canonical state-space to the physical state-space,
i.e. qp = Ψ(qc). This transformation acts on all state variables and the new system state is

qc = [xc, yc, θc]T . The map is then defined by,

⎡

⎣

xp

yp

θp

⎤

⎦ =

⎡

⎢

⎢

⎢

⎣

ycS cos θs + Re(f (xc))

ycS sin θs + Im(f (xc))

tan−1(
∑

n
κ=0 sin θκψκ + sin θs tan θc

∑
n
κ=0 cos θκψκ + cos θs tan θc

)

⎤

⎥

⎥

⎥

⎦

= Ψ(qc) (30)

and the new system is,

Σ̃ :

⎡

⎢

⎣

ẋc

ẏc

θ̇c

⎤

⎥

⎦
=

⎡

⎢

⎣

vc cos θc

vc sin θc

0

⎤

⎥

⎦
+

⎡

⎢

⎣

0

0

S3γ3 J−1vc

⎤

⎥

⎦
κp (31)

J is the Jacobian of Φ and γ =
√

1 + sin 2θc ∑
n
κ=0 cos(θs − θκ)ψκ . The input κp of the system

remains unaffected. However, since it expresses the curvature of the physical system, it
can also be transformed under Ψ. Thus by including the transformation of the input and
extending the homeomorphism Ψ to Ψ̂ = (Ψ, Ω) , where

κp = Ω(κc, qc) = S−3 Jγ−3κc

is the input map that sends the controls from the canonical input space to the controls in the
physical input space, one gets the new extended system,

Σc :

⎡

⎢

⎣

ẋc

ẏc

θ̇c

⎤

⎥

⎦
=

⎡

⎢

⎣

vc cos θc

vc sin θc

0

⎤

⎥

⎦
+

⎡

⎢

⎣

0

0

vc

⎤

⎥

⎦
κc (32)

The systems Σp and Σc are feedback-equivalent (Gardner & Shadwick, 1987; 1990) since
they are related by a state and input transformation. The input transformation is actually
a feedback transformation of Σc that feeds the states qc back to the input. A more careful look
at Eq.(32) shows that it expresses the Dubins Car in the canonical domain, thus Ψ̂ presents a
kind of form invariance on the model.

410 Recent Advances in Mobile Robotics

www.intechopen.com

Feedback Equivalence and Control of Mobile Robots Through a Scalable FPGA Architecture 11

Now, let pre f be a reference path in the physical domain and let uc(qc, Ic, t) be a straight line
tracking controller for Σc, where Ic denotes the line segment yc = {0/xc ∈ [0, 1]} of the
C-plane, i.e. the reference path in the canonical domain. This controller is transformed to a
path tracking controller for Σp under the equation,

up(qp, pre f , t) = Ω(uc(qc, Ic, t), qc) = Ω(uc(Ψ−1(qp), Φ−1(pre f), t), Ψ−1(qp)) (33)

However, since Σc is the Dubins Car in the canonical domain, the straight line tracking
controller uc(qc, Ic, t) for Σc is actually a straight line tracker for the Dubins Car, and in order
to build a path tracker for the Dubins Car, one has but to build a straight line tracker and use
Eq.(33) to promote it to a path tracker for strictly monotone polygonal chains. Furthermore,
one could also use existing path trackers for the Dubins Car to track the straight line in the
canonical domain. In this case, these controllers can be simplified since in general, straight
line tracking is simpler than path tracking.

4. Fuzzy Logic Controller

The controller used in this work for the path following task, is based on a Fuzzy
Logic Controller (FLC) developed by the authors, which has been deployed in previous
experiments. The original Fuzzy Logic tracker is described in (Moustris & Tzafestas, 2005),
and further modified in (Deliparaschos et al., 2007) in order to be implemented on a FPGA.
Specifically the tracker is a zero-order Takagi-Sugeno FLC with the two inputs partitioned in
nine triangular membership functions each, while the output is partitioned in five singletons
(Fig. 5).

Fig. 5. Input and output membership functions of the fuzzy controller

The FL tracker uses two angles as inputs, and outputs the control input uκ . It is assumed that
the path is provided as a sequence of points on R2. The fuzzy rule base consists of 81 rules,
which are presented in Table 1. The implication operator is the min operator.

411Feedback Equivalence and Control of Mobile Robots Through a Scalable FPGA Architecture

www.intechopen.com

12 Will-be-set-by-IN-TECH

pvb pbig pmid ps zero ns nmid nbig nvb
p180 pb pb pb pm ze nm nb nb pb
p135 pb pb pb pb pm nm nb Pb pb
p90 pb pb pb pm pm pm pb pb Pb
p45 pb pb pb pm pm ze nb pb pb

z pb pb Pb pm ze nm nb nb nb
n45 nb nb pb ze nm nb nb nb nb
n90 nb nb nb nm nm nb nb nb nb

n135 nb nb pb pm nm nb nb nb nb
n180 pb pb pb pm zero nm nb nb pb

Table 1. FLC Rule Base

In each control loop the closest path point is picked up and the two input angles are calculated.
These angles are the angle φ1 of the closest point with respect to the current robot heading
and the direction φ2 of the tangent of the path at that point, as depicted in Fig. 6a. Using the
SWAM, we can move the tracking task to the canonical domain where the path is a straight
line. In this case, the oriented straight line splits the plane into two half-planes, which present
two general cases for the placement of the robot. Due to the symmetry of the cases only one
will be analyzed. Consider that the robot resides in the positive half-plane (Fig. 6b) and that
the distance from the closest path point P is D.

Fig. 6. Illustration of the controller inputs for path tracking in the general case (a) and in the
straight line case (b).

Furthermore, one can consider that the robot tracks not the closest point P but the one found
distance S ahead. The "sightline" of the robot to that point forms an angle φ with the path. In
this situation, by varying the angle φ2 one can discern four cases for the relation between the
angles φ, φ1 and φ2 with the three of them being the same, namely,

ϕ1 − ϕ2 = −ϕ ,ϕ2 ∈ [−π + ϕ, 0] ∪ [0, ϕ] ∪ [ϕ, π]

ϕ1 − ϕ2 = 2π − ϕ ,ϕ2 ∈ [−π,−π + ϕ]
(34)

When the robot resides in the positive half-plane, the angle φ is also positive. On the contrary,
when it is in the negative half-plane, the angle changes sign although Eqs.(34) remain the
same. With respect to the point being tracked, we discern two cases; either fixing the sightline,
i.e. fixing the angle φ, or fixing the look-ahead distance S, i.e. tracking the point that is distance

412 Recent Advances in Mobile Robotics

www.intechopen.com

Feedback Equivalence and Control of Mobile Robots Through a Scalable FPGA Architecture 13

S ahead of the one nearest to the robot (point P). Of course, the nearest point P can be easily
found since its coordinates are (xc, 0), where xc is the x-axis coordinate of the robot in the
canonical space. In the case of a constant S, the angle φ varies from [−π/2, π/2] and the
tuple (φ1, φ2) is constrained in a strip. This can also lead to a rule reduction in the FLC rule
base since some rules are never activated ((Moustris & Tzafestas, 2011)). For the control of
the robot, the FLC and the SWAM were calculated on-line using a dedicated FPGA SoC, as
described in the next section.

5. DFLC & SoC architecture

This section discusses the System on Chip (SoC) implemented on an FPGA chip for the robot
path tracking task using fuzzy logic. The SoC design was implemented on the Spartan-3 MB
development kit (DS-KIT-3SMB1500) by Digilent Inc. The Spartan-3 MB system board utilizes
the 1.5 million-gate Xilinx Spartan-3 device (XC3S1500-4FG676) in the 676-pin fine-grid array
package. A high level and a detailed architecture view of the SoC is shown in Fig.7 and 8
respectively.

Fig. 7. Overview of the SoC’s hardware architecture

A design on an FPGA could be thought as a "hard" implementation of program execution.
The Processor based systems often involve several layers of abstraction to help schedule
tasks and share resources among multiple processes. The driver layer controls hardware
resources and the operating system manages memory and processor bandwidth. Any given
processor core can execute only one instruction at a time, and processor based systems are

413Feedback Equivalence and Control of Mobile Robots Through a Scalable FPGA Architecture

www.intechopen.com

14 Will-be-set-by-IN-TECH

Fig. 8. Architecture of the DFLC IP core

continually at risk of time critical tasks preempting one another. FPGAs on the other hand do
not use operating systems and minimize reliability concerns with true parallel execution and
deterministic hardware dedicated to every task (see Fig.9).
Today’s FPGAs contain hundreds of powerful DSP slices with up to 4.7 Tera-MACS
throughput; 2 million logic cells with clock speeds of up to 600MHz, and up to 2.4 Tera-bps
high-speed on-chip bandwidth capable to outperform DSP and RISC processors by a factor
of 100 to 1,000. Taking advantage of hardware parallelism, FPGAs exceed the computing
power of digital signal processors (DSPs) by breaking the paradigm of sequential execution
and accomplishing more per clock cycle.
The main unit of the SoC is a parametrized Digital Fuzzy Logic Controller (DFLC) soft IP
core Deliparaschos et al. (2006)Deliparaschos & Tzafestas (2006) that implements the fuzzy

414 Recent Advances in Mobile Robotics

www.intechopen.com

Feedback Equivalence and Control of Mobile Robots Through a Scalable FPGA Architecture 15

Fig. 9. Illustration of HW vs SW computation process

tracking algorithm, and a Xilinx’s Microblaze soft processor core which acts as the top level
flow controller. The FPGA board hosting the SoC controls the Kephera robot, used in the
experiments of the tracking scheme.
In our application the DFLC facilitates scaling and can be configured for different number
of inputs and outputs, number of triangular or trapezoidal fuzzy sets per input, number
of singletons per output, antecedent method (t-norm, s-norm), divider type, and number of
pipeline registers for the various components in the model. This parametrization enabled the
creation of a generic DFLC soft IP core that was used to produce a fuzzy controller of different
specifications without the need of redesigning the IP from the beginning. The fuzzy logic
controller architecture assumes overlap of two fuzzy sets among adjoining fuzzy sets, and
requires 2n (n is the number of inputs) clock cycles at the core frequency speed in order to
sample the input data (input sample rate of 78.2960ns), since it processes one active rule per
clock cycle. In its present form the SoC design achieves a core frequency speed of 51.1 MHz.
To achieve this timing result, the latency of the chip architecture involves 9 pipeline stages
each one requiring 19.574ns. The featured DFLC IP is based on a simple algorithm similar
to the zero-order Takagi-Sugeno inference scheme and the weighted average defuzzification
method. By using the chosen parameters of Table 2, it employs two 12-bit inputs and one
12-bit output, 9 triangular membership functions (MFs) per input and 5 singleton MFs at the
output with 8-bit and 12-bit degree of truth resolution respectively.
The FPGA SoC implements the autonomous control logic of the Kephera II robot. It receives
odometry information from the robot and issues steering commands output by the FL tracker.
The encoding and decoding of the information packets (i.e., encoding of steering control into
data frames) is handled by the MATLAB application. Therefore the MATLAB application
implements the actual framer/deframer for the I/O communication with the Kephera robot
and downloads the tracking path to the SoC. The top-level program that supervises these
tasks, treats synchronization and timing requirements, is written in C and executes in the
Microblaze soft processor core. The SWAM algorithm is also implemented on the FPGA, in
order to reduce the computation time.
The MATLAB application displays information about the robot’s pose and speed, as well as
some other data used for the path tracking control. It also calculates the robot’s position
relative to the world and the local coordinate frames. Another important function of the
MATLAB application is to provide a path for the robot to track. The current work deals only

415Feedback Equivalence and Control of Mobile Robots Through a Scalable FPGA Architecture

www.intechopen.com

16 Will-be-set-by-IN-TECH

Parameters (VHDL generics) Value Generic Description

ip_no 2 Number of inputs
ip_sz 12 Input bus resolution (bits)
op_no 1 Number of outputs
op_sz 12 Output bus resolution (bits)

MF_ip_no 9 Number of input MFs (same for all inputs)
dy_ip 8 Input MFs degree of truth resolution (bits)

MF_op_no 5 Number of output MFs (singletons)
MF_op_sz 12 Output MFs resolution (bits)

sel_op 0 Antecedent method connection:
0: min, 1: prod, 2: max, 3: probor

div_type 1 Divider Model:
0: restoring array, 1: LUT reciprocal approx.

PSR Signal Path Route

psr1_no 1 ip_set→psr1_no→trap_gen_p
psr2_no 4 s_rom→psr2_no→mult
psr3_no 1 s_rom→psr3_no→rul_sel_p
psr4_no 1 cpr5→psr→int_uns

CPR Component (Entity) Name

cpr1_no 1 addr_gen_p
cpr2_no 1 cons_map_p
cpr3_no 3 trap_gen_p
cpr4_no 0 rule_sel_p
cpr5_no 2 minmax_p
cpr6_no 1 mult
cpr7_no 0 int_uns
cpr8_no 0 int_sig
cpr9_no 2 div_array

Table 2. DFLC soft IP core chosen parameters

with the path tracking task and not path planning. To compensate for this, the path is drawn
in MATLAB, encoded properly and downloaded to the SoC. Then, the SoC begins the tracking
control.
The Microblaze soft processor core is licensed as part of the Xilinx Embedded Development
Kit (EDK) and is a soft core, meaning that it is implemented using general logic primitives
rather than a hard dedicated block in the FPGA. The Microblaze is based on a RISC
architecture which is very similar to the DLX architecture described in (Patterson & Hennessy,
1997)(Sailer et al., 1996). It features a 3-stage pipeline with most instruction completing in a
single cycle. Both the instruction and data words are 32 bits. The core alone can obtain a speed
of up to 100MHz on the Spartan 3 FPGA family. The Microblaze processor can connect to the
OPB bus for access to a wide range of different modules, it can communicate via the LMB bus
for a fast access to local memory, normally block RAM (BRAM) inside the FPGA.
Moreover, the Fast Simplex Link (FSL) offers the ability to connect user soft core IP’s acting
as co-processors to accelerate time critical algorithms. The FSL channels are dedicated
unidirectional point-to-point data streaming interfaces. Each FSL channel provides a low
latency interface to the processor pipeline allowing extending the processor’s execution unit
with custom soft core co-processors. In this work the DFLP IP core is playing the role of such

416 Recent Advances in Mobile Robotics

www.intechopen.com

Feedback Equivalence and Control of Mobile Robots Through a Scalable FPGA Architecture 17

a co-processor and is connected to the Microblaze via the FSL bus. The architecture of the
present SoC consists mainly of the DFLP that communicates with the Microblaze Processor
through the Fast Simplex Bus (FSL), the utilized block RAMs (BRAM) through the LMB bus,
and other peripherals such as the general purpose input/output ports (GPIO), and UART
modules via the OPB bus. Here, the DFLP incorporates the fuzzy tracking algorithm, whereas
the Microblaze processor mainly executes the C code for the flow control.
The parametrized zero-order TSK type Fuzzy Logic Controller (FLC) core exchanges data with
the MicroBlaze processor via the FSL bus. The scope of the FLC core is to serve as high-speed
fuzzy inference co-processor to the Microblaze. The DFLC core was implemented with the
following parameters (see Table3).

Property Value

Inputs 2
Input resolution 12

Outputs 1
Output resolution 12 bit

Antecedent Membership Functions (MF’s) 9 Triangular MF’s
Degree of Truth resolution 8 bit

Consequent MF’s 5 Singletons
MF resolution 8 bit

Number of fuzzy inference rules 81
Rule activation method MIN

Aggregation method SUM
Implication method PROD

MF overlapping degree 2
Defuzzification method Weighted average

Table 3. DFLC core characteristics

Besides these two main cores and buses, the design consists of 16 KB local memory, 32 MB
DDR, timer, interrupt controller, a UART, a debug peripheral (MDM) and a couple of General
Purpose Inputs/Outputs (GPIOs). A Multi-CHannel (MCH) On-chip Peripheral Bus (OPB)
Double Data Rate (DDR) Synchronous DRAM (SDRAM) memory controller (MCH OPB DDR
with support for asynchronous DDR clock) is used in this design. This allows the MicroBlaze
system to run at a lower speed of 51 MHz, which is more reasonable for Spartan-3, while the
DDR is running at 75 MHz, which is the minimum required frequency for the Micron DDR
chip. The on-chip Digital Clock Manager (DCM) is used to create the various clock frequencies
and phases required to make this system work, all based on the 75 MHz oscillator on the 3SMB
board. The FLC core runs at the same speed as the OPB and MicroBlaze, which is 51 MHz.
Based on the place and route report, the design occupies 4174 out of 13312 slices of the Xilinx
Spartan 3 FPGA (XC3S1500-4FG676).

6. Hardware/software co-design

On the beginning of the co-design process one starts with an architecture independent
description of the system functionality. Since the description of the system functionality is
independent of the HW and SW, several system modelling representations may be used, such
as finite state machines (FSMs) for example. The modelled system can then be described
by means of a high level language, which is next compiled into an internal representation

417Feedback Equivalence and Control of Mobile Robots Through a Scalable FPGA Architecture

www.intechopen.com

18 Will-be-set-by-IN-TECH

such as a data control flow description. This description which serves as a unified system
representation allows to perform HW/SW functional partitioning. After the completion of
the partitioning, the HW and SW blocks are synthesized and evaluation is then performed. If
the evaluation does not meet the required objectives, another HW/SW partition is generated
and evaluated (Rozenblit & Buchenrieder, 1996)(Kumar, 1995).
A general HW/SW co-design schema followed in this SoC implementation is illustrated in
Fig.10).

Fig. 10. HW/SW Co-design Flow

The DFLC core implementation follows a sequential design manner (see Fig.11) (Navabi,
1998). The starting point of the design process was the functional modelling of the fuzzy
controller in a high level description (i.e., MATLAB/Simulink). This serves a two purpose
role, first to evaluate the model and second to generate a set of test vectors for RTL and timing
verification. The model was coded in register transfer level (RTL) with the use of hardware
description language VHDL. Extensive use of VHDL generic and generate statements was
used through out the coding of the different blocks, in order to achieve a parameterized DFLC

418 Recent Advances in Mobile Robotics

www.intechopen.com

Feedback Equivalence and Control of Mobile Robots Through a Scalable FPGA Architecture 19

core. The DFLC core is scalable in terms of the number of inputs/bus resolution, number of
input/output fuzzy sets per input and membership resolution. More specifically A VHDL
package stores the above generic parameters together with the number of necessary pipeline
stages for each block. An RTL simulation was performed to ensure the correct functionality of
the fuzzy controller. The DFLC core was independently synthesized with Synopsys Synplify
logic synthesis tool (as it produced better synthesis results and meet timing constraints),
whereas the rest of the SoC cores were synthesised with Xilinx synthesis tool XST. The Xilinx
EDK studio was used for the integration flow of different SoC cores (i.e., DFLC, Microblaze,
etc) and Xilinx ISE tool for the placement and routing of the SoC on the FPGA. More
analytically, the place and route tool accepts the input netlist file (.edf), previously created
by the synthesis tool and goes through the following steps. First, the translation program
translates the input netlist together with the design constraints to a database file. After the
translation program has run successfully, the logical design is mapped to the Xilinx FPGA
device. Lastly, the the mapped design is placed and routed onto the chosen FPGA family
and a device configuration file (bitstream) is created. Xilinx’s SDK used for C programming
and debugging the SoC’s Microblaze soft processor. RTL and timing simulation to verify the
correct functionality was handled with the use of Mentor’s Modelsim simulator.

7. FPGA design and performance evaluation

The Component Pipeline Registers (CPR) blocks in Fig.8 indicate the number of pipeline
stages for each component; the Path Synchronization Registers (PSR) blocks point to
registers used for synchronizing the data paths, while the "U" blocks represent the different
components of the DFLC Deliparaschos & Tzafestas (2006).
The U_fpga_fc component is embedded in the flc_ip top structural entity wrapper which is
compliant with the FSL standard and provides all the necessary peripheral logic to the DFLC
soft IP core in order to send/receive data to/from the FSL bus. The flc_ip wrapper architecture
is shown in Fig.8 while the chosen (generic) parameters (VHDL package definition file) for
the parameterized DFLC IP (U_fpga_fc) and its characteristics are summarized in Table 2 and
Table 3 respectively.
The U_fpga_fc alone was synthesized using Synplify Pro synthesizer tool, while the rest of
the design components were synthesized with Xilinx Synthesis Tool (XST) through the EDK
Platform Studio. The produced .edf file for the U_fpga_fc is been seeing by the flc_ip wrapper
as a blackbox during the XST flow. The placement and routing of the SoC design into the
FPGA was done through the EDK by calling the Xilinx ISE tool.
According to the device utilization report from the place and route tool (see Table 4), the SoC
design (including the DFLC) occupies 4,494 (16%) LUTs, 15 Block Multipliers (MULT18X18s),
and 18 Block RAMs. The implemented design uses two Digital Clock Manager (DCM)
Modules (DCM_0 for the system clock and DCM_1 for clocking the external DDR RAM) that
produce the different clocks in the FPGA. The DFLC core itself occupies 1303 or 4% LUTs,
8 Block Multipliers, 12 64x1 ROMs (ROM64X1) and 54 256x1 ROMs (ROM256X1). The SoC
achieves a minimum clock operating period of 19.574ns or a maximum frequency of ∼51.1
MHz respectively (the DFLC with the chosen parameters reports a frequency of 85MHz when
implemented alone).

419Feedback Equivalence and Control of Mobile Robots Through a Scalable FPGA Architecture

www.intechopen.com

20 Will-be-set-by-IN-TECH

Fig. 11. HW/SW Hardware design flow

420 Recent Advances in Mobile Robotics

www.intechopen.com

Feedback Equivalence and Control of Mobile Robots Through a Scalable FPGA Architecture 21

Logic Utilization

Number of Slice Flip Flops 3,288 out of 26,624 12%

Number of 4 input LUTs 4,494 out of 26,624 16%

Logic Distribution

Number of occupied Slices 4,174 out of 13,312 31%

Number of Slices containing only related logic 4,174 out of 4,174 100%

Number of Slices containing unrelated logic 0 out of 4,174 0%

Total Number of 4 input LUTs 5,893 out of 26,624 22%

Number used as logic 4,494

Number used as a route-thru 165

Number used for Dual Port RAMs 432

(Two LUTs used per Dual Port RAM)

Number used as 16x1 ROMs 432

Number used as Shift registers 370

Number of bonded IOBs 62 out of 487 12%

IOB Flip Flops 94

IOB Dual-Data Rate Flops 23

Number of Block RAMs 18 out of 32 56%

Number of MULT18X18s 15 out of 32 46%

Number of GCLKs 6 out of 8 75%

Number of DCMs 2 out of 4 50%

Number of BSCANs 1 out of 1 100%

Total equivalent gate count for design 1,394,323

Additional JTAG gate count for IOBs 2,976

Table 4. SoC design summary

8. Experimental results

The experiments consist of tracking predefined paths and analysing the displacement error.
The paths are drawn by hand in the MATLAB application and downloaded to the FPGA. Then
the control algorithm running on the board, calculates the steering command (curvature),
relays it to MATLAB, which in turn passes it to the robot. Conversely, the MATLAB
application receives odometric data from the robot which are then relayed to the FPGA.
Essentially, the MATLAB application acts as an intermediary between the board and the robot,
transforming commands and data to a suitable form for each party. Note also that the actual
odometry is being performed by MATLAB (estimation of the robot’s pose (x, y, θ) using the
data from the robot’s encoders). A key detail in the above process is that odometry provides
an estimation of the actual pose. Thus in order to analyse the efficacy of the tracking scheme,
we need to know the actual pose of the robot. Position detection of the robot is achieved using
a camera hanging above the robot’s activity terrain and utilizing a video tracking algorithm
which extracts the robot’s trajectory in post-processing. This algorithm tracks a red LED
placed at the center of the robot.
The video tracking algorithm uses the high contrast of the LED with its surrounding space.
Specifically, each video frame is transformed from the RGB color space to the generalized rgb

421Feedback Equivalence and Control of Mobile Robots Through a Scalable FPGA Architecture

www.intechopen.com

22 Will-be-set-by-IN-TECH

space. This space expresses the percentage of each color at each pixel, i.e.,

r =
R + G + B

R

g =
R + G + B

G

b =
R + G + B

B

(35)

It is the hyper-space of the so-called rg chromaticity space, which consists of the first two
equations. Following the transformation, in order to enhance the contrast, each image pixel is
raised to the 3rd power,

(r′, g′, b′)(u,v) = (r3, g3, b3)(u,v) (36)

The new image is then re-transformed according to the rgb transform, essentially computing
the color percentage of the percentage. Then, we apply a thresholding on the r channel,
producing a binary image. The threshold was empirically set to "0.6". This procedure
produces the "patch" of pixels corresponding to the red LED. The next step is, of course, to
calculate a single pixel value from this patch, and thus get the robot’s position. To this end,
we calculate the median (row, col) value of the patch’s pixels. This algorithm is applied to the
first video frame, and is rather slow since the image dimensions are large (1280×720 pixels).
In order to speed up the process, the algorithm processes an image region of interest in each
consecutive frame. This ROI is a 17×17 pixel square, centred at the point extracted from the
previous frame. The square dimensions are appropriate since the robot is not expected to have
moved far between frames. The precision of the algorithm is about ±2 pixels, translating to
2.4 mm.
Previous to all runs, the camera was calibrated using the Camera Calibration Toolbox by
J.Y. Bouguet, extracting the camera’s intrinsic and extrinsic parameters. Two runs were
performed; one tracking a straight line and one tracking a curved path (snapshots of the two
videos are seen in Fig. 12). For the first run, the reference, odometry and camera paths are
presented in Fig. 13(UP). The minimum distance versus the path length of the odometry and
the camera paths are shown in Fig.13(DOWN). Likewise, for the second experiment the results
are presented in Fig14.

Fig. 12. Snapshots of the first (LEFT) and the second (RIGHT) experiments. The red line is the
robot’s path calculated off-line from the video camera.

422 Recent Advances in Mobile Robotics

www.intechopen.com

Feedback Equivalence and Control of Mobile Robots Through a Scalable FPGA Architecture 23

Fig. 13. (UP) The odometry (blue), camera (red) and reference (dashed black) paths for the
first experiment. (DOWN) Minimum distance of the odometry and camera paths to the
reference path versus path length experiment.

Fig. 14. (UP) The odometry (blue), camera (red) and reference (dashed black) paths for the
second experiment. (DOWN) Minimum distance of the odometry and camera paths to the
reference path versus path length.

423Feedback Equivalence and Control of Mobile Robots Through a Scalable FPGA Architecture

www.intechopen.com

24 Will-be-set-by-IN-TECH

As one can see, the performance of the tracking scheme is satisfactory maintaining the
minimum distance to the reference path at about 50mm in the worst case. However, by taking
a closer look at Figures 13 and 14, it is clear that the performance degradation is attributed
not to the algorithm per se but to the odometry. The error accumulation of odometric data
forces the robot to diverge from the actual path. But the actual odometry solution is very
close to the reference path, meaning that based solely on odometry (as is the case in these
experiments), the tracker maintains the robot very close to the reference path (the minimum
distance is below 10mm in both cases). This implies that if a better localization technique is
used, our tracking scheme would perform with more accuracy.

9. Conclusions

In this chapter we have analysed and demonstrated the applicability of the strip-wise affine
transform in the path tracking task for mobile robots. The transformation was translated to
hardware and implemented into an FPGA chip with the use of VHDL and advanced EDA
software. The scalability of the fuzzy controller core allowed easy parameter adaptation of
the theoretic fuzzy tracker model. The experiments show that the tracking scheme performs
satisfactory but is degraded by the accumulation of errors of the odometry used in estimating
the robots position.

10. References

Abdessemed, F., Benmahammed, K. & Monacelli, E. (2004). A fuzzy-based reactive controller
for a non-holonomic mobile robot, Robotics and Autonomous Systems 47(1): 31–46.

Altafini, C. (1999). A Path-Tracking criterion for an LHD articulated vehicle, The International
Journal of Robotics Research 18(5): 435–441.

Altafini, C. (2002). Following a path of varying curvature as an output regulation problem,
Automatic Control, IEEE Transactions on 47(9): 1551–1556.

Antonelli, G., Chiaverini, S. & Fusco, G. (2007). A Fuzzy-Logic-Based approach for mobile
robot path tracking, Fuzzy Systems, IEEE Transactions on 15(2): 211–221.

Baltes, J. & Otte, R. (1999). A fuzzy logic controller for car-like mobile robots, Computational
Intelligence in Robotics and Automation, 1999. CIRA ’99. Proceedings. 1999 IEEE
International Symposium on, Monterey, CA , USA, pp. 89–94.

Cao, M. & Hall, E. L. (1998). Fuzzy logic control for an automated guided vehicle,
Intelligent Robots and Computer Vision XVII: Algorithms, Techniques, and Active Vision
3522(1): 303–312.

Costa, A., Gloria, A. D., Giudici, F. & Olivieri, M. (1997). Fuzzy logic microcontroller, IEEE
Micro 17(1): 66–74.

Deliparaschos, K. M., Nenedakis, F. I. & Tzafestas, S. G. (2006). Design and implementation of
a fast digital fuzzy logic controller using FPGA technology, Journal of Intelligent and
Robotics Systems 45(1): 77–96.

Deliparaschos, K. M. & Tzafestas, S. G. (2006). A parameterized T-S digital fuzzy logic
processor: soft core VLSI design and FPGA implementation, International Journal of
Factory Automation, Robotics and Soft Computing 3: 7–15.

Deliparaschos, K., Moustris, G. & Tzafestas, S. (2007). Autonomous SoC for fuzzy robot path
tracking, Proceedings of the European Control Conference 2007, Kos, Greece.

424 Recent Advances in Mobile Robotics

www.intechopen.com

Feedback Equivalence and Control of Mobile Robots Through a Scalable FPGA Architecture 25

Egerstedt, M., Hu, X. & Stotsky, A. (1998). Control of a car-like robot using a dynamic model,
Robotics and Automation, 1998. Proceedings. 1998 IEEE International Conference on, Vol. 4,
pp. 3273–3278 vol.4.

El Hajjaji, A. & Bentalba, S. (2003). Fuzzy path tracking control for automatic steering of
vehicles, Robotics and Autonomous Systems 43(4): 203–213.

Fortuna, L., Presti, M. L., Vinci, C. & Cucuccio, A. (2003). Recent trends in fuzzy control
of electrical drives: an industry point of view, Proceedings of the 2003 International
Symposium on Circuits and Systems, Vol. 3, pp. 459–461.

Gardner, R. B. & Shadwick, W. F. (1987). Feedback equivalence of control systems, Systems &
Control Letters 8(5): 463–465.

Gardner, R. B. & Shadwick, W. F. (1990). Feedback equivalence for general control systems,
Systems & Control Letters 15(1): 15–23.

Groff, R. E. (2003). Piecewise Linear Homeomorphisms for Approximation of Invertible Maps, PhD
thesis, The University of Michigan.

Gupta, H. & Wenger, R. (1997). Constructing piecewise linear homeomorphisms of simple
polygons, J. Algorithms 22(1): 142–157.

Hung, D. L. (1995). Dedicated digital fuzzy hardware, IEEE Micro 15(4): 31–39.
Jiangzhou, L., Sekhavat, S. & Laugier, C. (1999). Fuzzy variable-structure control

for nonholonomic vehicle path tracking, Intelligent Transportation Systems, 1999.
Proceedings. 1999 IEEE/IEEJ/JSAI International Conference on, pp. 465–470.

Kamga, A. & Rachid, A. (1997). A simple path tracking controller for car-like mobile robots,
ECC97 Proc.

Kanayama, Y. & Fahroo, F. (1997). A new line tracking method for nonholonomic vehicles,
Robotics and Automation, 1997. Proceedings., 1997 IEEE International Conference on,
Vol. 4, pp. 2908–2913 vol.4.

Koh, K. & Cho, H. (1994). A path tracking control system for autonomous mobile robots: an
experimental investigation, Mechatronics 4(8): 799–820.

Kongmunvattana, A. & Chongstivatana, P. (1998). A FPGA-based behavioral control system
for a mobile robot, Circuits and Systems, 1998. IEEE APCCAS 1998. The 1998 IEEE
Asia-Pacific Conference on, pp. 759–762.

Kumar, S. (1995). A unified representation for hardware/software codesign, PhD thesis, University
of Virginia. UMI Order No. GAX96-00485.

Lee, T., Lam, H., Leung, F. & Tam, P. (2003). A practical fuzzy logic controller for the path
tracking of wheeled mobile robots, Control Systems Magazine, IEEE 23(2): 60– 65.

Leong, P. & Tsoi, K. (2005). Field programmable gate array technology for robotics
applications, Robotics and Biomimetics (ROBIO). 2005 IEEE International Conference on,
pp. 295–298.

Li, T., Chang, S. & Chen, Y. (2003). Implementation of human-like driving skills by
autonomous fuzzy behavior control on an FPGA-based car-like mobile robot,
Industrial Electronics, IEEE Transactions on 50(5): 867– 880.

Liu, K. & Lewis, F. (1994). Fuzzy logic-based navigation controller for an autonomous mobile
robot, Systems, Man, and Cybernetics, 1994. ’Humans, Information and Technology’., 1994
IEEE International Conference on, Vol. 2, pp. 1782–1789 vol.2.

Maalouf, E., Saad, M. & Saliah, H. (2006). A higher level path tracking controller for
a four-wheel differentially steered mobile robot, Robotics and Autonomous Systems
54(1): 23–33.

425Feedback Equivalence and Control of Mobile Robots Through a Scalable FPGA Architecture

www.intechopen.com

26 Will-be-set-by-IN-TECH

Moustris, G. P. & Tzafestas, S. G. (2011). Switching fuzzy tracking control for mobile robots
under curvature constraints, Control Engineering Practice 19(1): 45–53.

Moustris, G. & Tzafestas, S. (2005). A robust fuzzy logic path tracker for non-holonomic
mobile robots., International Journal on Artificial Intelligence Tools 14(6): 935–966.

Moustris, G. & Tzafestas, S. (2008). Reducing a class of polygonal path tracking to straight line
tracking via nonlinear strip-wise affine transformation, Mathematics and Computers in
Simulation 79(2): 133–148.

Navabi, Z. (1998). VHDL: analysis and modeling of digital systems, McGraw-Hill Professional.
Ollero, A., Garcia-Cerezo, A., Martinez, J. L. & Mandow, A. (1997). Fuzzy tracking methods

for mobile robots, in M. Jamshidi, A. Titli, L. Zadeh & S. Boverie (eds), Applications
of fuzzy logic: Towards high machine intelligence quotient systems, Prentice-Hall, New
Jersey.

Patterson, D. A. & Hennessy, J. L. (1997). Computer Organization and Design: The
Hardware/Software Interface, 2 edn, Morgan Kaufmann.

Preparata, F. P. & Supowit, K. J. (1981). Testing a simple polygon for monotonicity, Info. Proc.
Lett. 12(4): 161–164.

Raimondi, F. & Ciancimino, L. (2008). Intelligent neuro-fuzzy dynamic path following for
car-like vehicle, Advanced Motion Control, 2008. AMC ’08. 10th IEEE International
Workshop on, pp. 744–750.

Reynolds, R., Smith, P., Bell, L. & Keller, H. (2001). The design of mars lander cameras
for mars pathfinder, mars surveyor ’98 and mars surveyor ’01, Instrumentation and
Measurement, IEEE Transactions on 50(1): 63–71.

Rodriguez-Castano, A., Heredia, G. & Ollero, A. (2000). Fuzzy path tracking and position
estimation of autonomous vehicles using differential GPS, Mathware Soft Comput
7(3): 257–264.

Rozenblit, J. & Buchenrieder, K. (1996). Codesign: Computer-aided Software/Hardware
Engineering, I.E.E.E.Press.

Sailer, P. M., Sailer, P. M. & Kaeli, D. R. (1996). The DLX Instruction Set Architecture Handbook,
1st edn, Morgan Kaufmann Publishers Inc.

Salapura, V. (2000). A fuzzy RISC processor, IEEE Transactions on Fuzzy Systems 8(6): 781–790.
Samson, C. (1995). Control of chained systems application to path following and time-varying

point-stabilization of mobile robots, Automatic Control, IEEE Transactions on
40(1): 64–77.

Sanchez, O., Ollero, A. & Heredia, G. (1997). Adaptive fuzzy control for automatic path
tracking of outdoor mobile robots. application to romeo 3R, Fuzzy Systems, 1997.,
Proceedings of the Sixth IEEE International Conference on, Vol. 1, pp. 593–599 vol.1.

Wit, J., Crane, C. D. & Armstrong, D. (2004). Autonomous ground vehicle path tracking, J.
Robot. Syst. 21(8): 439–449.

Yang, X., He, K., Guo, M. & Zhang, B. (1998). An intelligent predictive control approach to
path tracking problem of autonomous mobile robot, Systems, Man, and Cybernetics,
1998. 1998 IEEE International Conference on, Vol. 4, pp. 3301–3306 vol.4.

426 Recent Advances in Mobile Robotics

www.intechopen.com

Recent Advances in Mobile Robotics

Edited by Dr. Andon Topalov

ISBN 978-953-307-909-7

Hard cover, 452 pages

Publisher InTech

Published online 14, December, 2011

Published in print edition December, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Mobile robots are the focus of a great deal of current research in robotics. Mobile robotics is a young,

multidisciplinary field involving knowledge from many areas, including electrical, electronic and mechanical

engineering, computer, cognitive and social sciences. Being engaged in the design of automated systems, it

lies at the intersection of artificial intelligence, computational vision, and robotics. Thanks to the numerous

researchers sharing their goals, visions and results within the community, mobile robotics is becoming a very

rich and stimulating area. The book Recent Advances in Mobile Robotics addresses the topic by integrating

contributions from many researchers around the globe. It emphasizes the computational methods of

programming mobile robots, rather than the methods of constructing the hardware. Its content reflects

different complementary aspects of theory and practice, which have recently taken place. We believe that it will

serve as a valuable handbook to those who work in research and development of mobile robots.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

G.P. Moustris, K.M. Deliparaschos and S.G. Tzafestas (2011). Feedback Equivalence and Control of Mobile

Robots Through a Scalable FPGA Architecture, Recent Advances in Mobile Robotics, Dr. Andon Topalov (Ed.),

ISBN: 978-953-307-909-7, InTech, Available from: http://www.intechopen.com/books/recent-advances-in-

mobile-robotics/feedback-equivalence-and-control-of-mobile-robots-through-a-scalable-fpga-architecture

© 2011 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

