
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



2 

Roles of Microtubules in  
Maintenance of Nerve Cell Networks 

Kentaro Yomogida, Shumi Yoshida-Yamamoto and Hiroshi Doi 
Department of Food Science and Nutrition,  
School of Human Environmental Sciences,  

Mukogawa Women’s University 
Nishinomia 

Japan 

 

1. Introduction 

Recent topics of neural networking studies 

Various higher brain functions such as reflex, memory, emotion, imagination and so on, are 

supported by complicated neuronal networks. To keep the precise connections of the wires 

is very important for the central nerve functions. The discovery of neural stem cell 

provided us many clues to understand the mechanism of neural networking. Now, we 

know that the networking neurons and the supportive neuroglia cells are yielded from the 

neural stem cells by regulation of several specific bHLH transcription factors (Sakamoto. 

M., et al., 2003, Liu, Y. et al., 2004, Parras, C.M. et al., 2002). In these processes, the 

networking cells project axons to connect the dendrite of counterpart cells precisely. Since 

the connections between differentiated nerve cells must be kept for the functions, the 

morphological disruptions lead to some neural disorders. Recent brilliant studies about the 

microtubule dynamics enhance our understandings of the mechanism of neural network 

maintenance and the disorders.  

1.1 Neural networking and neural stem cell during neural development 

During early neural development, neural stem cells transform from neuroepithelial cells 

into radial glial cells (Hatakeyama, J. et al., 2004). The radial glial cell in ventricular zone, 

projected a long radial glial process to cerebral membrane, self-renews and produces an 

immature neuron (Miyata T., et al., 2004). The immature neuron transforms into multipolar 

cell with many process containing actin fibers. Cyclin-dependent kinase 5 (Cdk5) regulates 

the formation of these process and the transform of multipolar cell into bipolar locomotion 

cell having a leading process (Kawauchi, T., et al., 2006). The bipolar locomotion cells move 

to the precise layer along the radial glial fiber, and differentiate into mature networking 

neurons. To construct an ordered six layer structure of mammalian cerebral cortex, the 

locomotion of these neural stem cell linage cells is strictly regulated by Reelin signal pathway 

affecting microtubule dynamics (Liu, J.S., 2011). So, some disorders of the microtubule 

regulation can cause structural errors of neural network development. 
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1.2 Maintenance of neural network in adult hippocampus 

In adult hippocampus, it was shown that neurogenesis also occurs constantly (Eriksson, PS. 

et al. 1998). Like early neural development, these new neurons are produced from radial glia 

cells (Fukuda, S., et al., 2003). Since the neurogenesis and activity-dependent synaptic 

plasticity are accelerated by long term learned behavior (Bruel-Jungernab, E., et al., 2006), it 

can participate in functional remodeling of neural networks during the formation of 

memories. A recent interesting study indicates microtubule transport systems in the 

dendrites play important roles in maintenance of the synaptic plasticity (Okada, D., et al., 

2009). It suggests that the healthy microtubule kinetics is needed to maintenance the neural 

networking during the formation of memories. What microtubule is all about? 

2. The kinetics of microtubules and cell functions 

2.1 Function of microtubules 

The cytoskeleton is the essential infrastructure of all cells; it consists of microtubules, actin 

microfilament, and intermediate filaments. Microtubules are a major component of the 

cytoskeleton and form a highly organized network of intermingled filaments in eukaryotic 

cells. Microtubules are important components of several subcellular structures, including 

the mitotic apparatus, cilia, flagella, and neurons. Microtubules are fundamentally composed 

of a protein called tubulin. Tubulin is made of α- and ǃ-tubulin. The molecular weight of 

each is about 50 kDa. There are many microtubule-associated proteins (MAPs) (Wade, R.H., 

2009) in addition to the tau protein, which contributes to the formation of microtubules. The 

tau protein is enriched in axons. Two types of high-molecular-weight MAPs (200-300 kDa) 

and the lower-molecular-weight ones (~55 kDa) have been isolated from the brain. For 

example, MAP2 is found in the cell body and dendrites. In addition, microtubules interact 

with many proteins, including motor proteins, such as kinesin and dynein. 

Microtubules play many roles in cellular processes, such as cell division, cell motility, and 

morphogenesis, and they are required for brain function. Purich and Kristofferson (1984) 

have reviewed microtubule assembly. Wade has described the function of the cell division 

of microtubules in detail (Wade, R.H., 2009). The motor proteins kinesin and dynein use 

microtubules as pathways for transport and are also involved in cell division. Microtubules 

organize the spatial distribution of organelles. Actin and microtubule cytoskeletons determine 

cell shape and polarity during morphogenesis and promote stable cell-cell and cell-matrix 

adhesions through their interactions with cadherins and integrins, respectively (Hall, A., 

2009). 

2.2 Polymerization of tubulin: Microtubule assembly 

Tubulin is widely distributed in eukaryotic cells, and the specific self-assembly of tubulin 

results in microtubule formation. Microtubules are hollow tubes approximately 25nm in 

diameter. Tubulin is composed of two subunits of α- and ǃ-tubulins that bind one mole of 

guanosine triphosphate (GTP) each. GTP binding to α-tubulin is present at the non-

exchangeable site in α-tubulin, and that binding to ǃ-tubulin is at an exchangeable site in ǃ-

tubulin. Some reports have focused on microtubule assembly kinetics (Detrich, et al., 1985; 

Barton, J.S., et al., 1987; Caplow, M., and Shanks, J., 1990). The polymerization mechanism of 

tubulin is fundamentally due to the polymer self-assembly theory of Oosawa and Kasai 

(1962). Magnesium is required for tubulin polymerization (Weisenberg, R.C., 1972; Olmsted 
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J.B., and Borisy, G.G., 1975), and calcium inhibits microtubule assembly. The assembly kinetics 

of the microtubule protein is altered by the ionic strength, temperature, and magnesium ion 

but not by the pH (Barton, J.S., et al., 1987). Timasheff and Grisham have reviewed in detail 

an in vitro assembly process from tubulin and the mechanism of microtubule assembly 

(Timasheff, S.N., and Grisham, L.M., 1980). 
On the growth of microtubules, Mitchison and Kirshner (1984) proposed a behavior called 
dynamic instability. Horio and Hotani (1986) confirmed alternate phases of growth and 
shrinkage of microtubule assembly using a light optical technique.  
Post-translational modifications of tubulin building generate functional diversity of 

microtubules. Hammond et al. (2008) have reported that tubulin modifications influence 

microtubule-associated proteins, such as severing proteins, plus-end tracking proteins, and 

molecular motors. In this way, tubulin modifications play an important role in regulating 

microtubule properties, such as stability and structure, as well as microtubule-based 

functions, such as ciliary beating, cell division, and intracellular tracking (Hammond, J.H., et 

al., 2008). 

2.3 Relationship between microtubule assembly and GTP hydrolysis 

Tubulin used in our experiments was prepared from bovine brain by the modified 

procedure of Lee et al. (Weisenberg, R.C., and Timasheff, S.N., 1970; Lee, J.C., et al., 1973; 

Na, G.C. and Timasheff, S.N., 1981). Microtubule assembly was monitored by turbidity at 

350 nm using a spectrophotometer with a recorder. GTP hydrolysis accompanies 

microtubule formation. GTP bound at an exchangeable site is hydrolyzed. GTPase activity 

was evaluated by the measurement of GDP produced using HPLC with an ODS column 

(Seckler, R., et al., 1990). We examined the effects of the magnesium ion on microtubule 

assembly and the GTPase activity of tubulin. GTPase activity was clearly observed at a 2 

mM magnesium ion concentration, while the formation of microtubules under the same 

conditions was not observed (Doi, H., et al., 1991). Microtubule assembly and GTPase 

activity were examined in the presence of 0.1 mM calcium ion as well. GTPase activity was 

apparently observed at 2min after heating at 37 °C, while there was no turbidity. The results 

described above indicate that the GTPase activity of tubulin occurs before microtubule 

assembly. The facts support the results of O’Brien et al. (O’Brien, E.T., et al., 1987) rather 

than those of Carlier (Carlier, M.-F., 1982). 

3. Some evidence of nerve cell dysfunction caused by the microtubules 
disorder  

Here, we present some evidence of nerve cell dysfunction caused by the microtubules 
disorder. Our series of experiments using a neural cell line PC12 demonstrated that the 
oxidative damage of microtubules causes the morphological abnormality cell (Yamanaka, 
Y., et al., 2008).  

3.1 Function of microtubules in neuronal cells  

In neurons, microtubules play a variety of roles in brain function. As in many other cells, 
microtubules form organized structures within a cell that can act as structural scaffolds. 
With respect to specific for neuron, microtubules have three functions. First, the stabilization 
of microtubules is sufficient to induce axon formation during neuronal development, and 
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they act as signal molecules for initial neuronal polarization (Witte H et al., 2008). Second, 
the development of dendritic spines that are major sites of excitatory synaptic input is 
regulated by microtubules (Gu, J., et al., 2008). Third, microtubules participate in the 
trafficking of synaptic cargo molecules that are essential for synapse formation, function, 
and plasticity. Cargos are transported between axons and dendrites mediated by motor 
proteins moving along microtubules to their plus or minus ends (Hirokawa N and 
Takemura, R., 2005). The motor proteins are the minus-end directed dynein and plus-end 
directed kinesins (Schliwa, M., 2003, Vale, R.D., 2003). On the other hand, several studies 
have shown the importance of the actin-based transport mechanism at excitatory synapses. 
Actin, which is abundant in highly dynamic structures, such as growth cones and dendritic 
spines, receives the cargo following passage of the microtubules. Neuronal transmission is 
achieved partly by collaboration of both microtubules and actins.  
As reported above, it is clear that microtubules play an essential role in neuronal development, 
function, and transmission. Disruption of neuronal microtubules means functional failure of 
brain. Indeed, microtubule dysfunction and impairment of neurotransmission were 
observed in neurodegenerative diseases, such as Alzheimer’s disease (refer to Chapter 4) 
and Parkinson’s disease. The Alzheimer brain is characterized by the presence of aberrant 
amyloid plaques, neurofibrillary tangles, and alpha-synuclein. Neurofibrillary tangles are 
composed of paired helical filaments made from abnormally formed tau protein. In the 
normal brain, tau binds to microtubules and, thereby, stabilizes neuron structure and 
promotes tubulin assembly into microtubules. However, hyperphosphorylation of tau is 
assumed to be the cause of the formation of paired helical filaments; namely, it could result 

in the self-assembly of tangles of paired helical filaments and straight filaments. α-Synuclein 
is a microtubule-associated protein (MAP) that is colocalized with tubulin in Lewy’s bodies. 

The deposition of α-synuclein as fibrillary aggregates in neurons or glial cells is observed in 
a Lewy variant of Alzheimer’s disease (Spillantini, M.G., et al., 1997) and Parkinson’s 

disease (Lücking, C.B. and Brice, A., 2000). It has been reported that α-synuclein could 
promote tubulin polymerization in microtubules (Alim MA et al., 2004), whereas other 

studies have indicated that α-synuclein inhibits tubulin polymerization (Chen L et al., 2007, 
Zhou RM et al., 2010).  
Cumulative evidence suggests that neurodegenerative diseases are associated with neuronal 

cytoskeletal alterations. These findings suggest that elucidating the biology of the cytoskeleton 

could be a target for drug therapy. 

3.2 The PC12 cells as a model for neurite outgrowth 

To study the behavior of the neuronal microtubules, PC12 would be an appropriate cultured 

cell line. It can enable us to conduct a visual assessment of neurite behavior from formation 

to disruption.  
The adrenal pheochromocytoma (PC12) cell line has been well studied as a model for 
neurite outgrowth. It was originally isolated from a tumor in the adrenal medulla of a rat in 
1976 (Greene, L. A., and Tischler, A. S., 1976). One of the main characteristics of PC12 cells is 
to differentiate into sympathetic neuron-like phenotypes in response to nerve growth factor 
(NGF) (Figure 1A, 1B). The mechanism of NGF-induced neuronal differentiation has not 
been fully elucidated; however, it has been reported that the regulator of G-protein 
signaling (RGS) proteins associates TrkA with activated signaling proteins of the 
Ras/pErk1/2 pathway (Willard, M.D., et al., 2007, Nusser, N., et al., 2002). 
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                                     (A)                                                                            (B) 

Fig. 1. Phase contrast microscopic observation of PC12 cells (A)before differentiation (B) 
after differentiation. For differentiation, the undiffereantiated cells were treated with 100 
ng/mL NGF. NGF induced the apparent morphological transformation of PC12 cells into 
neuronal-like cells within 3days 

3.3 The oxidative damage to PC12 cells  

Many studies have demonstrated that lipid peroxidants are present in the AD brain (Keller. 
J. N., and Mattson, M. D., 1998; Markesbery, W. R., and Carney, J. M., 1999;). We tried to 
verify whether lipid peroxidation was induced in PC12 cells by exogenously added 
phosphatidylcholine hydroperoxides (PCOOH) which is a primary product of lipid 
peroxidation. Lipid peroxidation was measured according to the method of Hedley and 
Chow (1992), which utilizes time-resolved flow cytometry. Table 1 shows the fluorescence of 
undifferentiated and differentiated cells before and after exposure to PCOOH for 24 or 48 h. 
Compared with that of undifferentiated cells, the fluorescence of differentiated cells was 
significantly decreased in the presence of 100 μM PCOOH for 48 h (P < 0.05). The 
fluorescence of undifferentiated cells exposed to the same concentration of PCOOH was 
slightly but not significantly affected. These results suggest that PCOOH induces membrane 
lipid peroxidation in PC12 cells before and after differentiation. The levels of peroxidation 
were higher in the membranes of differentiated cells than in those of undifferentiated cells. 
It is likely that differentiated cells are more sensitive to oxidative stress. Considering that 
lipid peroxidation was certainly induced in differentiated PC12 cells, this experimental 
system may be useful as a model for AD brain cells. 

 

Before Differentiation (%) After Differentiation (%) Conc. of PCOOH 

(μM) 24h 48h 24h 48h 

0 100 100 100 100 
100 88.8 79.2 84.9 63.8* 

Table 1. Relative fluorescent intensity of cis-parinaric acid bound by the cell membrane 

Neurites consist mainly of microtubules, whose function is significantly based on the ability 
of tubulin to polymerize and depolymerize. To examine the effect of PCOOH on 
microtubule formation from tubulin, we measured the GTPase activity of PC12 cells. 
GTPase activity is an indicator of microtubule formation and, therefore, provides the degree 
of microtubule assembly (O’Brien, E.T. et al., 1987; Seckler, R., et al., 1990; Doi, H., et al.,   
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1991). The specific activity of GTPase derived from differentiated cells was significantly 
decreased in the presence of 50 μM PCOOH (P < 0.01) (Figure 2). In the case of exposure to 
100 μM PCOOH, the value was decreased by one-tenth compared to that in the absence of 
PCOOH. In undifferentiated cells, the specific activity of GTPase decreased by half in the 
presence of 50 μM PCOOH (Figure 3). The difference in sensitivity might be due to the 
presence or absence of neurites. Although GTP hydrolysis accompanies the polymerization 
reaction (Doi, H., et al., 1991), GTP resynthesis does not occur in the reverse reaction of 
depolymerization (David-Pfeuty, T., et al., 1977). Thus, PCOOH disrupts existing microtubules 
and inhibits new microtubule formation from tubulin. 
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Fig. 2. GTPase-specific activity of the differentiated cells incubated with PCOOH at various 
concentrations for 24 h. The data represent means ± SD, **P < 0.01 compared with the 
control value 
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Fig. 3. GTPase-specific activity of the undifferentiated cells in the same condition as that 
described in Figure 2. The data represent means ± SD, *P < 0.05 compared with the control 
value 
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To visualize PCOOH-induced damage to the tubulin, we performed immunofluorescence 

microscopy using an antibody to monoclonal mouse anti-α-tubulin clone B-5-1-2. 
Undifferentiated or differentiated cells were individually cultured with 250 μM of PCOOH 

for 6 h. After that, the cells were stained by the antibody to monoclonal mouse anti-α-
tubulin clone B-5-1-2 and the antibody to Cy3-conjugated sheep anti-mouse IgG. As shown 
in the photographs in Figure 4A, the undifferentiated cells looked like grape clusters, and 
the cell shape was clear. However, after exposure to PCOOH, the cell shape was drastically 
changed (Figure 4B), becoming too vague to identify. The fluorescence emitted from cells 
was weakened. PCOOH may have induced cell shape alteration by the degradation of 
tubulin, which was more marked in differentiated cells than in undifferentiated cells. 
Although the extended neurites were observed clearly in the absence of PCOOH (Figure 
4C), they disappeared when exposed in PCOOH for 6h (Figure 4D). The shape of the small 
cell was vague, as it was in undifferentiated cells, and the fluorescence emitted from cells 
became extremely weak. The fact that neurites composed of microtubules are easy to be 
injured may account for the higher vulnerability of differentiated cells.  
 

   

                  (A)                                  (B)                                    (C)                                  (D) 

Fig. 4. Fluorescence microscopic observation of cells after tubulin antibody staining.  

Representative fields are shown: undifferentiated cells before (A) and after exposure to 

PCOOH for 6h (B), and differentiated cells before (C) and after exposure to PCOOH for 6h (D)  

Furthermore, we tried to verify that the tubulin depolymerization induced by PCOOH 
could be attenuated by antioxidant. Differentiated cells were cultivated with 5 µM retinol or 
ascorbic acid beforehand and then exposed to PCOOH. The GTPase activity of cell extracts 
derived from cells treated with retinol was three-fold higher than that of untreated control 
cells (Figure 5). Incorporation of antioxidants in cells before exposure to PCOOH protected 
tubulin depolymerization. This experimental data might lead to the development of an 
effective strategy to prevent some neurodegenerative diseases. 

4. Ageing of central nerve system and the microtubules disorder caused by 
neural malnutrition 

As people get older, the brain functions decline in varying degree. Although the causes are 
still unknown, the neurogenesis in hippocampus is decreased dramatically with ageing 
(Cameron, HA., et al., 1999). The other hand, we can detect neurofibrillary tangles in aged 
entorhinal cortex or brain cortex of neurodegenerative disorder. These tangle formation are 
concerned with aggregation of tau, which is a microtubule binding protein. In this section, 
we will discuss the factors determining the ageing-related neural functional decline in 
Alzheimer’s disease from the aspect of the axonal microtubules disorder caused by neural 
malnutrition. 
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Fig. 5. GTPase-specific activity of the differentiated cells incorporated 5 µM retinol or 5µM 
ascorbic acid before exposure to PCOOH. The data represent means ± SD, §, ¶, #P<0.01 
compared with the corresponding control value, a<0.01 compared with the data without 
PCOOH, b,c<0.05 compared with the data without PCOOH 

4.1 Microtubule degeneration and Alzheimer’s disease 

Alzheimer’s disease (AD) is characterized by neuronal cell death and two kinds of deposits, 
neurofibrillary tangles (NFT) and senile plaques. Abnormal microtubule-binding tau 
proteins were isolated from AD by Liu et al. (1991). As is well known, in an AD brain, 
aberrant accumulation of amyloid-ǃ-protein (Aǃ) occurs ahead of the accumulation of 
paired helical filament in NFT. Imahori and Uchida (1997) observed extensive 
phosphorylation of tau and programmed cell death in a primary culture of embryonic rat 
hippocampus with Aǃ (Imahori, K., and Uchida, T., 1997). There are several important 
reports on the phosphorylation of tau protein in AD by the group of Iqbal (Alonso, A.D.C., 
et al., 1994; Gong, C-X., et al., 1994; Iqbal, K., et al., 1994; Gong, C-X., et al., 1995). Glycogen 
synthase kinase -3ǃ(GSK-3ǃ) is responsible for most of the abnormal hyperphosphorylation 
of tau observed in paired helical filaments, which are diagnostic for AD (Imahori, K. and 
Uchida, T., 1997). The tau protein is a microtubule-associated protein that contributes to the 
formation of microtubules. It is considered that hyperphosphorylated tau is free from 
microtubules and induces the destruction of the cytoskeleton.  
It is possible that microtubules are related to many neurodegenerative diseases in addition 
to AD. In the brain with Alzheimer’s disease, glycation end products are observed. 
Microtubule-associated protein T is glycated at the tubulin binding site (Ledesma, et al., 
1995). The facts observed in microtubule-associated proteins of tau and T appear to indicate 
that they play a role in microtubule assembly. Furthermore, microtubule assembly is not 
likely to take place when tubulin has been modified.  

4.2 Lipid hydroperoxides in neurodegenative disease 

A part of the oxygen introduced in cell produces reactive oxygen species as a by-product in 
an electron transport system because of NADPH-dependent oxidase. Materials in cell are 
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exposed by oxidative stress, and then oxidative modifications of lipid in the cell membrane 
and DNA are introduced. The role of oxidative stress in Alzheimer’s disease has been 
reported in several studies, some of which showed elevated markers of oxidative stress, 
including lipid oxidation products (Sultana, R., et al., 2006). Oxidized lipid hydroperoxides 
are a characteristic of neurodegenerative disease, and oxidized lipid by-products were 
enriched in the brain with Alzheimer’s disease (Yoo, M-H., et al., 2010). 
Hydroperoxides of phospholipid were detected in brain samples from patients with 
Alzheimer’s disease using oxidative lipidomics (Tyurin, V.A., et al., 2008). 

4.3 Inhibition of microtubule assembly by lipid hydroperoxides 

We have investigated the effect of lipid hydroperoxides on microtubule assembly 
(Kawakami, M., et al., 1993; Kawakami, M., et al., 1998). Lipid hydroperoxides were 
prepared from soybean phosphatidylcholine by photosensitized oxidation in methanol, with 
methylene blue being added to the phosphatidylcholine-methanol solution as a sensitizer 
(Kawakami, M., et al., 1998). Microtubule formation was inhibited dose-dependently by 
lipid peroxides. This result suggests the possibility that the interaction between tubulin and 
lipid peroxides may be the cause of some brain diseases. Matsuyama and Jarvik speculated 
that microtubule integration was a key to Alzheimer’s disease (Matsuyama, S.S. and Jarvik, 
L.F., 1989).  
Bizzozero et al. (2007) also indicated by in vitro experiments that lipid hydroperoxides were 
most likely responsible for protein oxidation. Lipid peroxidation scavengers, such as 
butylated hydroxytoluene, prevent the carbonylation of cytoskeletal brain protein-induced 
glutathione depletion (Bizzozero, O.A., et al., 2007).  

4.4 The mechanism of tubulin modification by phosphatidylcholine hydroperoxides 

We examined the concentration-dependent effects of phosphatidylcholine hydroperoxides 
on the ability of tubulin to polymerize into microtubules (Kawakami, M., et al., 2000). The 
results demonstrated that even very low concentrations of peroxides were sufficient to 
interfere with tubulin and, therefore, microtubule function. In the fluorescence spectra of 
tubulin before and after interaction with phosphatidylcholine hydroperoxides, a red shift in 
the emission maximum was observed. This fact indicates a conformational change upon the 
reaction, namely, that fluorescent aromatic amino acids become easier to dissolve on 
reaction with phosphatidylcholine hydroperoxides. The interaction mechanism may be a 
hydrophobic one because no effect on electric conductivity was observed, indicating that 
modulation of ionic binding was not involved.  

4.5 Possibility of recovery of tubulin function deteriorated by lipid hydroperoxides 

The effects of lipid hydroperoxides on microtubule assembly were studied in an in vitro 
assay system, as were the protective effects of vitamin A derivatives (ǃ-carotene, retinal, and 
retinol). All vitamin A derivatives had the ability to protect against the inhibitory effects of 
lipid hydroperoxides, presumably owing to their antioxidant activities. This suggests a 
mechanism for the ability of vitamin A to inhibit cell ageing. 
Glutathione and cysteine were used as water soluble reductants (Kawakami, M., et al., 
1999). Tubulin GTPase activity deteriorated by lipid hydroperoxides was restored by the 
addition of water soluble reductants as well. These chemicals also have a protective effect on 
cellular ageing by the reduction of materials oxidized in vivo. 
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The detection of microtubule assembly-promoting material was tried using tubulin GTPase 

activity as the assay of microtubule assembly. Kawaguchi, M., et al. (2007) found a peptide 

with a molecular weight of 1340.8 from Japanese classified barley flour. 

4.6 Polymerization and calcium binding to tubulin-colchicine complex 

Calcium plays important roles as a messenger in a signal transaction by changing its 

concentration. The calcium concentration is continually changing, while the concentration is 

fundamentally very low in a cell. This means that the change affects the functions of many 

cell constituents.  

Calpain is a neutral cysteine proteinase activated by calcium in cytozol, and it converts p35 

to p25 (Lee, M-S., et al., 2000). In the brain of AD patients, p25 is stimulated. P25 induces the 

activation of cyclin-dependent kinase 5 (CDK5). CDK5 is also a factor for the 

hyperphosphorylation of tau. Indirubins, which are inhibitors of CDK5/p25, repress cell 

death (Leclerc, S., et al., 2001).  

We are interested in the effect of calcium on tubulin polymerization because calcium is an 

inhibitor of microtubule assembly. Another reason may be the contribution of calpain, 

which is regulated by calcium, to AD. Instead of tubulin, the tubulin-colchicine complex was 

used (Doi, H., et al., 2003a). The high affinity sites of calcium took part in the polymerization 

of the complex in the GTP state, while the low ones participated in the depolymerization. 

The complex had 2 high-affinity sites with a dissociation constant of 11.5 x 10-6 M and 16 

low-affinity sites with a dissociation constant of 2.27 x 10-4 M in the GTP state. In the case of 

the GDP state, the dissociation constant of the high-affinity site was 7.2 x 10-6 M, and that of 

the-low affinity site was not observed. The ultracentrifugal experiment indicated a slightly 

more compact structure in the GTP state compared with the GDP state. The partial specific 

volumes of the tubulin-colchicine complex in the state of GTP were 0.739 and 0.744 ml/g in 

imidazole and BES buffers, respectively (Doi, H., et al., 2000b). The sedimentation coefficient 

S020.w increased from 5.38 S with no calcium to 5.75 and 6.08 S with calcium concentrations of 

0.1 and 0.5 mM, respectively, in the absence of the magnesium ion. In an imidazole buffer, 

the sedimentation coefficients S020.w were 5.82 and 6.06 S in the presence of 0 and 2 mM 

MgCl2, respectively. These results indicate that the tubulin-colchicine complex causes the 

calcium affinity to become low after polymerization with its conformational change. This 

means that the assembly induces the stability of microtubules from calcium. 

5. The microtubules disruption and some neurodegenerative diseases  

Finally, we will discuss the association between the microtubules disorders and other some 

neurodegenerative diseases. Each neurodegenerative disease has specific aberrant 

intracellular structures like neurofibrillary tangles of AD (Chiti, F. and Dobson, C.M., 2006). 

Recently, TRA DNA-binding protein of 43kD (TDP-43) has been spotlighted as a common 

factor associated with the formation of these aberrant structure (Neumann, M. et al., 2006, 

Arai, T. et al., 2006, 2009, Fujishiro, H. et al. 2009, Schwab, C. et al., 2008). Although several 

diseases show only TDP-43 intracellular accumulation, TDP-43 is combined with other 

protein such as tau in many neurodegenerative diseases. It suggests that TDP-43 is a causal 

factor of microtubules disruption in these diseases. Although the intrinsic or extrinsic causes 

of many neurodegenerative diseases have been investigated aggressively, the breakdown of 

microtubules maintenance system by lack of brain blood flow has not been understand well. 
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Since neurons require sufficient energy supply for maintaining their high-performance, the 

lack of energy might damage the microtubule dynamics. As mentioned above, the 

microtubules disruption can be a trigger of neural degeneration. Further investigation for 

causes of microtubule disruption in neurons might be contribute for our understanding 

neurodegenerative disease. 
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