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LQR Control Methods for Trajectory Execution in
Omnidirectional Mobile Robots

Luis F. Lupián and Josué R. Rabadán-Martin
Mobile Robotics & Automated Systems Lab, Universidad La Salle

Mexico

1. Introduction

Omnidirectional mobile robots present the advantage of being able to move in any direction
without having to rotate around the vertical axis first. While simple straight-line paths
are relatively easy to achieve on this kind of robots, in many highly dynamic applications
straight-line paths might just not be a feasible solution. This may be the case because of
two main reasons: (1) there may be static and moving obstacles between the initial and
desired final position of the robot, and (2) the dynamic effects of the inertia of the robot
may force it to execute a curved path. This chapter will address these two situations and
present a segment-wise optimal solution for the path execution problem which is based on a
Linear-Quadratic Regulator.
It must be emphasized that, rather than attempting to perform an exact path tracking, the
approach presented here deals with the problem of visiting a sequence of target circular
regions without specifying the path that will connect them. The freedom given to the
connecting paths brings the opportunity for optimization. In fact, the path that the robot
will take from one circular region to the next will emerge as the solution of an optimal control
problem, hence the term segment-wise optimal solution.
Omnidirectional wheels have the property of sliding laterally with almost zero force while
providing full traction in the rolling direction. This effect is achieved by adding a set of smaller
wheels around the periphery of the main wheel, as depicted in Fig. 1.

Fig. 1. Omnidirectional wheel
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2 Will-be-set-by-IN-TECH

By using several omnidirectional wheels distributed around the periphery of a cylindrical
robot one can achieve the effect of driving the robot in a direction dependent on a vector sum
of forces. This idea is illustrated in Fig. 2. The forces applied at the wheels by the motors give
translational and rotational movement to the mobile robot.

Fig. 2. Omnidirectional drive

Omnidirectional movement on a mobile robot has many applications, and thus has received
attention from the scientific community over several years. Borenstein and Evans developed
a control strategy that allows trajectory control on a mobile robot that uses conventional
non-omnidirectional wheels and thus requires the drive wheels to rotate with respect to the
vertical axis (Borenstein & Evans, 1997). With regard to omnidirectional mobile robots based
on omnidirectional wheels there are several works that deserve attention. Ashmore and
Barnes presented a detailed analysis of the kinematics of this kind of mobile robots and show
that under certain circumstances a curved path may be faster than the straight line between
two points (Ashmore & Barnes, 2002). Balkcom et al. characterized time-optimal trajectories
for omnidirectional mobile robots (Balkcom et al., 2006a;b). Kalmár-Nagy et al. developed
a control method to generate minimum-time trajectories for omnidirectional mobile robots
(Kalmár-Nagy et al., 2004; 2002), then Purwin and D’Andrea presented the results of applying
this method to a RoboCup F180 omnidirectional mobile robot (Purwin & D’Andrea, 2005).
Section 2 deals with the first necessary step towards applying LQR control for trajectory
execution, which is formulating a state-space model for the dynamics of the omnidirectional
mobile robot (Lupián & Rabadán-Martin, 2009).
This state-space model is non linear with respect to the control due to the fact that the robot
rotates around the vertical axis and the pan angle is one of the state variables. In Sec. 3 of
this chapter we show how to overcome this problem to successfully apply a Linear Quadratic
Regulator for the case of three, four and five-wheeled omnidirectional mobile robots. In Sec.
4 we present a method to generate a segment-wise optimal path by solving an LQR control
problem for each segment between the initial state through a sequence of target regions that
ends at the desired final state of the omnidirectional mobile robot. Finally, Sec. 5 presents the
results of several simulation experiments that apply the methods described in this chapter.
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LQR Control Methods for Trajectory Execution in Omnidirectional Mobile Robots 3

2. State-space dynamic model

The analysis presented pertains to a specific class of omnidirectional mobile robots that are of
cylindrical shape with n omnidirectional wheels distributed around the periphery of the body
of the robot, with the axes of the wheels intersecting at the geometrical vertical axis of the
robot. Figure 3 shows an instance of this class of omnidirectional mobile robots for the case of
n = 5 omnidirectional wheels. It is not necessary to have a uniform distribution of the wheels
around the periphery of the robot. That is, the angle that separates the axis of one wheel to
the next does not need to be the same. However, there is an obvious restriction that must be
met in order to maintain stability, which is that the projection of the center of mass of the robot
onto the ground must be contained within the convex hull of the set of contact points of the n
wheels with the ground. For simplicity of the analysis, the mass of the robot is assumed to be
distributed uniformly, so the center of mass is contained within the geometrical vertical axis
of the robot.

Fig. 3. Omnidirectional robot

In the literature, there are several proposals for the dynamic model of an omnidirectional
mobile robot. One of the main problems with these models is that they do not provide a
complete state-space representation, so it is not possible to perform state-space control by
using one of them. Most of these proposals are based on the force coupling matrix (Gloye &
Rojas, 2006), which provides a direct relationship between the torques applied by the driving
motors and the accelerations in the x, y and angular directions.
In compact form, these equations may be written as follows

a =
1

M
(F1 + F2 + · · ·+ Fn)

ω̇ =
R

I
( f1 + f2 + · · ·+ fn)

(1)

where a is the acceleration of the robot with respect to the inertial reference, ω̇ is the angular
acceleration, n is the number of omnidirectional wheels around the periphery of the robot, Fi

is the vector force applied by motor i, fi is the signed scalar value of Fi (positive for counter
clock-wise rotation), M is the mass of the robot, R is its radius and I is its moment of inertia.
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4 Will-be-set-by-IN-TECH

Taking into account the driving motor distribution shown in Fig. 4, Eq. 1 may be re-written as

Max = − f1 sin θ1 − f2 sin θ2 − · · · − fn sin θn

May = f1 cos θ1 + f2 cos θ2 + · · ·+ fn cos θn

MRω̇ =
1

α
( f1 + f2 + · · ·+ fn)

(2)

where x and y are the axes of the inertial frame of reference, ax is the x component of the
acceleration, ay is the y component of the acceleration, α is such that I = αMR2, and θi is the
angular position of driving motor i with respect to the robot’s referential frame as shown in
Fig. 4. Equation 2 is expressed in matrix form as

⎡

⎣

ax

ay

Rω̇

⎤

⎦ =
1

M

⎡

⎣

− sin θ1 − sin θ2 · · · − sin θn

cos θ1 cos θ2 · · · cos θn
MR

I
MR

I · · ·
MR

I

⎤

⎦

⎡

⎢

⎢

⎢

⎣

f1

f2
...
fn

⎤

⎥

⎥

⎥

⎦

(3)

Fig. 4. Driving motor distribution

Equation 3 gives a general idea about the dynamic behavior of the mobile robot. However,
it can not be considered a complete state-space model since it does not deal with the inertial
effects of the mass of the robot, so we define a state vector that is complete enough to describe
the dynamic behavior of the mobile robot (Lupián & Rabadán-Martin, 2009). We define the
state vector z as

z =
[

x y β ẋ ẏ β̇ µ1 · · · µn
]T

(4)

where (x, y) is the position of the robot with respect to the inertial reference, (ẋ, ẏ) is the
vector velocity of the robot with respect to the field plane, β is the angular position and β̇ is
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LQR Control Methods for Trajectory Execution in Omnidirectional Mobile Robots 5

the angular velocity. Those are the six state variables we are interested in controlling, so it
would suffice to use them to describe the state of the robot.
However, for simulation purposes we introduce variables µi, which correspond to the angular
positions of each of the omnidirectional wheels of the robot. The decision to include these
state variables was initially motivated by the fact that the dynamic response of the robot
would be simulated on a virtual environment developed in OpenGL, and the motion of the
wheels would make this simulation more realistic. On the physical robot, however, these
state-variables will have a more important role because, unlike the other six state variables,
the angular positions of the wheels can be measured directly through motor encoders, so one
can implement a state observer to estimate the remaining variables.
In order to express the state equations in a compact and clear form, the state vector will be
partitioned as follows:

z1 =
[

x y β ẋ ẏ β̇
]T

z11 =
[

x y β
]T

z12 =
[

ẋ ẏ β̇
]T

z2 =
[

µ1 ... µn
]T

(5)

In terms of z1 y z2 the state vector z can be expressed as

z =

[

z1

z2

]

(6)

and the state-space model becomes

[

ż1

ż2

]

=

[

A11 A12

A21 A22

] [

z1

z2

]

+

[

B1

B2

]

u (7)

where u is the control vector composed of the scalar forces fi divided by the mass of the robot

u =
1

M

⎡

⎢

⎢

⎢

⎣

f1

f2
...
fn

⎤

⎥

⎥

⎥

⎦

, (8)

and the matrices are defined as follows. Matrix A11 simply expresses the relationships among
the first six state variables, and is given by

A11 =

[

03×3 I3×3

03×3 03×3

]

(9)

Matrix B1 is obtained from Eq. 3 and becomes

B1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 · · · 0
0 0 · · · 0
0 0 · · · 0

− sin θ1 − sin θ2 · · · − sin θn

cos θ1 cos θ2 · · · cos θn
MR

I
MR

I · · ·
MR

I

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(10)
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Matrix B1 expresses the correct influence of each force over the respective acceleration only
for the case in which the angular position β of the robot is zero. However, in order to take into
account the fact that the robot will rotate as time goes by this matrix should also depend on β
as follows

B1(β) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 · · · 0
0 0 · · · 0
0 0 · · · 0

− sin (θ1 + β) − sin (θ2 + β) · · · − sin (θn + β)
cos (θ1 + β) cos (θ2 + β) · · · cos (θn + β)

MR
I

MR
I · · ·

MR
I

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

B1(β) =

[

03×n

B12(β)

]

(11)

A12 and A22 are zero matrices of size 6 × n and n × n respectively. Matrix A21 expresses the
angular motion of the wheels with respect to the motion of the mobile robot and, like B1, it is
dependent on the angular position β of the robot:

A21(β) =
1

r

[

0n×3 A212(β)
]

A212(β) =
1

r

⎡

⎢

⎢

⎢

⎣

sin (θ1 + β) − cos (θ1 + β) −R
sin (θ2 + β) − cos (θ2 + β) −R

...
...

...
sin (θn + β) − cos (θn + β) −R

⎤

⎥

⎥

⎥

⎦

(12)

where r is the radius of the omnidirectional wheels.
Taking into account that both A21 and B1 depend on β the state model in Eq. 7 may be
reformulated as

[

ż1

ż2

]

=

[

A11 06×n

A21(β) 0n×n

] [

z1

z2

]

+

[

B1(β)
0n×n

]

u (13)

3. Global linearization of the state-space dynamic model

Since the angular position β is one of the state variables this implies that the model in Eq. 13 is
non-linear, and that represents an important difficulty for the purpose of controlling the robot.
This is why it became necessary to find a way to linearize the model.
The solution to this problem required a shift in perspective in relation to the model. The
only reason why the angle β has a non-linear effect on the dynamics of state variables in z1 is
because as the robot rotates also the driving forces, which are the control variables, rotate.
Let F = F1 + F2 + . . . + Fn be the resulting vector force applied by the omnidirectional wheels
to the robot when it is at the angular position β and the control vector is u. Let ǔ be the control
vector that will produce the same resulting vector force F when the robot is at the angular
position β = 0. This idea is explained by Fig. 5.
The control vectors u and ǔ are then related by

[

sin (θ1) · · · sin (θn)
]

ǔ =
[

sin (θ1 + β) · · · sin (θn + β)
]

u
[

cos (θ1) · · · cos (θn)
]

ǔ =
[

cos (θ1 + β) · · · cos (θn + β)
]

u
(14)
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Fig. 5. Change of variable in control vector

Moreover, in order to ensure that the angular acceleration will remain unchanged it is
necessary that the resulting scalar force f = f1 + f2 + . . . + fn is the same in both cases, which
translates to

n

∑
i=1

ǔi =
n

∑
i=1

ui (15)

What we need from Eqs. 14 and 15 is a one-to-one mapping that can take us from u to
ǔ back and forth. Since u is n-dimensional and we have three equations the system is
under-determined whenever n > 3. Although the pseudo-inverse would provide a linear
transformation from one domain to the other, this transformation would be rank-deficient
and thus would not be one-to-one. Our solution requires then to add n − 3 complementary
equations. In order to avoid unnecessary numerical problems, these equations should be
chosen so that the linear transformation is well-conditioned for any value of the angle β.

3.1 Transformation matrix for n = 3
The simplest case comes when the number of omnidirectional wheels of the robot is n = 3, see
Fig. 6. For this particular case the number of equations provided by Eqs. 14 and 15 is equal to
the number of control variables, so there is no need for additional equations to complete the
transformation.

Fig. 6. Omnidirectional drive for n = 3
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Equations 14 and 15 can be written in matrix form as follows

⎡

⎢

⎣

sin (θ1) sin (θ2) sin (θ3)

cos (θ1) cos (θ2) cos (θ3)

1 1 1

⎤

⎥

⎦
ǔ =

⎡

⎢

⎣

sin (θ1 + β) sin (θ2 + β) sin (θ3 + β)

cos (θ1 + β) cos (θ2 + β) cos (θ3 + β)

1 1 1

⎤

⎥

⎦
u (16)

We can then define the transformation matrix Ω3(β) according to

Ω3(β) =

⎡

⎢

⎣

sin (θ1) sin (θ2) sin (θ3)

cos (θ1) cos (θ2) cos (θ3)

1 1 1

⎤

⎥

⎦

−1 ⎡

⎢

⎣

sin (θ1 + β) sin (θ2 + β) sin (θ3 + β)

cos (θ1 + β) cos (θ2 + β) cos (θ3 + β)

1 1 1

⎤

⎥

⎦
(17)

3.2 Transformation matrix for n = 4
For the particular case of n = 4 (Fig. 7), it is easy to see that Eq. 18 satisfies the requirement of
completing a well-conditioned 4 × 4 transformation since it is orthogonal to two of the other
equations and still sufficiently linearly independent from the third one.

[

1 −1 1 −1
]

ǔ =
[

1 −1 1 −1
]

u (18)

Fig. 7. Omnidirectional drive for n = 4

Equations 14, 15 and 18 can be put in matrix form as follows

⎡

⎢

⎢

⎢

⎢

⎣

sin (θ1) sin (θ2) sin (θ3) sin (θ4)

cos (θ1) cos (θ2) cos (θ3) cos (θ4)

1 1 1 1

1 −1 1 −1

⎤

⎥

⎥

⎥

⎥

⎦

ǔ =

⎡

⎢

⎢

⎢

⎢

⎣

sin (θ1 + β) sin (θ2 + β) sin (θ3 + β) sin (θ4 + β)

cos (θ1 + β) cos (θ2 + β) cos (θ3 + β) cos (θ4 + β)

1 1 1 1

1 −1 1 −1

⎤

⎥

⎥

⎥

⎥

⎦

u (19)
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We can then define the transformation matrix Ω4(β) according to

Ω4(β) =

⎡

⎢

⎢

⎣

sin (θ1) sin (θ2) sin (θ3) sin (θ4)
cos (θ1) cos (θ2) cos (θ3) cos (θ4)

1 1 1 1
1 −1 1 −1

⎤

⎥

⎥

⎦

−1

⎡

⎢

⎢

⎣

sin (θ1 + β) sin (θ2 + β) sin (θ3 + β) sin (θ4 + β)
cos (θ1 + β) cos (θ2 + β) cos (θ3 + β) cos (θ4 + β)

1 1 1 1
1 −1 1 −1

⎤

⎥

⎥

⎦

(20)

3.3 Transformation matrix for n = 5
For the particular case of n = 5, shown in Fig. 8, an adequate choice for the complementary
equations is shown in Eqs. 21.

[

1 −1 0 1 −1
]

ǔ =
[

1 −1 0 1 −1
]

u
[

1 −1 0 −1 1
]

ǔ =
[

1 −1 0 −1 1
]

u
(21)

Fig. 8. Omnidirectional drive for n = 5

Equations 14, 15 and 21 can be put in matrix form as follows

⎡

⎢

⎢

⎢

⎢

⎣

sin (θ1) sin (θ2) sin (θ3) sin (θ4) sin (θ5)
cos (θ1) cos (θ2) cos (θ3) cos (θ4) cos (θ5)

1 1 1 1 1
1 −1 0 1 −1
1 −1 0 −1 1

⎤

⎥

⎥

⎥

⎥

⎦

ǔ =

⎡

⎢

⎢

⎢

⎢

⎣

sin (θ1 + β) sin (θ2 + β) sin (θ3 + β) sin (θ4 + β) sin (θ5 + β)
cos (θ1 + β) cos (θ2 + β) cos (θ3 + β) cos (θ4 + β) cos (θ5 + β)

1 1 1 1 1
1 −1 0 1 −1
1 −1 0 −1 1

⎤

⎥

⎥

⎥

⎥

⎦

u (22)
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We can then define the transformation matrix Ω5(β) according to

Ω5(β) =

⎡

⎢

⎢

⎢

⎢

⎣

sin (θ1) sin (θ2) sin (θ3) sin (θ4) sin (θ5)
cos (θ1) cos (θ2) cos (θ3) cos (θ4) cos (θ5)

1 1 1 1 1
1 −1 0 1 −1
1 −1 0 −1 1

⎤

⎥

⎥

⎥

⎥

⎦

−1

⎡

⎢

⎢

⎢

⎢

⎣

sin (θ1 + β) sin (θ2 + β) sin (θ3 + β) sin (θ4 + β) sin (θ5 + β)
cos (θ1 + β) cos (θ2 + β) cos (θ3 + β) cos (θ4 + β) cos (θ5 + β)

1 1 1 1 1
1 −1 0 1 −1
1 −1 0 −1 1

⎤

⎥

⎥

⎥

⎥

⎦

(23)

Further generalization is possible by taking into account that the set of n − 3 complementary
equations must be chosen such that the transformation matrix is full rank and of minimum
condition number.

3.4 Global linearization using the transformation matrix Ωn(β)
The change of variable from u to ǔ for any number of wheels n can now be expressed as

ǔ = Ωn(β)u

u = Ωn(β)−1ǔ
(24)

Matrix Ωn(β) has the property of canceling the non-linear effect of β on matrix B1(β) since
B1(0) = B1(β)Ωn(β)−1 hence the model can be linearized at least with respect to the state
variables in z1, which are in fact the only variables we need to control. It is important to note
that this is not a local linearization but a global one, so it is equally accurate in all of the control
space.
By applying this change of variable to the state-space model of Eq. 13 we obtain the following
model

[

ż1

ż2

]

=

[

A11 06×n

A21(β) 0n×n

] [

z1

z2

]

+

[

B1(β)
0n×n

]

Ωn(β)−1ǔ

[

ż1

ż2

]

=

[

A11 06×n

A21(β) 0n×n

] [

z1

z2

]

+

[

B1(β)Ωn(β)−1

0n×nΩn(β)−1

]

ǔ

[

ż1

ż2

]

=

[

A11 06×n

A21(β) 0n×n

] [

z1

z2

]

+

[

B1(0)
0n×n

]

ǔ

(25)

If we separate this model according to the state vector partition proposed in Eq. 5 it is easy
to see that the transformed model is linear with respect to state variables in z1 and control
variables ǔ

ż1 = A11z1 + B1(0)ǔ

ż2 = A21(β)z1
(26)

From the state-space model in Eq. 26 it is possible to formulate a wide variety of linear
state-space controllers for state variables in z1.
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4. Segment-wise optimal trajectory control

Our solution to the trajectory execution control problem requires the specification of the
desired trajectory as a sequence of target regions as shown in Fig. 9. Each of the target regions
is depicted as a red circle. This figure shows the robot in its initial state near the top left
corner. The robot will have to visit each of the target regions in sequence until it reaches the
final target which contains the red ball near the bottom right corner. As soon as the center
of the robot enters the current target region it will start moving towards the next one. In this
way, the trajectory is segmented by the target regions. The desired precision of the trajectory
is determined by the size of the next target region. A small target requires higher precision
than a larger one. Each target region makes additional specifications for the desired final state
of the robot as it reaches the target. These specifications include the desired final scalar speed
and the desired final heading direction. This last specification is useful for highly dynamic
applications, such as playing soccer, since it allows the robot to rotate as it moves along the
trajectory in order to align its manipulating device with the location of the target (a ball in the
case of soccer).

Fig. 9. Sequence of target regions

Each of the segments of the trajectory can be treated as a different control problem in which
the final state of the previous segment is the initial state of the current one. Each segment
has its own desired final state and in this way the mobile robot is forced to loosely follow the
specified trajectory.
Once the trajectory has been segmented by this sequence of target regions the problem
becomes how to force the robot to move from one target to the next. Our proposal is to solve an
infinite-horizon LQR control problem for each of the segments. Although this approach may
provide a sub-optimal solution rather than the optimal solution, that would be obtained from
the corresponding finite-horizon LQR problem formulation, it has the advantage of requiring
the solution of an algebraic Riccati equation rather than the more computationally demanding

395LQR Control Methods for Trajectory Execution in Omnidirectional Mobile Robots
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differential Riccati equation. Computational efficiency is of course an important concern in
this application since the solution will have to be obtained in real time in a high speed mobile
robot environment.
The infinite-horizon LQR control problem consists on finding the state-feedback matrix K such
that ǔ = −Kz1 minimizes the performance index J given by

J =
∫ ∞

0
(z1

TQz1 + ǔTRǔ)dt (27)

taking into account that z1 and ǔ are restricted by the dynamics of the mobile robot given by
Eq. 26.
The performance index J specifies the total cost of the control strategy, which depends on an
integral quadratic measure of the state z1 and control ǔ. Q and R represent positive definite
matrices that give a weighted measure of the cost of each state variable and control variable,
respectively.
For simplicity, in our solution Q and R are defined to be diagonal matrices

Q =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

wxy 0 0 0 0 0
0 wxy 0 0 0 0
0 0 wβ 0 0 0

0 0 0 wv 0 0
0 0 0 0 wv 0
0 0 0 0 0 wβ̇

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

R = wm In×n

(28)

where

• wxy : cost weight of the XY position of the robot

• wv : cost weight of the XY speed of the robot

• wβ : cost weight of the angular position of the robot

• wβ̇ : cost weight of the angular speed of the robot

• wm : cost weight of the torque of the driving motors

This set of cost weights has to be specified for each of the segments of the trajectory. The
weights specify the relative cost of each variable, and by an appropriate choice of their values
one can easily adjust the optimality index for different control strategies. For example, if wm

is very large in comparison to the other weights then our strategy will be to save energy, if
wxy is large in comparison to the rest then the strategy dictates that the robot should reach
the target region as soon as possible without regard to a specific target final speed, angle β or
energy consumption. It would make sense to keep wβ very low during most of the trajectory
except for those segments in which the robot is approaching the final target region or, in the
case of soccer applications, orienting itself to receive a pass from a teammate robot.
The LQR approach is much more natural from the point of view of the designer as compared
to other linear state-feedback controller design techniques such as pole placement. Although
pole placement may help in specifying a desired time-domain transient behavior, the resulting
feedback control may turn out to be higher than what the actuators can actually achieve. In
LQR, on the other hand, the solution strikes a balance between the transient behavior of the
state variables and the energy consumed by the actuators. In the case of LQR the resulting
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poles are implicitly determined by the choice of matrices Q and R, rather than being explicitly
specified.
Our segment-wise optimal solution to the trajectory execution control problem allows then to
formulate control strategies that can easily adapt to the circumstances of the application. So,
for example, the robot may be forced to move quickly in segments of the trajectory that do not
require precision, and it may be left free to rotate in those segments in which its orientation is
not of concern. In this way, its limited energy is consumed only for those objectives that are
important at the moment.

5. Experimental results

A benchmark sequence of target regions was used for the purpose of testing our proposed
solution. This sequence is shown in Fig. 9, and has a total of nine segments. Several obstacles
were placed on the testing field to give more realism to the 3D OpenGL simulation of the
resulting trajectory. A four wheel omnidirectional robot was used for this simulation with
wheels distributed around its periphery according to Table 1. Wheels 1 and 4 are the frontal
wheels. They are intentionally separated wider apart than the rest in order to allow for a
manipulating device to be installed between them.

Table 1. Omnidirectional wheels distribution

θ1 θ2 θ3 θ4

60◦ 135◦ −135◦ −60◦

The specific optimality-index parameters used for each of the segments of the trajectory are
shown in Table 2. Throughout the whole trajectory, parameter wm is kept at a moderate
value in order to conserve energy without degrading the time-domain performance too much.
Parameter wβ is kept at a low value for all segments except for the final two. This saves the
energy that would otherwise be required to maintain the orientation of the robot towards a
specific angle in the first seven segments where that would not be of interest, but then forces
the robot to align itself with the location of the final target region in order to capture the object
of interest located at the center of such region. Parameter wβ̇ is kept at a low value throughout

the whole trajectory. Parameter wxy is set to a high value in segments 2, 3, 4, 5 and 9. The first
four of these segments correspond to the part of the trajectory that takes the robot through
the narrow opening in the obstacle barrier, where high precision is required in order to avoid
a collision. High precision is also desirable in the last segment to ensure a successful capture
of the object of interest. Finally, parameter wv is given a moderate value throughout the first
seven segments of the trajectory and then is lowered in the last two segments in order to allow
for the energy to be used for the more important objective of orienting the robot towards the
final target region. In this analysis what matters is the relative value of the weights. However,
in order to give a more precise idea, in this analysis moderate means 1, low means 0.1 and high
means 5.
The resulting trajectory is shown in Fig. 10. The continuous black line shows the path of the
robot, while the smaller black straight lines show the orientation of the robot at each point.
This gives an idea of how the robot rotates as it moves along the trajectory. One surprising
result of this simulation experiment is that the robot started the second segment almost in
reverse direction and slowly rotated to approach a forward heading motion. The final section
of the trajectory shows how the object of interest gets captured by the robot. Figure 11 shows
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Par. 1 2 3 4 5 6 7 8 9

wxy 1 5 5 5 5 1 1 1 5
wv 1 1 1 1 1 1 1 0.1 0.1
wβ 0.1 0.1 0.1 0.1 0.1 0.1 1 5 5

wβ̇ 1 0.1 0.1 0.1 0.1 1 0.1 0.1 0.1

wm 1 1 1 1 1 1 1 1 1

Table 2. Optimality index parameters for each segment

Fig. 10. Simulation of the segment-wise optimal trajectory execution

how the speeds and torques of each driving motor evolve against time. From these graphs
we can interpret that there are only two required high energy transients. The first one comes
at the initial time, when the robot must accelerate from a motionless state. The second high
energy transient comes at the transition from the first to the second segment, where the robot
must abruptly change direction while moving at a relatively high speed.

Fig. 11. Speed and torque vs. time for each wheel

A second experiment that we performed to test the segment-wise optimal solution to
the trajectory execution problem is that of performing an 8-shaped trajectory, which was
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successfully executed as shown in Fig. 12. Although the resulting 8 is not perfectly smooth the
advantage here is that the path is achieved without the need for a computationally intensive
path tracking algorithm but rather only loosely specified by a small set of target regions.

Fig. 12. Simulation of the segment-wise optimal 8-shaped trajectory

6. Conclusion

This work presents the formulation of a complete state-space model for the omnidirectional
mobile robot. Although the model is nonlinear with respect to the control vector, it is shown
how it can be globally linearized by a change of variables on the control vector. It has been
shown how to apply this linearization for the case of n = 3, n = 4 and n = 5 omnidirectional
wheels. The distinction among number of wheels is far from trivial since there is the need
of introducing complementary equations that will make the proposed change of variable
invertible.
The model used for analysis in this paper assumes an idealized omnidirectional robot with
uniform density. Nonetheless, the same fundamental ideas that were tested under simulation
in this work would still apply for a real robot.
There are still two major considerations to take into account before our proposed control
method can be applied in the real world. First, our solution assumes availability of all state
variables in z1. However, in reality these state variables would have to be estimated from
the available measurements using an approach similar to that presented in (Lupián & Avila,
2008). These measurements would come from the encoders of the driving motors and from the
global vision system. The global vision system provides a measurement of variables x, y and
β, but this measurement comes with a significant delay due to the computational overhead, so
in actuality these variables would have to be predicted (Gloye et al., 2003). The second major
consideration is that this solution will be implemented on a digital processor so, rather than a
continuous-time model, the problem should be formulated in discrete-time.
The benchmark sequence of target regions used in the “Simulation results” section assumes
the environment is static. In a real highly dynamic application the sequence of target regions
will have to be updated as the trajectory execution progresses. This dynamic path-planning
problem would be the task of a higher-level artificial intelligence algorithm which is left open
for future research.
The first of the two simulation experiments can be better appreciated on the 3D OpenGL
animation developed for this purpose. The reader can access a video of this animation online
at (Lupián, 2009).
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