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1. Introduction

The path planning for mobile robots is a fundamental issue in the field of unmanned vehicles
control. The purpose of the path planner is to compute a path from the start position of
the vehicle to the goal to be reached. The primary concern of path planning is to compute
collision-free paths. Another, equally important issue is to compute a realizable and, if possible,
optimal path, bringing the vehicle to the final position.
Although humans have the superb capability to plan motions of their body and limbs
effortlessly, the motion planning turns out to be a very complex problem. The best known
algorithm has a complexity that is exponential to the number of degrees of freedom and
polynomial in the geometric complexities of the robot and the obstacles in the environment
(Chen & Hwang (1998)). Even for motion planning problems in the 2-dimensional space,
existing complete algorithms that guarantee a solution often need large amount of memory
and in some cases may take long computational time. On the other hand, fast heuristic
algorithms may fail to find a solution even if it exists (Hwang & Ahuja (1992)).
In this paper we present a fast algorithm for solving the path planning problem for differential
drive (holonomic)1 robots. The algorithm can be applied to free-flying and snake type
robots, too. Generally, we treat the two-dimensional known environment, where the
obstacles are stationary polygons or ovals, but the algorithm can easily be extended for
the three-dimensional case (Kroumov et al. (2010)). The proposed algorithm is, in general,
based on the potential field methods. The algorithm solves the local minimum problem and
generates optimal path in a relatively small number of calculations.
The paper is organized as follows. Previous work is presented in Section 2. In Section 3 we
give a definition of the map representation and how it is used to describe various obstacles
situated in the working environment. The path and the obstacle collisions are detected using
artificial annealing algorithm. Also, the solution of the local minima problem is described
there. In Section 4 we describe the theoretical background and the development of a motion

1 In the mobile robotics, the term holonomic refers to the kinematic constraints of the robot chassis. The
holonomic robot has zero nonholonomic kinematic constraints, while the nonholonomic one has one or
more nonholonomic kinematic constraints.
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2 Will-be-set-by-IN-TECH

planner for a differential drive vehicle. Section 5 presents the algorithm of the path planner.
In Section 6 the calculation time is discussed and the effectiveness of the proposed algorithm
is proven by presenting several simulation results. In the last section discussions, conclusions,
and plans for further developments are presented.

2. Previous work

Comprehensive reviews on the work on the motion planning can be found in Latombe (1991).
In this section we concentrate on motion planning for moving car-like robots in a known
environment.
Motion planners can be classified in general as:

1) complete;

2) heuristic.

Complete motion planners can potentially require long computation times but they can either
find a solution if there is one, or prove that there is none. Heuristic motion planners are fast
but they often fail to find a solution even if it exists.
To date motion planners can be classified in four categories (Latombe (1991)):

1) skeleton;

2) cell decomposition;

3) subgoal graph;

4) potential field.

In the skeleton approach the free space is represented by a network of one-dimensional paths
called a skeleton and the solution is found by first moving the robot onto a point on the skeleton
from the start configuration and from the goal, and by connecting the two points via paths on
the skeleton. The approach is intuitive for two-dimensional problems, but becomes harder to
implement for higher degrees of freedom problems.
Algorithms based on the visibility graph (VGRAPH) (Lozano-Pèrez & Wesley (1979)), the
Voronoi diagram (O’Dúnlaing & Yap (1982)), and the silhouette (Canny (1988)) (projection of
obstacle boundaries) are examples of the skeleton approach. In the VGRAPH algorithm the
path planning is accomplished by finding a path through a graph connecting vertices of the
forbidden regions (obstacles) and the generated path is near optimal. The drawback of the
VGRAPH algorithm is that the description of all the possible paths is quite complicated.
Actually, the number of the edges of the VGRAPH is proportional to the squared total number
of the obstacles vertices and when this number increases, the calculation time becomes longer.
Another drawback is that the algorithm deals only with polygonal objects. Yamamoto et al.
(1998) have proposed a near-time-optimal trajectory planning for car-like robots, where the
connectivity graph is generated in a fashion very similar to that of Lozano-Pèrez & Wesley
(1979). They have proposed optimization of the speed of the robot for the generated trajectory,
but the optimization of the trajectory itself is not enough treated.
In the cell decomposition approach (Paden et al. (1989)) the free space is represented as a
union of cells, and a sequence of cells comprises a solution path. For efficiency, hierarchical
trees, e.g. octree, are often used. The path planning algorithm proposed by Zelinsky
(1992) is quite reliable and combines some advantages of the above algorithms. It makes
use of quadtree data structure to model the environment and uses the distance transform
methodology to generate paths. The obstacles are polygonal-shaped which yields a quadtree

174 Recent Advances in Mobile Robotics

www.intechopen.com



Neural Networks Based Path Planning and Navigation of Mobile Robots 3

with minimum sized leaf quadrants along the edges of the polygon, but the quadtree is large
and the number of leaves in the tree is proportional to the polygon’s perimeter and this makes
it memory consuming.
In the subgoal-graph approach, subgoals represent key configurations expected to be useful
for finding collision-free paths. A graph of subgoals is generated and maintained by a global
planner, and a simple local planner is used to determine the reachability among subgoals.
This two level planning approach is first reported by Faverjon & Tournassoud (1987) and has
turned out to be one of the most effective path planning methods.
The potential field methods and their applications to path planning for autonomous mobile
robots have been extensively studied in the past two decades (Khatib (1986), Warren (1989),
Rimon & Doditschek (1992), Hwang & Ahuja (1992), Lee & Kardaras (1997a), Lee & Kardaras
(1997b), Chen & Hwang (1998), Ge & Cui (2000), Yu et al. (2002), Kroumov et al. (2004)). The
basic concept of the potential field methods is to fill the workspace with an artificial potential
field in which the robot is attracted to the goal position being at the same time repulsed
away from the obstacles (Latombe (1991)). It is well known that the strength of potential
field methods is that, with some limited engineering, it is possible to construct quite efficient
and relatively reliable motion planners (Latombe (1991)). But the potential field methods are
usually incomplete and may fail to find a free path, even if one exists, because they can get
trapped in a local minimum (Khosla & Volpe (1988); Rimon & Doditschek (1992); Sun et al.
(1997)). Another problem with the existing potential field methods is that they are not so
suitable to generate optimal path: adding optimization elements in the algorithm, usually,
makes it quite costly from computational point of view (Zelinsky (1992)). Ideally, the potential
field should have the following properties (Khosla & Volpe (1988)):

1. The magnitude of the potential field should be unbounded near obstacle boundaries and
should decrease with range.

2. The potential should have a spherical symmetry far away from the obstacle.

3. The equipotential surface near an obstacle should have a shape similar to that of the
obstacle surface.

4. The potential, its gradient and their effects on the path must be spatially continuous.

The proposed in this paper algorithm is partially inspired by the results presented by Sun et al.
(1997) and by Lee & Kardaras (1997a), but our planner has several advantages:

• the obstacle descriptions are implemented directly in the simulated annealing neural
network—there is no need to use approximations by nonlinear equations (Lee & Kardaras
(1997b));

• there is no need to perform a learning of the workspace off-line using backpropagation
(Tsankova (2010));

• there is no need to perform additional calculations and processing when an obstacle is
added or removed;

• a simple solution of the local minimum problem is developed and the generated paths
are conditionally optimized in the sense that they are piecewise linear with directions
changing at the corners of the obstacles.

The algorithm allows parallel calculation (Sun et al. (1997)) which improves the
computational time. The experimental results show that the calculation time of the
presented algorithm depends linearly on the total number of obstacles’ vertices—a feature

175Neural Networks Based Path Planning and Navigation of Mobile Robots
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Fig. 1. Obstacle description neural network

which places it among the fastest ones. The only assumptions made in this work are that
there are a finite number of stationary oval or polygonal obstacles with a finite number of
vertices, and that the robot has a cylindrical shape. The obstacles can be any combination
of polygons and ovals, as well. In order to reduce the problem of path planning to that of
navigating a point, the obstacles are enlarged by the robot’s polygon dimensions to yield a
new set of polygonal obstacles. This “enlargement” of the obstacles is a well known method
introduced formally by Lozano-Pèrez & Wesley (1979).

3. Environment description

3.1 Obstacles

Every obstacle is described by a neural network as shown in Fig. 1. The inputs of the
networks are the coordinates of the points of the path. The output neuron is described by
the following expression, which is called a repulsive penalty function (RPF) and has a role of
repulsive potential:

C = f (I0) = f

(

M

∑
m=1

OHm
− θT

)

, (1)

where I0 takes a role of the induced local field of the neuron function f (·), θT is a bias, equal
to the number of the vertices of the obstacle decreased by 0.5. The number of the neurons in
the hidden layer is equal to the number of the vertices of the obstacle. OHm

in eq. (1) is the
output of the m-th neuron of the middle layer:

OHm
= f (IHm

), m = 1, . . . , M, (2)
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Fig. 2. The annealing network for a rectangular obstacle

where IHm
is the weighted input of the m-th neuron of the middle layer and has a role of

induced local field of the neuron function. The neuron activation function f (·) has the form:

f (x) =
1

1 + e−x/T
, (3)

where T is the pseudotemperature and the induced local field (x) of the neuron is equal to I0

for eq. (1) or equal to IHm
in the case of eq. (2). The pseudotemperature decreasing is given

by:

T(t) =
β0

log(1 + t)
. (4)

Finally, IHm
is given by the activating function

IHm
= wxmxi + wymyi + θHm

, (5)

where xi and yi are the coordinates of i-th point of the path, wxm and wym are weights, and
θHm

is a bias, which is equal to the free element in the equation expressing the shape of the
obstacle.
The following examples show descriptions of simple objects.

Example: 1. Description of polygonal obstacle (see Fig. 2).

The area inside the obstacle can be described with the following equations:

x − 0.2 > 0; −x + 1.4 > 0

y − 0.2 > 0; −y + 1.0 > 0.

From these equations and eq. (5):

wx1 = 1 wy1 = 0 θH1
= −0.2

wx2 = −1 wy2 = 0 θH2
= 1.4

wx3 = 0 wy3 = 1 θH3
= −0.2

wx4 = 0 wy4 = −1 θH4
= 1
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i.e. in the middle layer of the network, the activating functions become

IH1
= wx1xi + wy1yi + θH1

= xi − 0.2

IH2
= wx2xi + wy2yi + θH2

= −xi + 1.4

IH3
= wx3xi + wy3yi + θH3

= yi − 0.2

IH4
= wx4xi + wy4yi + θH4

= −yi + 1.0.

Hence, the free elements in the equations describing the obstacle are represented by the biases
θHi

and the weights in the equations for IHi
are the coefficients in the respective equations.

Example: 2. Circular shape obstacle.

When an obstacle has a circular shape, IHm
is expressed as:

IH = R2 − (xi − P)2 − (yi − Q)2, (6)

where R is the radius and (P, Q) are the coordinates of the centre.

Example: 3. Description of elliptical obstacles.

When the obstacle has elliptic (circular) shape, IHm
is expressed as:

IH = a2b2 − (X − xi)
2b2 + (Y − yi)

2a2, (7)

which comes directly from the standard equation of the ellipse

(X − xi)
2

a2
+

(Y − yi)
2

b2
= 1,

with xy-coordinates of the foci (−
√

a2 − b2 + X, Y) and (
√

a2 − b2 + X, Y) respectively, and the
description network has two neurons in the middle layer.

Note 1. The oval shaped obstacles are represented by neural network having two neurons (see the above
Example 2 and Example 3) in the middle layer.

It is obvious from the above that any shape which can be expressed mathematically can be
represented by the description neural network. This, of course, includes configurations which
are a combination of elementary shapes.
The description of the obstacles by the shown here network has the advantage that it can be
used for parallel computation of the path, which can increase the speed of path generation. As
it will be shown later, this description of the obstacles has the superiority that the calculation
time depends only on the total number of the obstacles’ vertices.

3.2 The local minima problem

The local minima remain an important cause of inefficiency for potential field methods.
Hence, dealing with local minima is the major issue that one has to face in designing a planner
based on this approach. This issue can be addressed at two levels (Latombe (1991)): (1)
definition of the potential function, by attempting to specify a function with no or few local
minima, and (2) in the design of the search algorithm, by including appropriate techniques for
escaping from local minima. However, it is not easy to construct an “ideal” potential function
with no local minima in a general configuration. The second level is more realistic and is
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addressed by many researchers (see e.g. Latombe (1991); Lozano-Pèrez et al. (1994) and the
references there).
In the proposed in this chapter algorithm, the local minima problem is addressed in a simple
and efficient fashion:

1. After setting the coordinates of the start and the goal points respectively (Fig. 3(a)), the
polygonal obstacles are scanned in order to detect concavity (Fig. 3(b)). In the process of
scanning, every two other vertices of a given obstacle are connected by a straight line and
if the line lies outside the obstacle, then a concavity exists.

2. If the goal (or the start) point lies inside a concavity, then a new, temporary, goal (start)
lying outside the concavity is set (point g’ in Fig. 3(b)), and the initial path between the
original goal (start) and the new one is set as a straight line. The temporary goal (start) is
set at the nearest to the “original” start (goal) vertex.

3. Every detected concavity is temporarily filled, i.e. the obstacle shape is changed from a
concave to a nonconcave one (see Fig. 3(c)). After finishing the current path-planning task,
the original shapes are retained so that the next task could be planned correctly, and the
temporary goal (start) is connected to the original one by a straight line (Fig. 3(d)).

g

s

(a) The original shape

g

s

g'

(b) Scanning result

g

s '

(c) The filled concavity

g

s '

s

(d) Final path

Fig. 3. Concave obstacle (the local minima solution)

The above allows isolating the local minima caused by concavities and increases the reliability
of the path planning.

4. Optimal path planner

The state of the path is described by the following energy function.

E = wlEl + wcEc, (8)
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www.intechopen.com



8 Will-be-set-by-IN-TECH

where wl and wc are weights (wl + wc = 1), El depicts the squared length of the path:

El =
N−1

∑
i=1

L2
i =

N−1

∑
i=1

[(xi+1 − xi)
2 + (yi+1 − yi)

2], (9)

and Ec is given by the expression.

Ec =
N

∑
i=1

K

∑
k=1

Ck
i , (10)

where N is the number of the points between the start and the goal, K is the number of the
obstacles, and C is obtained through eq. (1).
Minimizing eq. (8) will lead to obtaining an optimal in length path that does not collide with
any of the obstacles. In order to minimize (8) the classical function analysis methods are
applied. First, we find the time derivative of E:

dE

dt
=

N

∑
i=1

[

wl

(

∂L2
i

∂xi
+

∂L2
i−1

∂xi

)

+ wc

K

∑
k=1

∂Ck
i

∂xi

]

ẋi

+
N

∑
i=1

[

wl

(

∂L2
i

∂yi
+

∂L2
i−1

∂yi

)

+ wc

K

∑
k=1

∂Ck
i

∂yi

]

ẏi (11)

Setting

ẋi = −η

[

wl

(

∂L2
i

∂xi
+

∂L2
i−1

∂xi

)

+ wc

K

∑
k=1

∂Ck
i

∂xi

]

,

ẏi = −η

[

wl

(

∂L2
i

∂yi
+

∂L2
i−1

∂yi

)

+ wc

K

∑
k=1

∂Ck
i

∂yi

]

(12)

we can rewrite the above equation as

dE

dt
= − 1

η

N

∑
i=1

(ẋ2
i + ẏ2

i ) < 0 (13)

where η is an adaptation gain. It is obvious that, when ẋi → 0 and ẏi → 0, E converges
to its minimum. In other words, when all points of the path almost stop moving, there is no
collision and the path is the optimal one, i.e. eq. (13) can be used as a condition for termination
of the calculation iterations.
Now, from equations (12),

∂L2
i

∂xi
+

∂L2
i−1

∂xi
= −2xi+1 + 4xi − 2xi−1,

∂L2
i

∂yi
+

∂L2
i−1

∂yi
= −2yi+1 + 4yi − 2yi−1 (14)

180 Recent Advances in Mobile Robotics

www.intechopen.com



Neural Networks Based Path Planning and Navigation of Mobile Robots 9

and

∂Ck
i

∂xi
=

∂Ck
i

∂(I0)
k
i

∂(I0)
k
i

∂xi
=

∂Ck
i

∂(I0)
k
i

(

M

∑
m=1

∂(OHm
)k

i

∂(IHm
)k

i

∂(IHm
)k

i

∂xi

)

= f ′((I0)
k
i )

(

M

∑
m=1

f ′Hm
((IHm

)k
i )w

k
xm

)

;

∂Ck
i

∂yi
=

∂Ck
i

∂(I0)
k
i

∂(I0)
k
i

∂yi
=

∂Ck
i

∂(I0)
k
i

(

M

∑
m=1

∂(OHm
)k

i

∂(IHm
)k

i

∂(IHm
)k

i

∂xi

)

= f ′((I0)
k
i )

(

M

∑
m=1

f ′Hm
((IHm

)k
i )w

k
ym

)

. (15)

This leads to the final form of the function:

ẋi = −2ηwl(2xi − xi−1 − xi+1)− ηwc

K

∑
k=1

f ′((I0)
k
i )

(

M

∑
m=1

f ′Hm
((IHm

)k
i )w

k
xm

)

;

ẏi = −2ηwl(2yi − yi−1 − yi+1)− ηwc

K

∑
k=1

f ′((I0)
k
i )

(

M

∑
m=1

f ′Hm
((IHm

)k
i )w

k
ym

)

, (16)

where f ′ is given by the following expressions:

f ′(·) = 1

T
f (·)[1 − f (·)]

f ′Hm
(·) = 1

T
fHm

(·)[1 − fHm
(·)]. (17)

In eq. (16) the first member in the right side is for the path length optimization and the second
one is for the obstacle avoidance.
One of the important advantages of the above path-planning is that it allows parallelism in
the calculations of the neural network outputs (see Section 6), which leads to decreasing the
computational time. The generated semi-optimal path can be optimized further by applying
evolutionary methods (e.g. genetic algorithm). Such approach leads to an optimal solution
but the computational cost increases dramatically (Yu et al. (2003)).

5. The path-planning algorithm

In this section an algorithm based on the background given in Sections 3 and 4 is proposed.
The calculations for the path are conceptually composed by the following steps:

Step 1: Initial step

1. Let the start position of the robot is (x1, y1), and the goal position is denoted as (xN , yN).

2. Check for concavities (see Section 3.2.) and, if necessary, reassign the goal (start)
position.

3. At t = 0 the coordinates of the points of the initial path (straight line) (xi, yi; i =
2, 3, . . . , N − 1) are assigned as

xi = x0 + i(xN − x1)/(N − 1),

yi = (yN − y1)(xi − x1)/(xN − x1) + y0, (18)

181Neural Networks Based Path Planning and Navigation of Mobile Robots
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i. e. the distance between the x and y coordinates of every two neighboring points of
the path is equal.

Note 2. It is assumed that the obstacles dimensions are enlarged by the robot’s polygon dimensions
(Lozano-Pèrez & Wesley (1979)).

Step2: 1. For the points (xi, yi) of the path which lie inside some obstacle, the iterations are
performed according to the following equations:

ẋi = −2η1wl(2xi − xi−1 − xi+1)− η1wc

K

∑
k=1

f ′((I0)
k
i )

(

M

∑
m=1

f ′Hm
((IHm

)k
i )w

k
xm

)

;

ẏi = −2η1wl(2yi − yi−1 − yi+1)− η1wc

K

∑
k=1

f ′((I0)
k
i )

(

M

∑
m=1

f ′Hm
((IHm

)k
i )w

k
ym

)

(19)

i = 2, 3, . . . , N − 1.

2. For the points (xi, yi) situated outside the obstacles, instead of eq. (19) use the following
equations:

ẋi = −η2wl(2xi − xi−1 − xi+1);

ẏi = −η2wl(2yi − yi−1 − yi+1), (20)

i.e. for the points of the path lying outside obstacles, we continue the calculation with
the goal to minimize only the length of the path.

Step 3: Perform p times the calculations of step 2, i.e. find xi(t+ p), yi(t+ p) (i = 2, 3, . . . , N −
1), where p is any suitable number, say p = 100.

Step 4: Test for convergence

Calculate the difference d of the path lengths at time t and time (t + p), i.e.

d =
N−1

∑
i=2

{[xi(t + p)− xi(t)]
2 + [yi(t + p)− yi(t)]

2}1/2. (21)

• If d < ε then the algorithm terminates with the conclusion that the goal is reached via
an “optimal” path. Here ε is a small constant, say ε = 0.1.

• If d ≥ ε, then GO TO step 2.

Here eq. (19) is almost the same as eq. (16) with the difference that instead of only
one RPF, different functions, as explained below, are used for every layer of the neural
network. Every obstacle is described using a neural network as shown in Fig. 1. The output
neuron is described by eq. (1), the neuron function f (·) is the same as in eq. (3) and the
pseudotemperature is as in eq. (4).
The hidden layer inputs are as in eq. (1) but the outputs OHm

now become

OHm
= fHm

(IHm
), m = 1, . . . , M (22)

with IHm
becoming the induced local field of the neuron function fHm

:

fHm
(IHm

) =
1

1 + e−IHm /THm (t)
(23)
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Fig. 4. Block diagram of the algorithm

and

THm
(t) =

βm

log(1 + t)
(24)

Finally, IHm
is given by the activating function (5). Equations (3) and (23) include different

values of pseudotemperatures, which is one of the important conditions for convergence of
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the algorithm and for generation of almost optimal path. The block diagram of the algorithm
is shown in Fig. 4.

6. Experimental results

To show the effectiveness of the proposed in this paper algorithm, several simulation
examples are given in this section.

6.1 Calculation speed evaluation

The simulations were run on ASUS A7V motherboards rated with 328 base (352 peak)
SPEC CFP2000 and 409 base (458 peak) SPEC CINT2000 on the CPU2000 benchmark. The
environment shown in Fig. 5 has been chosen for the benchmark tests. In the course of the
speed measurements the number of the vertices was increased from 20 to 120 with step of
20 vertices. The final configuration of the obstacles inside the benchmark environment with
three generated paths is shown in Fig. 5. To compare the run-times, 12 path generations have
been performed randomly. After deleting the lowest and the highest path planning times, the
average of the remaining 10 values has been adopted.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2  2.5

Fig. 5. The benchmark environment with three generated paths

Figure 6 shows the speed change depending on the total number of vertices of the obstacles.
It is clear that the speed changes linearly with increasing the number of the vertices (cf.
Lozano-Pèrez & Wesley (1979)).
As it was explained at the end of Section 4 the algorithm allows parallelizing the path
computation. To calculate the speedups we ran parallel simulations for the same benchmark
environment on one, two, and three processors. Figure 7 shows how the speed increases with
increasing the number of the processors. For the case of two processors the simulation was
run on two ASUS A7V boards, and for the case of three processors a Gigabyte 440BX board
was added as a third processor. The communication during the parallel calculations was
established by an Ethernet bus based network between the computers.
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Fig. 6. Computation time depending on the number of the loops (100–1000) and number of
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Fig. 7. Run-time t for different number of processors for 1000 loops depending on the
number of vertices

It is possible to further increase the calculation speed by introducing adaptive adjustment of
the parameters η1 and η2. For example, the following adaptive adjusting law increases the
speed about three times (see Fig. 8):
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η̇1(n + 1) = −η1(n) + δ sgn[(d(n)− d(n − 1))(d(n − 1)− d(n − 2))],

η̇2(n + 1) = −η2(n) + δ sgn[(d(n)− d(n − 1))(d(n − 1)− d(n − 2))] (25)

where δ is a small constant.
In the course of path calculations, a limited number of obstacles has impact on path
generation—mostly the obstacles the initial, straight line path intersects with, contribute to
path forming. Then, while performing Step 1 of the algorithm, if all obstacles which do not
collide with the initial path are ignored and excluded from the calculations, it is possible to
drastically decrease the calculation time. A good example is the path in vertical direction in
Fig. 5. When all obstacles are considered, the total number of vertices is 135 and RPF for
all obstacles would be calculated. However, if only the four obstacles which collide with the
initial straight line are used, the number of vertices decreases to only 17 and the expected
calculation time will be approximately 8 times shorter. After finishing the path generation
for the decreased number of obstacles, the original environment should be retained and a
final correction of the path shape should be performed. Naturally, this final correction would
require only few additional calculation loops.

6.2 Simulation results

Figure 9 shows additional results of path planning simulation in an environment with
concaved obstacles. It can be seen that the local minimums do not cause problems in the
path generation. In these simulations the number of the points between the start position and
the goal was set to 200. In both examples the values of the coefficients in equations of the
algorithm were not changed. In fact, the authors have performed many simulations using
different environments, in which the obstacles were situated in many different ways. In all
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the simulations the paths were successfully generated and the time for the calculations agreed
with the calculation speed explained above. Figure 10 shows the potential fields of obstacles
in the course of a simulation.
We have developed software with a graphic user interface (GUI) for the simulation and control
of differential drive robots in a 2D environment (See Fig. 11). The environment allows the user
to easily build configuration spaces and perform simulations. This environment is available
at http://shiwasu.ee.ous.ac.jp/planner/planner.zip. The algorithm was successfully applied to the

187Neural Networks Based Path Planning and Navigation of Mobile Robots

www.intechopen.com



16 Will-be-set-by-IN-TECH

Fig. 11. GUI environment for simulation and control of differential drive robots

control and navigation of “Khepera” (Mondada et al. (1993)) and “Pioneer P3-DX” robots.

7. Discussion and conclusions

In this paper we have proposed an algorithm which guarantees planning of near optimal in
length path for wheeled robots moving in an a priori known environment. We are considering
wheel placements which impose no kinematic constraints on the robot chassis: castor wheel,
Swedish wheel, and spherical wheel.
The proposed algorithm is a significant improvement of the potential field algorithms because
it finds an almost optimal path without being trapped in local minima and the calculation
speed for the proposed algorithm is reasonably fast. Because the only assumptions made are
that the obstacles are stationary polygons and ovals, the algorithm can solve the navigation
problem in very complex environments. For description of the obstacles the algorithm uses
only the Cartesian coordinates of their vertices and does not need memory consuming obstacle
transformations (cf. Zelinsky (1992); Zelinsky & Yuta (1993)). The consumed memory space is
equal to twice the number of the coordinates of the path points and some additional memory
for keeping the parameters of the description networks.
Because the generated paths are piecewise linear with changing directions at the corners of the
obstacles, the inverse kinematics problems for the case of differential drive robots are simply
solved: to drive the robot to some goal pose (x, y, θ), the robot can be spun in place until it
is aimed at (x, y), then driven forward until it is at (x, y), and then spun in place until the
required goal orientation θ is met.
It becomes clear from the course of the above explanations that the effectiveness of the
proposed algorithm depends on the development of some mechanism for choosing the initial
values of the pseudotemperatures (βm) or properly adjusting the pseudotemperatures in
order to generate potential fields satisfying the properties given in Section 2. Applying of
an adaptive adjusting procedure to the coefficients βm similar to that for adjusting of η1 and
η2 (see. eq. (25)) is one possible solution. Moreover, there is no need to perform continuous
adjustment throughout the whole path generation—adjustment in the first few steps gives
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good approximations for the initial values of the βm coefficients. Strict solution of this problem
is one of our next goals.
The proposed algorithm can be easily extended for the 3-D case (Kroumov et al. (2010)).
The extension can be done by adding an additional input for the z (height of the obstacles)
dimension to the obstacle description neural network. Adding of z coordinate and employing
a technique for path planning, similar to that proposed in Henrich et al. (1998), would allow
further adoption of the algorithm for planning of paths for industrial robots. Development of
such application is another subject of our future work.
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