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1. Introduction 

The actions of autonomous mobile robots in stochastic medium imply certain intellectual 
behavior, which allows fulfilling the mission in spite of the environmental uncertainty and 
the robot’s influence on the characteristics of the medium. To provide such a behavior, the 
controllers of the robots are considered as probabilistic automata with decision-making and, 
in some cases, learning abilities. General studies in this direction began in the 1960s (Fu & 
Li, 1969; Tsetlin, 1973) and resulted in practical methods of on-line decision-making and 
navigation of mobile robots (Unsal, 1998; Kagan & Ben-Gal, 2008). 
Along with the indicated studies, in recent years, the methods of mobile robot’s navigation 
and control are considered in the framework of quantum computation (Nielsen & Chuang, 
2000), which gave rise to the concept of quantum mobile robot (Benioff, 1998; Dong, et al., 
2006). Such approach allowed including both an environmental influence on the robot’s 
actions and the changes of the environment by the robot by the use of the same model, and 
the ability to apply the methods of quantum communication and decision-making (Levitin, 
1969; Helstrom, 1976; Davies, 1978; Holevo, 2001) to the mobile robot’s control. 
Following Benioff, quantum robots are “mobile systems that have a quantum computer and 
any other needed ancillary systems on board… Quantum robots move in and interact 
(locally) with environments of quantum systems” (Benioff, 1998). If, in contrast, the 
quantum robots interact with a non-quantum environment, then they are considered as 
quantum-controlled mobile robots. According to Perkowski, these robots are such that “their 
controls are quantum but sensors and effectors are classical” (Raghuvanshi, et al., 2007). In 
the other words, in the quantum-controlled mobile robot, the input data obtained by 
classical (non-quantum) sensors are processed by the use of quantum-mechanical methods, 
and the results are output to classical (non-quantum) effectors. 
In this chapter, we present a brief practical introduction into quantum computation and 
information theory and consider the methods of path planning and navigation of quantum-
controlled mobile robots based on quantum decision-making. 

2. Quantum information theory and models of quantum computations 

We begin with a brief introduction into quantum information theory and stress the facts, 
which are required for the tasks of mobile robots’ navigation. An application of quantum-
mechanical methods for the mobile robot’s control is based on the statistical interpretation of 
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quantum mechanics (Ballentine, 2006); for a complete review of quantum computation and 
information theory, see, e.g., (Nielsen & Chuang, 2000). 

2.1 Basic notation and properties of quantum-mechanical systems 

In general, in the considerations of the finite quantum-mechanical systems, it is postulated 

(Ballentine, 2006) that the state of the quantum-mechanical system is represented by a 

Hermitian complex matrix jkσ σ= , *
jk kjσ σ= , where ( )*⋅  stands for complex conjugate, 

with the unit sum of the diagonal elements, ( )tr 1σ = ; and that the observed value of the 

quantum-mechanical system is specified by the eigenvalues of the matrix σ . Since matrix 

σ  is Hermitial, its eigenvalues are real numbers. If matrix σ  is diagonal, then such a 

representation of the state is equivalent to the representation of the state of stochastic 

classical system, in which diagonal elements jjσ  form a probability vector (Holevo, 2001). 

Let ( )1 2, ,s s s=K …  be a vector of complex variables j j js a ib= + , 1, 2,j = … , and let 
*
j j js a ib= −  be its complex conjugate. According to the Dirac’s “bra[c]ket” notation, row-

vector ( )1 2, ,s s s= …  is called bra-vector and a column-vector ( )* *
1 2, ,

T
s s s= … , where ( )T⋅  

stands for the transposition of the vector, is called ket-vector. Vector s
K

 or, equivalently, a 

Hermitian matrix s sρ = , are interpreted as a state of quantum object; vector s
K

 is called 

state vector and matrix ρ  is called state matrix or density matrix. 

Let ( )1 11 12, ,s s s=K …  and ( )2 21 22, ,s s s=K …  be two state vectors. The inner product 

( ) ( )* * * *
2 1 21 22 11 12 21 11 22 12, , , ,

T
s s s s s s s s s s= ⋅ = ⋅ + ⋅ +… … …  is called amplitude of the event that 

the object moves from the state 1s
K

 to the state 2s
K

. The probability of this event is defined by a 

square of the absolute value of the amplitude 2 1s s , i.e. ( ) 2

2 1 2 1|P s s s s= , where 
2 2

2 1s s iα β α β= + = + . By definition, regarding the probability of any state s
K

, it is 

assumed that ( )0 | 1P s s≤ ≤ . For example, let ( )1 1, 0s =  and ( )2 1 2 , 1 2s = , where 

both ( )1 1| 1P s s =  and ( )2 2| 1P s s = . However, the probability of transition from the state 1s
K

 

to the state 2s
K

 is ( ) 2

2 1 2 1| 1 2P s s s s= = . 

The measurement of the state of the object is described by an observation operator O , which in 

the finite case is determined by a squire matrix O o jk= . The result of the observation of the 

state s
K

 is defined by a multiplication ( ) ( )O o
* *

1 2 1 2, , , ,
T

jks s s s s s= ⋅ ⋅… … , and the state, 

which is obtained after an observation is defined as O's s= . For example, assume that the  

measurement is conducted by the use of the operator O
1 0

0 1

⎛ ⎞
= ⎜ ⎟−⎝ ⎠

. Then, the observation of  

the states ( )1 1, 0s =  and ( )2 1 2 , 1 2s =  results in O1 1 1s s =  and O2 2 0s s = , i.e. 

operator O  unambiguously detects the states 1s
K

 and 2s
K

. Moreover, an observation of the 

state 1s
K

 does not change this state, i.e. ( )O 1 1, 0
T

s = , while the observation of the state 2s
K

 

results in the new state ( )O 2 1 2 , 1 2
T

s = − . From such a property of observation, it  
follows that in contrast to the classical systems, the actual state of the quantum-mechanical 
system obtains a value, which was measured by the observer, and further evolution of the 
system starts from this value. In the other words, the evolution the quantum-mechanical 
system depends on the fact of its observation. 
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An actual evolution of the quantum-mechanical system is governed by the evolution 

operators, which are applied to the state matrix σ  or state vector s
K

. Below, we consider the 

states and operators, which are used in quantum information theory. 

2.2 Concepts of the quantum information theory 

The elementary state, which is considered in quantum information theory (Nielsen & Chuang, 
2000), is called qubit (quantum bit) and is represented by a two-element complex vector 

( )1 2,
T

s s s= , 
2 2

1 20 1s s≤ + ≤ . Among such vectors, two vectors are specified ( )0 1, 0
T=  

and ( )1 0, 1
T= , which correspond to the bit values "0"  and "1"  known in classical 

information theory (Cover & Thomas, 1991). In general, vectors 0  and 1  determine the 

states “spin up” and “spin down” of electron, i.e. 0 " "≡ ↑  and 1 " "≡ ↓ . 

Given vectors ( )0 1, 0
T=  and ( )1 0, 1

T= , any qubit ( )1 2,
T

s s s=  is represented as 

( )1 2 1 2, 0 1
T

s s s s s= = + . In particular, if there are defined two states 

( )" " 1 2 , 1 2
T

→ = and ( )" " 1 2 , 1 2
T

← = − , which represent the electron states “spin 

right” and “spin left”, then ( ) ( )" " 1 2 1 1 2 0→ = ⋅ + ⋅ and ( ) ( )" " 1 2 1 1 2 0← = ⋅ − ⋅ . 

Moreover, since it holds true that ( ) ( )0 1 2 " " 1 2 " "= ⋅ → + ⋅ ←  and 

( ) ( )1 1 2 " " 1 2 " "= ⋅ → − ⋅ ← , the pairs of the vectors 0  and 1 , and " "→  and 

" "←  can be used interchangeably. 

In general, the evolution of the qubits is governed by the use of the following operators: 

Pauli operators: I
1 0

0 1

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

, 
0 1

X
1 0

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

, 
0

Y
0

i

i

−⎛ ⎞
= ⎜ ⎟
⎝ ⎠

, and 
1 0

Z
0 1

⎛ ⎞
= ⎜ ⎟−⎝ ⎠

; 

- Hadamard operator: 
1 11

H
1 12

⎛ ⎞
= ⎜ ⎟−⎝ ⎠

, Phase shift operator: 
8

1 0
S

0 ie π

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

; 

- Controlled NOT (CNOT) operator: 

1 0 0 0

0 1 0 0 I 0
CNOT

0 0 0 1 0 X

0 0 1 0

⎛ ⎞
⎜ ⎟ ⎛ ⎞⎜ ⎟= = ⎜ ⎟⎜ ⎟ ⎝ ⎠⎜ ⎟⎜ ⎟
⎝ ⎠

. 

The Pauli operators are the most known qubits operators that are in use in general quantum 

mechanics, while the other three operators are more specific for quantum information 

theory. According to the Kitaev-Solovey theorem (Nielsen & Chuang, 2000), an algebra 

∪ { }{ }0 , 1 , CNOT, H, S= , which consists of the qubits 0  and 1 , and CNOT, 

Hadamard and phase shift operators, forms a universal algebra that models any operation 

of the Boolean algebra { }{ }∨¬= ,&,,1,0D . Notice that the qubit operators are reversible. In 

fact, direct calculations show that ( )( )NOT NOT X Xs s s= ⋅ ⋅ =K
, H H s s⋅ ⋅ =  and so on. 

To illustrate the actions of the simplest qubit operators and their relation with classical logic 
operations, let us present the corresponding quantum gates and their pseuodocode. 
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NOT ( :x x′ = ): 
 

if 1x =  then 0x′ =
else 1x′ =  

 x            x′
 

CNOT: 

x x′ =  

if 1x =  then y y′ =  

else y y′ =  

  x               x′  
 

  y               y′  
 

 

CCNOT 
(TOFFOLI GATE): 

x x′ = , y y′ =  

if 1x =  and 1y =  

then z z′ =  

else z z′ =  

  x            x′
 

  y               y′  
 

  z               z′   

FAN OUT: 
 
CNOT with constant input

: 0y =  

  x             x  
 

  0                x  
 

 

EXCHANGE: 
 

:x y′ = , :y x′ =  

 x                 y
 

 y                  x

C-EXCHANGE 
(FREDKIN GATE): 

  x            x′  
 

  y               y′  
 

  z                z′    
 

 

The other types of the qubit gates, e.g. phase shift operator S  and its derivatives, cannot be 

represented by the classical operators and require quantum computing devices. In such 
computing, it is assumed that each matrix operation is conducted in one computation step 
providing a power of quantum computing. The indicated dependence of quantum states on 
the observation process allows an implementation of such operations by the use of adaptive 
computation schemes. Below, we demonstrate a relation between quantum operations and 
evolving algebras and consider appropriate probabilistic decision-making. 

3. Probabilistic automata and mobile robots control 

In this section we describe a simulation example, which illustrates an implementation of 
qubit operators for the mobile robot’s navigation. Then, based on this example, we consider 
the model of probabilistic control and algorithmic learning methods based on evolving 
algebras. 

3.1 Control of the mobile robot by qubit operators 

Let us consider a mobile robot, which moves on the plain, and assume that the inner states 

of the robots correspond to its direction on a plane. Let { }" ", " ", " ", " "S = ↑ ↓ → ←  be a set of 

pure or errorless states such that each state corresponds to a certain direction of the robot. 

The set { }" ", " ", " ", " ", " "V step forward step backward turn left turn right stay still=  includes the 

actions that are available to the robot, where the steps “forward” and “backward” are 

restricted by a certain fixed distance. Being at time moment t  in the state ts S∈  and 

choosing the action tv V∈ , the robot receives to its input a finite scalar value ( ),t t ts vε ε= , 

which depends on the robot’s position in the environment. Notice that the elements of the 

set V  form a group with multiplication acting on the set of states S . The steps “forward”, 

“backward” and “stay still” action do not change the state of the robot but change its position 

relatively to the environment that changes the obtained value ε . 
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Assume that the states of the robot are described by four qubits: ( )1" " 1, 0
T

s↑ = = , 

( )2" " 0, 1
T

s↓ = = , ( )3" " 1 2 , 1 2
T

s→ = =  and ( )4" " 1 2 , 1 2
T

s← = = − , and the 

actions “turn right” and “turn left” are, respectively, conducted by the use of the Hadamard 

1 11

1 12

⎛ ⎞
Η = ⎜ ⎟−⎝ ⎠

 and reverse Hadamard 
1 11

1 12

R −⎛ ⎞
Η = ⎜ ⎟

⎝ ⎠
 operators. Then for the 

Hadamard operator it holds true that 1 3s sΗ = , 3 1s sΗ = , 2 4s sΗ = , and 

4 2s sΗ = ; and similarly, for the reverse Hadamard it holds true that 1 4
R s sΗ = , 

4 1
R s sΗ = , 2 3

R s sΗ =  and 3 2
R s sΗ = , where the states 0 1s a b= +  and 

( )( )1 ,
T

s a b− = −  conventionally are not distinguished. 

Let us consider the states and the actions of the robot in particular. If there is no influence on 
the environment, then the relations between the states can be represented as follows. 

Assume that the robot is in the state 1s . Then according to the above-indicated equality 

( ) ( )1 3 41 2 1 2s s s= ⋅ + ⋅ , and the probability that at the next time moment the robot 

will be in the state 3s  is ( ) { } 21
3 1 3 1| Pr | 1 2 1 2t ts s s s s sρ += = = = =  and the 

probability that it will be at the state 4s  is also 

( ) { } 21
4 1 4 1| Pr | 1 2 1 2t ts s s s s sρ += = = = = . The similar equalities hold true for the 

other remaining states 2s , 3s  and 4s . In general, for complex amplitudes jks , it follows 

that 1 13 3 14 4s s s s s= + , 2 23 3 24 4s s s s s= − , 3 31 1 32 2s s s s s= + , and 

4 41 1 42 2s s s s s= − ; thus ( ) { } 21| Pr |t t
k j k j jks s s s s s sρ += = = = . 

Now let us take into account an influence of the environment. Recall that the quantum state of 

the qubit is equivalently defined both by the state-vector is  and by the density matrix. Let 

( )1 1, 0
T

s =  and ( )2 0, 1
T

s = , and let ( )3 31 32,
T

s s s= , ( )4 41 42,
T

s s s= . Then, by definition, 

the states are defined by the density matrices 1 1 1

1 0

0 0
s sσ

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
, 2 2 2

0 0

0 1
s sσ

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
, 

2 *
31 31 32

3 3 3 2*
31 32 32

s s s
s s

s s s
σ

⎛ ⎞
⎜ ⎟= =
⎜ ⎟
⎝ ⎠

, and 

2 *
41 41 42

4 4 4 2*
41 42 42

s s s
s s

s s s
σ

⎛ ⎞
⎜ ⎟= =
⎜ ⎟
⎝ ⎠

, while ( )tr 1iσ = . Since the 

non-diagonal elements of the matrices can obtain arbitrary values, let us use these elements for 
specifying the relation with the environmental variable ε . In particular, assume that 

( )3 3

0

0

i

i

ε
σ ε σ

ε
⋅⎛ ⎞

= + ⎜ ⎟− ⋅⎝ ⎠
. Then, the application of the Hadamard operators Η  and RΗ  to the 

state ( )3σ ε  after normalization results in the states ( ) ( )( )1 2 1 2 , 1 2
T

s i iε ε′ = −  and 

( ) ( )( )1 2 , 1 2 1 2
T

s i iε ε′′ = − + . If, e.g., 1 3ε = , then ( )0.72 0.24 , 0.24
T

s i i′ = −  and 
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( )0.24 , 0.72 0.24
T

s i i′′ = − +  instead of the states ( )1 1, 0
T

s =  and ( )2 0, 1
T

s = , which are 

obtained in the errorless case. The transition probabilities are ( ) ( )1 2| | 0.76s s s sρ ρ′ ′′= =  and 

( ) ( )2 1| | 0.24s s s sρ ρ′ ′′= = . The presented method of control is illustrated by the example, 

shown in Fig. 1. In the simulation (Rybalov et al., 2010), the robot was programmed to 
follow the trajectory by the use of a compass sensor, and its turns were controlled by 
Hadamard and reverse Hadamard operators. 
 

 

      

 

   

 
  

 
 

 

  

H

R
H

R
H

H

R
HH  

H  H  

HR
H  

R
H  

R
H  

                   

Fig. 1. From left to right: the planned trajectory with corresponding Hadamard and reverse 
Hadamard operator; the resulting trajectory with the directions of turns; and the mobile 
robot following the trajectory by the use of the compass sensor. 

The presented approach to control the robot is a particular case of the dynamics of open 
quantum dynamical system (Holevo, 2001). In general, the dynamics of such systems is 
determined by transitions Us s→ , where U  is an appropriate Hermitian operator. 

3.2 Probabilistic model and algorithmic learning 

Let us take into account the observation process and present a brief description of the 

algorithmic model of the robot’s control system with variable evolution structure. As it is 

usual for automata models, let X  be a set of input values, Y be a set of output values, and 

S  be a set of inner states. The automaton is defined by two characteristic functions 

:f X S Y× →  and :g X S S× → , such that discrete time dynamics is defined as 

( ),t t ty f x s=  and ( )1 ,t t ts g x s+ = , where tx X∈ , ty Y∈ , 1,t ts s S+ ∈ , 0, 1, 2,t = …  In the 

case of learning automata, the probability distributions are defined over the sets X , Y  and 

S , and functions f  and g  act on such distributions (Fu & Li, 1969; Tsetlin, 1973), while the 

metrical or topological structures of the sets are constant. By the other approaches, the 

program structure learning is specified by a convergence to the appropriate transition function 

g , or by the choice of a metric or topology over the set S , called data structure learning. 

Algorithmically, the variable data structure is defined as follows (Gurevich, 1991). Let G  be 

a global namespace with three distinguished elements 1 "true"= , 0 " false"=  and 

"undef"◊ = . A map : rG Gϕ →  is called basic function of arity r , while a basic function of 

arity 0r =  is considered as a distinguished element, and basic functions { }: 1, 0,rGψ → ◊  

are considered as terms. The evolving algebra { }…,,,
10

ϕϕG=C  is defined by the following 

updates: 
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- local update: ( )0 1, , , ra a a aϕ ←… , which specifies the value to the basic function, 

- guarded update: if 1ψ =  then ( )0 1, , , ra a a aϕ ←… , 

where 0 1, , , ,ra a a a G∈…  and ψ  is a term. Thus, evolving algebra C  permits its functions 

to change their domains according to the data flow, as it is required for the learning 

property. Notice that the implementation of the updates of the algebra C  by the use of 

quantum gates results in the universal algebra [ , which defines quantum computations. 

Nevertheless, similar to the algebra [ , the direct implementation of the evolving algebra 

C  is possible only in particular cases of computable operators. 

Let us consider an implementation of the evolving algebra for probabilistic control of the 

mobile robots control (Kagan & Ben-Gal, 2008). Since during its mission the robot acts in a 

stochastic environment, the input variable x X∈  is random; thus, given characteristic f  

and g , both inner states s S∈  and outputs y Y∈  are also random variables. Assume that 

the namespace G , in addition to elements 1 , 0  and ◊ , includes all possible realizations of 

the inputs, inner states and outputs, i.e. { }1, 0,G X Y S= ◊ ∪ ∪ ∪ . For the realizations of 

inputs, we define the terms ( ) { }1 1, 0,xψ ∈ ◊ , and for the inner states we define the terms 

( ) { }2 1, 0,sψ ∈ ◊  and the local updates ( )s sϕ ′ ′′← , ,s s G′ ′′∈ . 

Now we can formulate transition function g  in the terms of evolving algebra. We say that 

the pairs ( ) ( ), , ,x s x s X S′ ′ ′′ ′′ ∈ ×  are equal (in the sense of the function g ) if ( ): ,g x s s′ ′ 6  

and ( ): ,g x s s′′ ′′ 6 . Then, since there are at most m  distinguished realizations of the inner 

states and there may exist the pairs from X S× , such that the map g  is not defined, the 

space X S×  is partitioned into at most 1m +  equivalence classes. Denote such equivalence 

classes by gA . Then, the transition function g  is defined as a guarded update if ( ), g
jx s A∈  

then ( ) js sφ ← , which is checked for each pair ( ),x s X S∈ × , and if the appropriate class gA  

is not found, then ( )sφ ← ◊  is specified. 
The presented algorithmic model allows simulations of quantum-control of the mobile robot 

and its navigation on the basis of the qubits model of states. Below, we consider an example 

of such simulations with probabilistic decision-making. 

4. Navigation of quantum-controlled mobile robot along predefined path 

Let us start with a simulation example. The simulation follows an idea of the experiment of 

checking a spin of elementary particle by three Stern-Gerlach apparatus, which are defined 

by a sequence of certain quantum operators (Albert, 1994). 

As above, let the inner states of the robot be specified by four qubits ( )1" " 1, 0
T

s↑ = = , 

( )2" " 0, 1
T

s↓ = = , ( )3" " 1 2 , 1 2
T

s→ = =  and ( )4" " 1 2 , 1 2
T

s← = = − . In 

addition, assume that there are two types of detectors defined by the above-defined Pauli 

operators X  and Z , so that 3 3X 1s s = + , 4 4X 1s s = − , 1 1Z 1s s = +  and 2 2Z 1s s = − . 

The robot starts with a random initial state 0s  and arrives to the first detector Z . Detector Z  

checks the state 0s  and the robot obtains a new state 1s . According to the maximum of 

probabilities ( )1
3|P s s  and ( )1

4|P s s , the robot chooses the left or right trajectory and arrives 
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to the second detector X . Then, after the similar actions and obtaining the state 2s , the robot 

continues to the third detector Z , which checks the robot’s state and results in the state 3s . 

The fragment of the experiment with the robot following its path is shown in Fig. 2. 
 

                  

Fig. 2. The mobile robot follows a path (from right to left) with three simulated detectors 

using touch sensor (“ Z  detector”) and light sensors (“ X  detector”). 

Let us consider the actions of the robot in particular. As indicated above, the robot starts 

with an initial state ( )0 0 0
1 2,

T
s s s= , where [ ]0 0

1 2, 0, 1s s ∈  are random values such that 

( ) ( )2 20 0
1 20 1s s< + ≤ . Then the first detector Z  results in the state 1 0Zs s=  and the 

decision-making is conducted regarding the further left or right trajectory, which is based 

on the probabilities ( ) 2
1 1

3 3|P s s s s=  and ( ) 2
1 1

4 4|P s s s s= . If ( ) ( )1 1
3 4| |P s s P s s> , 

then the robot turns left, and if ( ) ( )1 1
3 4| |P s s P s s< , then the robot turns right (the ties are 

broken randomly). Following the chosen trajectory, the robot arrives to the second detector 

X . The check with this detector results in the state 2 1Xs s= , and the decision regarding 

the further trajectory is obtained on the basis of the probabilities ( ) 2
2 2

1 1|P s s s s=  and 

( ) 2
2 2

2 2|P s s s s= . Similar to the above, if ( ) ( )2 2
1 2| |P s s P s s> , then the robot turns left, 

and if ( ) ( )2 2
1 2| |P s s P s s< , then the robot turns right (the ties are broken randomly). The 

third check is again conducted by the Z  detector, which results in the state 3 2Zs s= , and 

the decision-making is conducted by the same manner as for the state 1s . 

Now let us present a general description of the process (Kagan & Ben-Gal, 2008), that 

implements the above-indicated equivalence classes fA  and gA . As indicated above, the 

evolution of the quantum-mechanical system with observations does not depend on the 

previous states and starts from the value of the state, which is obtained by the measurement. 

Thus, the outputs y Y∈  of the system are specified by a Markov process, which is 

controlled by input states x X∈  and inner states s S∈ . Then the probability 

( ) ( )( )fp y p A y=  of the equivalence class ( ) ( )1fA y f y−=  is defined as a sum 
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( ) ( )( ) ( ),
,fx s A y

p y p x s
∈

=∑  of the probabilities of the pairs ( ),x s X S∈ × . Similarly, the 

probability ( )p s  of the inner state s S∈  of the system is defined by the use of equivalence 

class ( ) ( )1gA s g s−=  as a sum ( ) ( )( ) ( ),
,gx s A s

p s p x s
∈

=∑ . 

Recall that, by definition, the equivalence classes ( )fA y , y Y∈ , and gA , ( )gA s , form 

partitions fα  and gα  of the space X S× . Then, the relation between the dynamics of inner 

states is determined by the relation between the partitions fα  and gα . For example, let 

( ) ( ) ( )1

0
,

k g fg f
Orn i ii

d p A p Aα α −
=

= −∑ , where { }max ,g fk α α= , and if g fα α> , then fα  

is completed by empty sets, while if g fα α< , then empty sets are added to gα , being 

Ornstein distance between the partitions (Ornstein, 1974). Then, for the finite time case, 

0, 1, 2, , 1t T= −… , the Ornstein distance between partitions f
tα  and g

tα , is defined as 

{ } { } ( )( ) ( )1 1 1

00 0
, 1 1 ,

T T Tg f g f
Orn t t Orn t tt

d T dα α α α
− − −

=
⎛ ⎞ = −⎜ ⎟
⎝ ⎠

∑ . Since the structure of the partitions 

f
tα  and g

tα  is constant, the distance represents the relation between probability measures 

defined by these partitions. Thus the goal of the robots navigation is to find a process for 

governing the inner states s S∈  such that the distance { } { }1 1

0 0
,

T Tg f
Orn t td α α

− −⎛ ⎞
⎜ ⎟
⎝ ⎠

 reaches its 

minimum over the considered time interval. Below we will consider general informational 
algorithms of local search, which can be implemented for such a task. 

5. Information theoretic decision-making and path planning 

The section presents information theoretic methods for quantum inspired decision-making 
and general path-planning algorithms. We start with a motivating example of informational 
decision-making, then we consider the logic of quantum mechanics and informational 
distance between the partitions of the events space. Finally, we present the navigation 
algorithms, which are based on the representation of the states’ evolution by the use of 
partitions. 

5.1 Decision-making by the use of quantum-mechanical information measure 

An application of informational criteria for decision-making and path planning of the 
quantum-controlled mobile robots is motivated by the criteria of classical information 
theory (Cover & Thomas, 1991). Recall that in the classical case, an informational distance 

between the probability vectors ( )1 , , np p p=K …  and ( )1 , , nq q q=K … , 
1

1
n

jj
p

=
=∑ , 

1
1

n
jj

q
=

=∑ , 0jp ≥ , 0jq > , 1, 2, ,j n= … , is specified by the relative Shannon entropy or 

Kullback-Leibler distance ( ) ( )1 1 1
|| log log log

n n n
j j j j j j jj j j

KL p q p p q p p p q
= = =

= = −∑ ∑ ∑K K
, 

where by convention it is assumed that 0log 0 0= . The distance ( )||KL p q
K K

 satisfies both 

( )|| 0KL p q ≥K K
 and ( )|| 0KL p q =K K

 if and only if j jp q=  for all 1, 2, ,j n= … , and, in general 
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( ) ( )|| ||KL p q KL q p≠K K K K
. Vectors p

K
 and q

K
 represent the states of the stochastic system, and 

distance ( )||KL p q
K K

 characterizes the information-theoretic difference between these states. 

In contrast, in quantum-mechanical systems, the state is represented by the above-presented 

Hermitian density matrix σ  with ( )tr 1σ = . The informational measures for such states are 

defined on the basis of the von Neumann entropy (Nielsen & Chuang, 2000) 

( ) ( )
1

tr log log
n

j jj
VN σ σ σ λ λ

=
= − = −∑ , where jλ  are the eigenvalues of the matrix σ . Then 

the relative von Neumann entropy of the state σ ′  relative to the state σ ′′  is defined as 

( ) ( ) ( )
1 1

|| tr log tr log log log
n n

j j j jj j
VN σ σ σ σ σ σ λ λ λ λ

= =
′ ′′ ′ ′ ′ ′′ ′ ′ ′ ′′= − = − −∑ ∑ , where λ′  and λ′′  

are eigenvalues of the matrices σ ′  and σ ′′ , correspondingly. 

Let tσ  be a state of the system at time moment t , and consider its representation 

1

nt t
j jj
Eσ λ

=
=∑ ,  w h e r e  1 2

t t t
nλ λ λ< < <…  a re  e i ge nv a l ue s  o f  t he  m a t r i x  tσ  a nd 

{ }1, , nE E E= …  is a set of matrices such that j k jk kE E Eδ=  and 
1

n
jj

E I
=

=∑ , where 1jkδ =  if 

j k= , and 0jkδ =  otherwise. According to the dynamics of the quantum system, if the 

system is in the state tσ , then its next state 1tσ +  is specified by the use of the selected 

operator jE  according to the projection postulate ( )1 trt t t
j j jE E Eσ σ σ+ = . This postulate  

represents the above indicated influence of the measurement, i.e. of the application of the 

operator jE , to the state of the system, and the generalized the Bayesian rule to the 

evolution of quantum-mechanical systems. The decision-making problem required a 

definition of such projection that given a state tσ , the next state 1tσ +  is optimal in a certain 

sense. Since for a state tσ , there exist several sets E  of matrices with the above indicated 

properties, the decision-making includes two stages (Davies, 1978; Holevo, 2001) and 

requires finding the set { }1, , nE E E= … , and then selecting an operator jE  from the set E  

according to optimality criteria. 

One of the methods, which is widely used in classical information theory, implies a choice of 

such probability vector 1tp +K
, that given a vector tp

K
, the Kullback-Leibler distance 

( )1||t tKL p p +K K
 reaches its maximum. Likewise, in the simulations, we implemented the 

choice of the set E  and operator jE E∈  such that it maximizes the relative von Neumann 

entropy ( )1||t tVN σ σ + . In the simulations (Kagan et al., 2008), the mission of the robot was 

to navigate in the environment and to find the objects, which randomly change their 

location. The amplitudes, which defined the states, were derived from the distances between 

the objects and as they were measured by the ultra-sonic sensor. The scheme of the 

simulation and the fragment of the robot’s movement are shown in Fig. 3. 
The robot scans the environment, chooses such an object that maximizes the von Neumann 
relative entropy, and moves to this object. After the collision, the object was moved to a new 
random location. The comparison between quantum and classical decision-making 
demonstrated the difference in nearly 50% of the decisions, and in the search for variable 
number of objects, quantum decision-making demonstrated nearly 10% fewer decision 
errors than the classical one. Such results motivated an application of information theoretic 
methods for navigation of quantum-controlled mobile robots. In the next section we 
consider the algorithms which follow this direction. 
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Fig. 3. The mobile robot with ultra-sonic sensor acting in the stochastic environment: after 
collision, the obstacle randomly changes its location in the environment. 

5.2 Logic of quantum mechanics and informational distance 

Now let us consider the logic of quantum mechanics and the structure of quantum events 
over which the informational algorithms act. Such a formal scheme of quantum events, 
which is called quantum logic (Cohen, 1989), was introduced by Birkhoff and von Neumann 
(Birkhoff & Neumann, 1936) as an attempt of to find an axiomatic description of quantum 
mechanics. 

A quantum logic is a lattice Λ  of events A , which contains the smallest element ∅ , the 

greatest element I , relation ⊂ , unary operation ′, and binary operations ∪  and ∩ . It is 

assumed that for the events A∈Λ  the following usual set properties hold true: a) For any 

element A∈Λ  there exist an event A′∈Λ  such that ( )A A′ ′ = ; b) A A′∩ = ∅  and 

A A I′∪ = ; c) For any pair of events ,A B∈Λ , A B⊂  implies B A′ ′⊂ , and A B⊂  implies 

( )B A B A′= ∪ ∩ ; d) For any countable sequence 1 2, ,A A …  of events from Λ  their union is 

in Λ , i.e., ( )j jA∪ ∈Λ . Notice that is not required that the events A∈Λ  are subsets of the 

same set. That leads to the fact that under the requirements of quantum logic the 

distributive rule may not hold and, in general, ( ) ( ) ( )B A A B A B A′ ′∩ ∪ ≥ ∩ ∪ ∩ . In contrast, 

in the probabilistic scheme, it is postulated that the events are the subsets of the set of 

elementary outcomes, so the distribution rule is satisfied. 

In quantum logic Λ , events A∈Λ  and B∈Λ  are called orthogonal, and denoted by A B⊥ , 

if A B′⊂ , and a finite set { }1 , , nA Aα = … , of events jA ∈Λ , is called ∨-orthogonal system if 

( )1 1
k
j j kA A= +∪ ⊥ , 1, 2, , 1k n= −… . The state μ  over the quantum logic Λ  is defined as a 

map [ ]: 0, 1μ Λ→  such that ( ) 1Iμ =  and for any ∨-orthogonal system { }1 , , nA Aα = …  it 

holds true that ( ) ( )1 1

nn
j j jj

A Aμ μ= =
∪ =∑ . Given a state [ ]: 0, 1μ Λ→ , an ∨-orthogonal 

system α  is a partition of the logic Λ  with respect to the state μ  if ( )1 1n
j jAμ =∪ = , jA α∈  

(Yuan, 2005). 

Following classical ergodic theory (Rokhlin, 1967), entropy of the partition α is defined as 

( ) ( ) ( )log
A

H A Aμ αα μ μ
∈

= −∑ , and conditional entropy of partition α  relatively to partition 

β is ( ) ( ) ( )| , log |
B A

H A B A Bμ β αα β μ μ
∈ ∈

= −∑ ∑ , whereα and β are partitions of quantum 

logic Λ  (Yuan, 2005; Zhao & Ma, 2007). In addition, similarly to the ergodic theory (Rokhlin, 
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1967), a Rokhlin distance is defined as ( ) ( ) ( ), | |d H Hμ μ μα β α β β α= +  between the 

partitions α  and β  of the quantum logic Λ , which preserves the metric properties (Khare 

& Roy, 2008), as it holds for the probabilistic scheme. 

5.3 Actions of the robot over the quantum events 

The indicated properties of the partitions and states of quantum logic allow an application 

of informational A*-type search algorithms acting over partitions space (Kagan & Ben-Gal, 

2006) for navigation of quantum-controlled mobile robots. Let χ  be a set of all possible 

partitions of the logic Λ  given a state μ . By ( ),dμ α β , ,α β χ∈ , we denote a Rokhlin 

distance between the partitions α  and β , and by ( ),dμ α β�  an estimated distance such that 

( ) ( ), ,d dμ μα β α β≤� ; as a distance dμ
�  the above-defined Ornstein distance ( ),Ornd α β  can 

be applied. Let r R+∈  be a constant value. The non-empty neighborhood ( ),N rα χ⊂  of 

partition α χ∈  is a set of partitions such that ( ),N rα α∉  and for every partition 

( ),N rβ α∈  it holds true that ( ) ( ), ,d r dμ μα β α β≤ ≤� . In the algorithm, α  stands for a 

partition specified by the robot, and τ  stands for a partition specified by the environment. 

The robot is located in the environment, which is specified by a partition curτ ϑ=  and starts 

with the initial partition curα θ= . Then, the actions of the robot are defined by the following 

sequence: 

The robots actions given the environment curτ : 

- Choose the next partition ( ) ( ){ },arg min ,
curnext curN r dμα αα α τ∈← � ; 

- Update estimation ( ) ( ) ( ) ( ){ },, max , , min ,
curcur cur cur cur curN rd d r dμ μ μα αα τ α τ α τ∈← +� � � ; 

- Set current partition cur nextα α← . 

The robots actions while the environment changes ( curτ τ← ): 

- Update estimation ( ) ( ) ( ){ }, max , , ,cur cur cur curd d d rμ μ μα τ α τ α τ← −� � � . 

Let us clarify the application of the algorithms to the quantum logic Λ  by half steps, 

0, 1 2 , 1, 3 2 ,t = … , which correspond to the robot’s and the environment’s actions. Let the 

initial map by [ ]0 : 0, 1μ Λ→ . Regarding the robot’s states, it means a choice of the basis for 

the states; in the above-given examples, such a choice corresponds to the definition of the 

qubits for the states 1" " s↑ =  and 2" " s↓ = , or that is equivalent to the states 3" " s→ =  

and 4" " s← = . By the use of the map 0μ  the robot chooses the state 0s  and a certain 

partition which specifies the next map 1 2μ . According to the obtained map 1 2μ , the 

environment changes and the map 1μ  is specified. Now the robot chooses the 1s  and 

according to the chosen partition specifies the map 3 2μ . The environment, in its turn, 

changes according to the map 3 2μ , and so on. 

The presented actions over the partitions of quantum logic provide a representation, which 
differs from the one use in the quantum learning algorithms (Chen & Dong, 2008; Dong, et 
al., 2010) and implements information theoretic decision-making using the Rokhlin distance. 
However, the meaning of the actions is similar, and the goal of the robot is to determine the 
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actions such that the inner states of the robot correspond to the environmental states, which, 
in their turn, are changed by the robot. 

6. Notes on fuzzy logic representation of quantum control 

Let us return to the representation of the robot’s states by qubits 

( ) ( )0 1 1, 0 0, 1
T T

s a b a b= + = + , where both amplitudes a and b  are real numbers. In such 

a case, the state-vector s  can be represented by two membership functions [ ]: 0, 1a Xμ →  

and [ ]: 0, 1b Xμ →  for some universal set X , which are defined as (Hannachi, et al., 2007) 

( ) ( ) ( )( )2 22 arcsin 1 2a sign a a sign b bμ π= − +  and ( ) ( ) ( )( )2 22 arcsin 1 2b sign a a sign b bμ π= + + , 

with backward transformations ( ) 2 21 sin 2 sin 2 1a b a ba sign μ μ μ π μ π= + − + −  and 

( ) 2 2sin 2 sin 2b a b ab sign μ μ μ π μ π= − − . Over the pairs of membership functions aμ  and 

bμ , fuzzy analogs of quantum mechanical operators are defined (Hannachi, et al., 2007). Let 

us consider the Hadamard operators, which represent the turns of the robot. 

Fuzzy analog Η�  of the Hadamard operator Η  is the following (Hannachi, et al., 2007): 

( ) ( )( ) ( )( )( ), max 0, min 1, 1 2 , min 1, max 0, 1 2a b a b a bμ μ μ μ μ μΗ = − + + −� . Similarly, reverse 

fuzzy Hadamard operator is defined by the following transformation (Rybalov et al., 2010): 

( ) ( )( ) ( )( )( ), min 1, max 0, 3 2 , max 0, min 1, 1 2R
a b a b a bμ μ μ μ μ μΗ = − − − +� .  

Straightforward calculations show that the direct and reverse fuzzy Hadamard operators Η�  

and RΗ�  are reversible and preserve the properties of corresponding quantum Hadamard 

operators. Trajectories of the robot that acts according to the fuzzy Hadamard operators are 

illusrated by Fig. 4; the simulattions have been conducted likewise in the example shown in 

Fig. 1. 

 

                                   

  

 

   

 
  

 
 

 

 

                   

      

 

   

 
   

 
 

 

 

              

Quantum control Fuzzy control

 

Fig. 4. Trajectories and turns of the mobile robot according to quantum and fuzzy control. 

According to simulations, the turns of quantum and fuzzy controlled robot are different; 

however, the states of the robot and the results of its actions are statistically equivalent. Such 

preliminary results show that in case of real amplitudes, fuzzy logic models of quantum 

control may be applied. 

www.intechopen.com



 
Recent Advances in Mobile Robotics 

 

324 

7. Conclusion 

In the chapter we presented a brief introduction into the methods of navigation of quantum-
controlled mobile robots and considered the ideas of its implementation by the use of 
probabilistic and information theoretic techniques. The described methods represent such a 
property of the quantum-controlled mobile robots that the state of quantum-mechanical 
system includes the state of the environment as a part of its inner state. 
In particular, the state of the mobile robot in the environment was defined by the use of the 
density matrix, which, in addition to the inner state of the robot, included the state of the 
environment. Such a specification of the state allowed calculations of both the robot’s 
influence on the environment and the environmental influence on the robot by the use of the 
unified techniques. 
The decision-making methods, which define the robot’s behavior, implemented the 
indicated representation of the state and were based on the probabilistic and informational 
schemes. These schemes generalize the known maximum probability and maximum 
information criteria while taking into account additional information regarding the robot’s 
influence on the environment, and correspond to the statistical considerations of quantum-
mechanical methods (Malley & Hornstein, 1993; Barndorff-Nielsen & Gill, 2003). 
In general, the actions of quantum-controlled mobile robot were specified by the choices of 
certain partitions of quantum logic. The choices were based on informational distances 
following the line of informational search algorithms (Kagan & Ben-Gal, 2006). As indicated 
above, such a method gives an alternative view to quantum learning and path-planning 
algorithms (Chen & Dong, 2008; Dong, et al., 2010). 
The presented methods were simulated by the use of small mobile robots, while the 
complete realization of quantum control requires quantum-mechanical on-board computers.  
However, as it follows from preliminary considerations (Rybalov, et al., 2010), fuzzy control 
of the mobile robot demonstrates similar results as probabilistic and informational schemes 
of quantum control; thus in some cases fuzzy logic models of quantum control may be 
applied. 

8. References 

Albert, D. Z. (1994). Quantum Mechanics and Experience. Harvard University Press, 
Cambridge, Massachusetts and London, England. 

Ballentine, L. E (2006). Quantum Mechanics. A Modern Development. Word Scientific, 
Singapore. 

Barndorff-Nielsen, O. E. & Gill, R. D. (2003). On Quantum Statistical Inference. J. Royal 
Statistical Society B, Vol. 65, No. 4, pp. 775-816. 

Benioff, P. (1998). Quantum Robots and Environments. Phys. Rev. A, Vol. 58, pp. 893-904. 
Birkhoff, G. & Neumann, J. von. (1936). The Logic of Quantum Mechanics. Annals Math., 

Vol. 37, No. 4, pp. 823-843. 
Chen, C.-L. & Dong, D.-Y. (2008). Superposition-Inspired Reinforcement Learning and 

Quantum Reinforcement Learning. In Reinforcement Learning: Theory and 
Applications, C. Weber, M. Elshaw, N. M. Mayer, (Eds.), InTech Education and 
Publishing, Vienna, Austria, pp. 59-84. 

Cohen, D. W. (1989). An Introduction to Hilbert Space and Quantum Logic. Springer-Verlag, 
New York. 

www.intechopen.com



 
Navigation of Quantum-Controlled Mobile Robots 

 

325 

Cover, T. M. & Thomas, J. A. (1991). Elements of Information Theory. John Wiley & Sons, New 
York. 

Davies, E. B. (1978). Information and Quantum Measurement. IEEE Trans. Inform. Theory, 
Vol. 24, No. 5, pp. 596-599. 

Dong, D.-Y.; Chen, C.-L.; Zhang, C.-B. & Chen, Z.-H. (2006). Quantum Robot: Structure, 
Algorithms and Applications. Robotica, Vol. 24, No. 4, pp. 513-521. 

Dong, D.; Chen, C.; Chu, J. & Tarn, T.-J. (2010). Robust Quantum-Inspired Reinforcement 
Learning for Robot Navigation. IEEE/ASME Trans. Mechatronics, To appear. 

Fu, K. S. & Li, T. J. (1969). Formulation of Learning Automata and Automata Games. 
Information Science, Vol. 1, No. 3, pp. 237-256. 

Gurevich, Y. (1991). Evolving Algebras: An Attempt to Discover Semantics. Bull. European 
Assoc. Theor. Comp. Science, Vol. 43, pp. 264-284. 

Hannachi, M. S.; Hatakeyama, Y. & Hirota, K. (2007). Emulating Qubits with Fuzzy Logic. J. 
Advanced Computational Intelligence and Intelligent Informatics, Vol. 11, No. 2, pp. 242-
249. 

Helstrom, C. W. (1976). Quantum Detection and Estimation Theory. Academic Press, New 
York. 

Holevo, A. S. (2001). Statistical Structure of Quantum Theory. Springer-Verlag, Berlin. 
Kagan, E. & Ben-Gal, I. (2008). Application of Probabilistic Self-Stabilization Algorithms to 

Robot’s Control. Proc. 15-th Israeli Conf. IE&M’08, Tel-Aviv, Israel. 
Kagan, E. ; Salmona, E. & Ben-Gal, I. (2008). Probabilistic Mobile Robot with Quantum 

Decision-Making. Proc. IEEE 25-th Conv. EEEI. Eilat, Israel. 
Kagan, E. & Ben-Gal, I. (2006). An Informational Search for a Moving Target. Proc. IEEE 24-

th Convention of EEEI. Eilat, Israel. 
Khare, M. & Roy, S. (2008). Conditional Entropy and the Rokhlin Metric on an 

Orthomodular Lattice with Bayesian State. Int. J. Theor. Phys., Vol. 47, pp. 1386-
1396. 

Levitin, L. B. (1969). On a Quantum Measure of the Quantity of Information. Proc. Fourth All-
Union Conf. Problems of Information Transmission and Coding. IPPI AN USSR, 
Moscow, pp. 111-115 (In Russian). English translation: A. Blaquieve, et al., eds. 
(1987). Information Complexity and Control in Quantum Physics. Springer-Verlag, New 
York, pp. 15-47. 

Malley, J. D. & Hornstein, J. (1993). Quantum Statistical Inference. Statistical Sciences, Vol. 8, 
No. 4, pp. 433-457. 

Nielsen, M. A. & Chuang, I. L. (2000). Quantum Computation and Quantum Information. 
Cambridge University Press, Cambridge, England. 

Ornstein, D. S. (1974). Ergodic Theory, Randomness, and Dynamical Systems. Yale University 
Press, New Haven, 1974. 

Raghuvanshi, A.; Fan, Y.; Woyke, M. & Perkowski, M. (2007). Quantum Robots for 
Teenagers, Proc. IEEE Conf. ISMV’07, Helsinki, Finland. 

Rokhlin, V. A. (1967). Lectures on the Entropy Theory of Measure-Preserving 
Transformations. Rus. Math. Surveys, Vol. 22, pp. 1-52. 

Rybalov, A.; Kagan, E.; Manor, Y. & Ben-Gal, I. (2010). Fuzzy Model of Control for 
Quantum-Controlled Mobile Robots. Proc. IEEE 26-th Conv. EEEI. Eilat, Israel. 

Tsetlin, M. L. (1973). Automaton Theory and Modeling of Biological Systems. Academic Press, 
New York. 

www.intechopen.com



 
Recent Advances in Mobile Robotics 

 

326 

Unsal, C. (1998). Intelligent Navigation of Autonomous Vehicles in an Automated Highway 
System: Learning Methods and Interacting Vehicles Approach. PhD Thesis, Virginia 
Polytechnic Institute and State University, VI, USA. 

Yuan, H.-J. (2005). Entropy of Partitions on Quantum Logic. Commun. Theor. Phys., Vol. 43, 
No. 3, pp. 437-439. 

Zhao, Y.-X. & Ma, Z.-H. (2007). Conditional Entropy of Partitions on Quantum Logic. 
Commun. Theor. Phys., Vol. 48, No. 1, pp. 11-13. 

www.intechopen.com



Recent Advances in Mobile Robotics

Edited by Dr. Andon Topalov

ISBN 978-953-307-909-7

Hard cover, 452 pages

Publisher InTech

Published online 14, December, 2011

Published in print edition December, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Mobile robots are the focus of a great deal of current research in robotics. Mobile robotics is a young,

multidisciplinary field involving knowledge from many areas, including electrical, electronic and mechanical

engineering, computer, cognitive and social sciences. Being engaged in the design of automated systems, it

lies at the intersection of artificial intelligence, computational vision, and robotics. Thanks to the numerous

researchers sharing their goals, visions and results within the community, mobile robotics is becoming a very

rich and stimulating area. The book Recent Advances in Mobile Robotics addresses the topic by integrating

contributions from many researchers around the globe. It emphasizes the computational methods of

programming mobile robots, rather than the methods of constructing the hardware. Its content reflects

different complementary aspects of theory and practice, which have recently taken place. We believe that it will

serve as a valuable handbook to those who work in research and development of mobile robots.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Eugene Kagan and Irad Ben-Gal (2011). Navigation of Quantum-Controlled Mobile Robots, Recent Advances

in Mobile Robotics, Dr. Andon Topalov (Ed.), ISBN: 978-953-307-909-7, InTech, Available from:

http://www.intechopen.com/books/recent-advances-in-mobile-robotics/navigation-of-quantum-controlled-

mobile-robots



© 2011 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


