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1. Introduction 

During the past 10-15 years it has become clear that most major neurodegenerative diseases 
(Alzheimer’s disease, Parkinson’s disease, ALS, tauopathies, prion diseases and 
trinucleotide repeat diseases – henceforth to be referred to collectively as AANDs) share 
cellular and systemic features that suggest a common underlying mechanism of 
pathogenesis. At the cellular level, our understanding of the common aspects of AAND 
pathogenesis can be most simply summarized in terms of the downstream consequences of 
uncontrollable protein oligomerization and aggregation in postmitotic cells. The aggregated 
proteins block or disrupt normal proteosomal turnover and autophagy and become 
abnormally modified over time, generating toxicity via multiple pathways (mitochondrial 
damage, increased intracellular Ca++, caspase activation etc.) eventually leading to 
neurodegeneration and neuron death. This hypothesis is consistent with a key genetic 
similarity between these diseases – e.g. that familial forms are typically caused by autosomal 
dominant mutations that favor aggregation (in the case of asyn, tau, PrP and SOD1) or 
formation (in the case of APP and CAG repeat sequences) of disease-specific, aggregation-
prone proteins. These similarities have suggested to many that a single central defect (i.e. 
the failure of normal protein folding) lies at the heart of most or all of the diseases listed 
above, and has led to them being categorized be some as “protein misfolding diseases”.  
While the importance of aggregate formation (and its attendant cellular dysfunctions) in 
each of these diseases is well established and has been intensively studied, our 
understanding of the intercellular and systemic aspects of these diseases is less detailed. 
That said, enough has been learned about their roles in neuronal biology and pathobiology 
and in the neuropathogenesis of AANDs to generate a general consensus that AAND 
development is 1) not cell autonomous and 2) that AANDs have another common hallmark– 
the progressive involvement of synaptically connected regions of the CNS over time in 
disease-specific patterns. Furthermore, it has become clear that important synergistic 
interactions between specific aggregation-prone proteins (tau and asyn (83), PrP and 
APP/Abeta (134), PrP and tau (216), PrP and asyn (95) may occur at both at the cellular and 
interneuronal level that affect the pathogenesis of specific AANDs. However, while 
neurofibrillary lesions develop according to characteristic, disease-specific sequences 
between highly interconnected regions of the brain in some AANDs (e.g. AD, tauopathies 
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and LBD), the mechanisms by which the tendency toward aggregate formation is 
propagated between neurons as the disease progresses remains unclear, as does the degree 
to which such mechanisms contribute to disease pathogenesis as a whole. Similarly, there is 
still a gap between what we now know about the normal (mostly as monomer) and toxic 
(mostly as oligomers and aggregates) functions of each of these proteins at the cellular level. 
We know a good deal about the factors that favor AAND oligomerization, but very little 
about how oligomerization actually occurs in human disease. In particular, we have no real 
idea how these factors might 1) interact synergistically to drive cytotoxicity and 
degeneration and 2) are related to the mechanisms by which interneuronal toxicity is 
propagated between neurons in different parts of the brain. This review will attempt to 
integrate relatively recent findings about the interactions between the 3 most widely studied 
of these proteins (i.e. tau, alpha synuclein and the prion protein) both with each other and 
with cellular mechanisms associated with unconventional protein secretion into a 
framework that will account for common pathogenic features of these diseases and suggest 
future avenues of inquiry. For the sake of clarity, the discussion will be focused on asyn, tau 
and PrP and their interactions with APP/Abeta, and will omit a detailed consideration of 
other diseases that may have similar pathogenetic features (e.g ALS, Huntington’s disease) 
and associated aggregation-prone proteins (SOD1, polyglutamine expansions, TDP-43, 
FUS), except when these become relevant to the discussion of general mechanisms. It will be 
guided by the example of PrP misprocessing and prion diseases, where the key link between 
intracellular protein aggregation, interneuronal transfer and the spread of neurofibrillary 
lesions through the brain has already been definitively established and which provides hints 
as to where to look for similar links in other AANDs.  

Overview of common neuropathological and genetic aspects of AAND pathogenesis at 
the cellular and systemic levels  

The predominant focus of basic research over the past 2 decades into the pathogenesis of all 
of the major AANDs has been on 1) the mechanisms responsible for protein aggregate 
formation and 2) the nature of cytotoxic changes that accompany and result from the 
aggregation of each of the proteins being discussed. As a consequence, aggregation-
associated events and downstream consequences of aggregation such as the failure of 
protein turnover mechanisms in long-lived postmitotic cells such as neurons are among the 
best-characterized cytopathological features of neurodegenerative diseases. This work has 
generated a broad consensus that aggregation causes the failure of normal protein turnover 
mechanisms and the consequent development of abnormal toxic routes of protein disposal 
are central pathogenic events of the degenerative diseases that afflict the human central 
nervous system as it ages. Common toxic elements downstream of protein aggregation in 
AANDs include: 1) aggregation associated damage to protein turnover mechanisms, 2) 
mitochondrial dysfunction and or maldistribution leading to apoptosis-associated changes 
due to low ATP, generation of oxidative stress and abnormal Ca++ fluxes and 3) aggregate-
mediated sequestration of normal proteins resulting in a loss of the normal function 
associated with sequestered proteins. 
The classic example of a neuropathogenesis pattern suggestive of lesion spread in AANDs 
(outside of prion diseases) is provided by Alzheimer’s Disease (AD). Ever since the seminal 
studies of Heiko and Eva Braak (27), it has been apparent that the neurofibrillary 
degenerative changes of AD develop in a characteristic sequence that closely follows the 
clinical progression of symptoms (11, 203). The earliest changes occur in specific limbic 
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regions concerned with olfaction, spatial localization and episodic memory formation and 
consolidation (transentorhinal, entorhinal, pyriform cortices), functions that are typically 
compromised in the earliest clinical (and even preclinical) phases of AD. This is followed by 
the progressive involvement of limbic and paralimbic centers including the hippocampus, 
adjacent allocortical regions of the medial temporal lobe (e.g. subiculum), the insula and 
anterior cingulate cortex. Again, these neuropathological changes match the development of 
AD symptoms quite closely, with changes in emotional processing and short term memory 
becoming evident by the time AD can be recognized as such in the clinic, together with the 
onset of cognitive changes. The most prominently affected limbic centers are strongly 
interconnected with one another synaptically as well as functionally (203), as would be 
necessary for lesion propagaion via transsynaptic toxicity transfer. The areas affected in this 
“limbic stage” of mild AD make up only a small proportion of the brain by volume (24), but 
make and receive major inputs to and from large neocortical regions that become involved 
in later (isocortical) stages of AD, which could account for the sudden expansion of AD 
neurofibrillary lesions at the onset of Braak Stage 5 (24, 202). Although some regions of the 
brain (e.g. the primary sensory and motor cortices) are almost never involved significantly 
in AD despite being strongly interconnected with highly vulnerable limbic centers, it seems 
likely that this is due to cell specific or even connectivity-specific factors (8) that may 
delineate individual AANDs from one another (63, 59, 109, 116). 
The progressive involvement of synaptically interconnected brain regions seen in AD is 
mirrored in non-AD tauopathies such as frontotemporal dementia (FTD), Pick’s Disease 
(PiD) progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) and 
involve some of the same parts of the brain (prefrontal/frontal cortex temporal cortex, 
insula) although the areas of initial involvement are different from AD and from each other 
(9, 10, 11, 63). Similarly, Parkinson’s Disease (PD) and PD-associated dementing syndromes 
such as Lewy Body Disease (LBD) share a common set of vulnerable loci (dopaminergic 
neurons in the substantia nigra, brainstem autonomic nuclei, olfactory bulb and neocortical 
loci) but vary significantly in the initial nidus of vulnerability and the degree of involvement 
of other parts of the brain (48, recently reviewed in 3, 50, 59). Also, the progression of Lewy 
Body containing lesions in LBD and PD differs significantly from that seen in AD in that it is 
not tightly linked to overall clinical or neuropathological severity (28). Overall, significant 
overlap between the areas vulnerable to synucleinopathies with those involved in early 
stages of AD (nucleus of Meynert, olfactory bulb, various isocortical loci) and in non-AD 
tauopathies (basal ganglia, isocortex). Familial prion diseases (fatal familial insomnia, 
Creutzfeld Jacob disease (CJD), Gerstmann-Schenker-Straussler syndrome) show a similar 
pattern (lesion evolution via a subset of synaptically connected areas from characteristic 
initiation loci) with a common set of vulnerable loci (thalamus, neocortex, ANS, cerebellum) 
that partly overlaps those of the other ANDDs (illustrated in Figure 1).  
Another distinctive feature of AANDs as a group is the manifestation of each syndrome in 
both sporadic and familial forms, with exonic or intronic mutations in a specific 
aggregation-prone protein being sufficient to generate a (usually) dominant allele capable of 
replicating all aspects of the (usually more common) sporadic disease with high penetrance 
(197). Perhaps the most interesting aspects of this pattern are a) the degree of similarity 
between sporadic and familial disease forms, and b) the greater tendency of sporadic, but 
not familial, disease forms to show asymmetrical development, especially in non AD 
tauopathies (59, 143). These emphasize the importance of both selective vulnerability and 
synaptic connectivity as common factors in these diseases, and is consistent with the 
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intriguing relationship between acquired, sporadic and familial forms of prion diseases such 
as Creutzfeld-Jacob disease (CJD), where the point of origin is clearly different in each case, 
but common aspects of vulnerability and synaptic connectivity are sufficient to generate a 
common clinical presentation (CJD), despite the presence of characteristic differences in 
lesion form (175). A similar relationship may hold between certain non-AD tauopathies and 
clinically identical diseases (both called FTDP or FTDP-17) involving loss of function 
changes in RNA-binding proteins (TDP-43, progranin) involved in the localization and 
translation of cytoskeletal proteins (hnnRPs), including tau and neurofilament proteins (147). 
Here, TDP-43 and or progranin may be activating downstream elements of a common  
 

 

Fig. 1. Schematic illustrating the relationship between the characteristically vulnerable 
regions in AD, (green) nonAD tauopathies (pink), familial prion diseases (yellow) and 
synucleinopathies (blue). Regions typically involved in multiple AAND disease classes are 
shown in overlapping areas. Individual syndromes from all of these diseases eventually 
involve polymodal (associative) isocortical areas and thus cause dementia, even though 
severe cognitive changes may be absent or develop very late in other members of each 
group (e.g. Parkinson’s Disease, fatal familial insomnia). Vulnerable areas in familial and 
sporadic forms of each AAND are identical, with familial syndromes beginning earlier and 
progressing faster than sporadic ones. Characteristic areas of vulnerability for 
frontotemporal syndromes (FTDP-U) that involve TDP-43 and FUS rather than tau 
aggregates and acquired forms of prion disease (vCJD, kuru) are virtually identical to non 
AD tauopathies (pink) and familial prion diseases (yellow), respectively, possibly owing to 
the presence of “prion like” motifs in these proteins (53). ANS: autonomic nervous sytem, 
MFB: medial forebrain bundle/nucleus of Meynert, GP: globus pallidus 
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misprocessing pathway that can also lead to the spread of tau–based lesions in the same 

overall pattern, rather than recruiting tau directly. Such a pathway might involve the 

mislocalization of proteins important in the maintenance of neuronal polarity from the axon 

to the soma and dendrites via a failure of hnnRP-mediated mRNA localization. This 

possibility is particularly intriguing since a) hnnRP interactions with the 3’ UTR of the 

mRNA encoding tau have been shown to be responsible for both tau localization to the axon 

(12, 146) and the generation of neuronal polarity (147) and b) the neuropathology of AD and 

non-AD tauopathies suggests that polarity loss plays a role in tauopathy pathogenesis (107, 

1741). Overall, the common neuropathological and genetic features of AANDs involving 

tau, asyn and PrP are largely consistent with the existence of a common lesion propagation 

mechanism (or several closely related mechanisms) that involves direct interneuronal 

transfer of a toxic factor between adjacent and transsynaptic neurons.  

Linking aggregation to lesion spreading – The case of the prion protein  

The prototypic (and most extreme) example of an aggregation-prone protein that 

propagates its misfolded state at the protein, cellular and even organismal level is of course 

the prion protein (PrP), the misfolding of which mediates a class of mostly rare neurological 

degenerative diseases (transmissable spongiform encephalopathies) of humans and other 

mammals, the best known of which are CJD, scrapie, and kuru. Due to the pioneering work 

of Tikva Alper, Carlton Gadjusek and (particularly and most recently) Stanley Prusiner and 

co-workers over the past 50 years, and after rigorous verification by often highly skeptical 

investigators, there is now a general consensus that the so called “Prion hypothesis” 

proposed by Prusiner 30 years ago has correctly predicted key peculiarities of prion disease 

transmission such as the effect of PrP knockouts (31) and thus correctly describes the 

pathogenesis of these diseases (reviewed in 3, 49, 175). The Prion Hypothesis states that 

individual molecules of a single, widely expressed protein (the prion protein, or PrP) 

becomes misfolded and misprocessed in a manner that makes it adopt a neurotoxic 

conformation (PrPSc), but more importantly, permits it to transmit this conformation on to 

other prion proteins in the normal (PrPC) conformation. The peculiar and controversial 

history of prion biology thus provides us with a highly verified example of how the 

misprocessing of an aggregation-prone protein into a toxic form can result in the 

interneuronal propagation of a protein with self regenerating, neurotoxic characteristics, 

and thus effect the spreading of neurofibrillary lesions to adjacent, presynaptic or 

postsynaptic neurons. The likely relevance of PrP misprocessing mechanisms to the 

pathogenesis of tauopathies, synucleinopathies, and other AANDs is further underscored 

by recent demonstrations that immensely subtle differences in PrP misprocessing and PrPSc  

structure appear to mediate the distinctive clinical and neuropathological manifestations of 

the various prion diseases (18, 40, 49, 168). In addition, recent studies of the normal cellular 

functions of PrPC suggest that it is involved in the function of the actin-rich subcortical 

cytoskeleton and its interactions with microtubules, cellular membrane trafficking, cell 

adhesion and signal transduction in a variety of cell types (reviewed in 3, 53). In neurons, 

PrPC appears to play a critical (if subtle) role in synaptic plasticity and most interestingly, in 

the propagation of HIV infection in the CNS (149, 180). The similarities in the cellular 

function, localization and misprocessing of PrP, APP/Abeta, asyn and tau identify likely 

points of interaction between these proteins, and synergy in their misprocessing, which are 

discussed futher below. 
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Table 1. Comparison of the pathobiological characteristics of 4 aggregation-prone proteins 
responsible for most aggregation-associated neurodegenerative diseases (AANDs) in 
humans The table summarizes aspects of disease-associated misprocessing of 4 aggregation-
prone proteins (amyloid precursor protein/beta amyloid (APP/Abeta) tau, alpha synuclein 
(asyn) and prion (PrP)) discussed in the text that are relevant to both aggregate formation 
and lesion propagation in major human neurodegenerative diseases (Alzheimer’s Disease 
(AD) Down’s Syndrome (DS), Pick’s Disease (PiD), progressive supernuclear palsy (PSP), 
corticobasal degeneration (CBD), Parkinson’s disease (PD), Lewy Body disease (LBD), 
Creutzfeld-Jakob disease (CJD), Gerstmann Straussler Schenker disease (GSS), fatal familial 
insomnia (FFI), kuru and variant CJD (vCJD). *publication in review (185) 
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2. Common structural/functional features of AAND proteins favoring 
aggregation and intercellular transfer 

General molecular and cellular considerations 

The abnormal and irreversible oligomerization and/or aggregation of specific proteins (e.g. 

tau, asyn, PrP) is the central common feature in AAND cytopathogenesis and by itself 

accounts for many of the other common cellular features of these diseases (a good review of 

the subject can be found in 196). Familial AANDs are typically induced by intronic, 

autosomal dominant mutations that either directly favor aggregation (tau, asyn, PrP), favor 

events that lead to generation of the aggregation-prone form of the protein (e.g. cleavage, 

abnormal association with other proteins, abnormal glycosylation or phosphorylation), or 

both (tau, PrP) (3, 50, 202). Exceptions to the autosomal dominant pattern include recessive 

mutations responsible for loss of function effects in protein turnover pathways (e,g, parkin 

126). These genetics suggest that AAND pathology is due to a gain of function leading to 

aggregate formation and downstream toxicity involving the poisoning or overloading of 

proteasomal or autophagy-based protein turnover. A common structural feature among 

these proteins relevant to their tendency to aggregate is the co-existence in each one of a 

“core” domain which can form beta sheet interactions plus at least one other domain that 

inhibits this tendency, resulting in a balance between a normal conformation (rich in alpha 

helix or “random coil”) conformation and an abnormal beta sheet-rich conformation that 

favors aggregation (50, 5, 156). Key common features in the cellular functions of tau, asyn 

and PrP include interaction with both chaperone proteins and with signal transduction 

elements, which might be expected of proteins capable of both aggregation and transcellular 

movement, respectively. Moreover, all three proteins are frequently associated with cellular 

membranes under normal conditions, especially in synapses (29, 71, 76, 148, 212, 213, 233) 

where they interact with APP (an integral membrane protein) and/or Abeta (93, 171), and 

are substrates for lipid raft-associated Srk family tyrosine kinases (e.g. fyn - 95, 137, 188, syk 

- 136 and abl - 37). In particular, the luminal localization of each protein in endosomes 

and/or trafficking vesicles associated with unconventional secretion (35, 78, 140, 142), 

reviewed in 215), and the interactions (in some cases copolymerization) that can occur 

between them (83, 134, 171, 216, 217) make endosomal pathways a highly plausible 

candidate site that might mediate the synergistic misprocessing of these proteins. An 

endosome-mediated common misprocessing pathway is also consistent with the availability 

of templating polyanionic ligands such as membrane-associated proteoglycans favoring 

further aggregation and toxicity (51, 52, 91, 106, 111), and the ready diversion of 

endocytosed proteins to unconventional secretion pathways (68, 70, 733, 102, 116, 124, 140, 

175, 215).  
Tau, asyn and PrP are all “switch” proteins that alternate between 2 states based on 

regulated charge/charge modifications. Under normal circumstances, asyn, tau and PrP 

function as soluble monomers that interact extensively with other proteins in the both in the 

cytosol and in association with cellular membranes. Soluble PrPC and asyn contain alpha 

helical and random coil domains, and take up a predominantly random coil conformation in 

aqueous solution (186, 219, 231). In cells, tau normally extends along microtubules, where it 

stabilizes them by preventing classic dynamic instability via binding to them at multiple 

sites in its aggregation prone-microtubule binding domain (MTBR) (33). Tau:MT binding is 

itself dynamic (186), and tau interacts with fyn kinase, actin and protein chaperones via loci 
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that overlap the MTBR when not bound to MTs (95, 107, 189). Monomeric asyn exists in both 

membrane-associated and cytosolic loci, and like tau, can bind to both actin and tubulin (4). 

As with tau, disease-causing mutations in asyn cause it to preferentially bind to membrane-

associated proteins (69). Both membrane and MT-associated asyn have been found to 

aggregate (4, 139), in some cases forming clusters of microvesicles (195). PrP possesses an 

aggregation-prone domain (octopeptide repeat) that appears to be oligomerized reversibly 

during endocytosis. Unlike tau, it also possesses a separate N terminal MT-binding domain 

(231). All three proteins possess-aggregation-prone domains via which they aggregate 

resulting in a significant increase in beta sheet structure (156, 187, 231). Deletion analyses of 

all three proteins show that the removal or inactivation of non-aggregating domains (the N 

terminus of PrP, the tau N and C termini, the asyn C terminus) may tip this balance toward 

aggregate formation (1, 38, 112, 226). Post-translational regulation of each protein via 

phosphorylation may also do this (5, 41, 42, 80), either because it blocks the binding of the 

aggregation-prone domain to its normal cellular ligand, thereby permitting self assembly 

(156), or by favoring conversion of soluble oligomer to insoluble higher-order aggregates 

(187). Familial disease mutations may mimic these changes (13, 66, 80) as well. Overall, 

while tau, asyn and PrP are capable of aggregate formation and normally interact with both 

MTs and membrane associated components, the details of how oligomer formation and 

membrane association is related to normal function vary considerably. A key common 

feature relevant to the appearance of gain-of-function properties leading to interneuronal 

propagation in AANDs is the existence of self-binding/assembly capable and assembly-

inhibiting domains in each protein that are normally balanced in favor of monomeric 

functions. This can thus act as a “switch” between normal and abnormal processing 

pathways which may be mutated to favor oligomer formation in familial AANDs, or 

alternatively, be “flipped” by derangement of regulatory elements (e.g. kinase/phosphatase 

and protease activities) that induce these posttranslational processing events in sporadic 

AAND pathogenesis.  
Protein misprocessing in AANDs becomes irreversible and opens processing pathways 
associated with cellular membranes. A key feature of almost all AANDs involving tau, 
asyn and PrP is that they can occur as both familial and sporadic syndromes, which suggests 
that a common AAND pathogenesis mechanism must involve self-regenerating alteration in 
cellular function that is largely irreversible. Initial stages of oligomerization (e.g. dimerization) 
are most likely insufficient to do this, since all 3 proteins are normally found in a variety of 
reversible folding states, including low level oligomers, and are ligands for membrane-
associated signal transduction kinases that reversibly oligomerize downstream elements 
(205). However, the binding of these proteins to templating ligands is likely to create higher-
order oligomers that could become subject to irreversible structural changes such as 
proteolytic cleavage (90, 226, 234) and covalent crosslinking (62, 118, 161, 192). The nature of 
ligands shown to be capable of doing this currently includes 1) the proteins themselves, in 
the case of PrPSc (175) and mutant asyn (227), 2) polyanions such as heparan sulfate 
proteoglycans (HSPGs) (106, 225) or RNA (57, 119) and 3) other aggregation-prone proteins 
(83, 93, 95, 216). Other effectively irreversible changes in the cellular environment may be 
produced by downstream toxic effects of the initial aggregates, such as protease activation 
(7, 169), possibly aided by ionophore formation (39, 84, 133), or the recruitment of 
monomers into existing toxic aggregates via sequestration (6, 120). Endocytosed proteins 
that bind to the membrane via charge-charge interactions will undergo an acidification of 
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their environment that may favor templating interactions and oligomer formation (67) 
Hyperphosphorylation, cleavage and aggregation of wild type tau isoforms can be induced 
simply by increasing the concentration of protein that is not MT-associated and thus 
vulnerable to misfolding (reviewed by 13, 203), causing the release of tau to the cytosol. This 
kind of release likely accompanies Abeta or axotomy-induced MT loss (32, 101), and thus 
could account for some of the dependence of tau misprocessing on Abeta generation and 
traumatic head injury in AD (151, 178). 
While aggregate formation is a central event in the misprocessing of aggregation-prone 

proteins that drive AAND pathogenesis, it remains unclear how it is connected to the 

diversion of these proteins into the unconventional secretion pathways that might account 

for the interneuronal transmission of neurofibrillary lesions that appears to occur in these 

diseases. One possibly relevant property common to tau, asyn and PrP is their tendency to 

associate with membranes (29, 40, 53, 67, 173, 230, 233) and bind to membrane associated 

molecules such as HSPGs and fatty acids (44, 222, 225, 232). HSPG binding favors oligomer 

and fibril formation (52, 91, 120, 225) and may facilitate interactions with APP, which also 

interacts with HSPGs in cholesterol rich microdomains (lipid rafts 64, 193). Such interactions 

seem to be favored in AAND pathogenesis, since APP, tau and asyn colocalize with HSPGs 

in AAND neuropathological lesions (51, 59, 109 197). HSPGs may facilitate interactions 

between asyn and tau (both localized to elements on the inside of the membrane) and PrPC, 

which is typically found on the exterior surface attached via a GPI anchor (163, 232) and 

may themselves mediate transcellular protein movement, as has been suggested by studies 

of morphogen movement during Drosophila development (166), possibly by trapping 

interacting proteins in the extracellular space (232). Raft-associated interactions appear to be 

important in disease-associated misprocessing of tau, asyn and PrP mediated via fyn (131, 

138, 188, 221), in aggregation (195, 230) and in disruption of signal transduction pathways in 

CNS dendrites (108, 117). Lipid association also drives oligomer and filament formation of 

Abeta, tau and PrP (44, 208, 221). In a very recent study by Binder and colleagues (170), a 

mAb specific for tau oligomer identified the presence of arachidonic acid as one of the 

requirements for early oligomer formation in cell culture. Similarly, the presence of 

membrane anchors and raft localization motifs plays an essential role in the development of 

characteristic lesion morphology of PrP-mediated disease (40); the removal of the GPI 

anchor has been shown to produce novel syndromes in transgenic models (43), while the 

removal of all of the multiple raft localization motifs on PrP blocks lesion formation and 

propagation entirely (16, reviewed in 209).  
The relationship between asyn misprocessing and membrane localization in AANDs may be 
more complex than that of PrP and tau, since some, but not all disease-inducing mutations 
block raft-asyn association (75). Like PrP and tau, asyn is localized to lipid raft microdomains 
in presynaptic terminals, where it accumulates in dystrophic neurites associated with 
Parkinson’s Disease and Lewy body dementia (81). Similarly, asyn fibrillization is favored 
by interactions with unsaturated fatty acids (173) but unlike tau, this is inhibited by saturated 
fatty acids (233). A particularly intriguing recent finding by Fang et. al. demonstrated a 
direct link between oligomerization and unconventional secretion in a study showing that 
higher-order oligomerization can drive exosome-mediated secretion of a wide variety of 
oligomerized proteins (70). This is particularly interesting given that tau, asyn and PrP are 
all substrates for fyn and related raft-associated srk tyrosine kinases (136, 138, 188), and that 
such interactions are associated with AAND pathogenesis (19, 110) and have potentially 
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self-regenerative features (i.e. by activating both the tyrosine kinase and its substrate 179). 
Such activation can result in fyn-mediated endocytosis via the caveolar pathway (204) or 
direct release of microvesicles to the extracellular space mediated via the SH4 domain of fyn 
(or other srk kinases) (34, 210). Regulation of endocytosis and exocytosis in neuronal growth 
cones by srk family kinases regulates endothelial apical endocytosis (77) and has been 
described in the marine snail Aplysia (223) suggesting that this is an evolutionarily 
conserved role for fyn-like Srk family kinases in diverse tissues. Developmental programs 
requiring high levels of localized membrane addition (e.g. neurite outgrowth) are dependent 
on the local presence of both srk family kinases and aggregation-prone proteins such as tau 
(20, 21) asyn (17) or Abeta (172) and are often abnormally reactivated in AANDs (26, 108, 
174). 

3. Cytopathological features linking aggregation and secretion in ANDDs 

We have discussed the generation of abnormal tau, asyn and PrP oligomers as the most 
likely proximate cause of neurodegeneration in AANDs and proposed a common set of 
membrane-associated ligands for these proteins (e.g. HSPGs, signal transduction pathway 
kinases, fatty acids) which might mediate common aspects of their misprocessing, including 
their oligomerization, cellular colocalization and diversion into unconventional secretion 
pathways. Several features peculiar to neuronal AAND pathobiology that seem particularly 
likely to be important are discussed below. 

Misprocessing of APP to Abeta 1-42 in early endosomes 

So far, this discussion has focused the discussion on tau, asyn and PrP as aggregation-prone 
proteins immediately responsible for downstream neurotoxicity, and has ignored the 
contribution of aberrant APP misprocessing to Abeta in AAND pathogenesis, despite its 
well established importance in the pathogenesis of AD in particular (32, 94). However, it has 
now generally regarded as established that APP misprocessing to Abeta is the initiating 
event in the pathological cascade leading to AD, even if much of the proximate cytotoxicity 
driving neurodegeneration is mediated by tau (87, 125, 177, 180). The high cholesterol 
environment of rafts appears to be necessary for AAND associated misprocessing both in 
cell culture and in in situ AD models (64, 120, 198, 208). Furthermore, Abeta production and 
toxicity appears to play an important role in AANDs involving asyn and PrP as well as tau 
(48, 58, 134, 164, 198). Most important for the present analysis is the major site of Abeta 
production from APP – the early endosome. Endosomal production of Abeta 1-42 RNAi 
experiments have shown that APP endocytosis requires the raft marker flotillin2 in neurons, 
and furthermore, that misprocessing of wild type APP to Abeta 1-42 is blocked by inhibition 
of endocytosis (191), as is the secretion of Abeta to the extracellular space (46). APP is 
recruited to rafts by the raft-associated tyrosine kinase fyn (155), where its interactions with 
tau, asyn and PrP may play a role in both oligomerization and raft patching (163) leading to 
secretion of these proteins via either endocytosis and eventually exosome-mediated release 
(68, 70, 73, 176, 185), or microvesicle shedding (145, 163). This similarity should result in 
extensive opportunities for co-oligomerization between tau, asyn and possibly PrP in 
endosomal processing, resulting in diversion of oligomerized proteins to the exosome 
pathway – schematized in Figure 3.  
AAND-associated proteins interact with APP in lipid rafts and may affect A beta 
production. There is some reason to believe that tau may influence APP misprocessing to 
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Abeta in association with endosomes, since tau binds to and may modulate the activity of 
presenilin 1, an intrinsic membrane protein which serves as the gamma secretase 
responsible for completing the cleavage of APP to Abeta (207), and is the site of most 
mutations responsible for autosomal dominant familial AD. Similarly, PrPC is normally 
endocytosed via a raft specific, flotillin2/clathrin dependent pathway (204), and it has been 
suggested that the conversion of PrPC to PrPSc, like APP cleavage to Abeta, occurs during 
endosome formation. There is indeed some evidence that PrP conversion to misfolded PrPSc 

forms can increase the misprocessing of APP by increasing the activity of the so-called beta 
secretase, which cleaves APP to a extracellularly released fragment and a “C99” 
transmembrane domain (14). Asyn interactions with APP have also been shown to greatly 
increase the level of Abeta secretion from PC12 cells (121). Conversely, the observation that 
Abeta activates the srk family kinase Abl resulting in tau phosphorylation at sites crucial to 
disease-associated tau aggregation (34), is also consistent with the possibility that Abeta-
induced tau misprocessing may occur in the context of endosome formation.  
AAND-associated protein misprocessing may favor exosomal secretion by damaging 

autophagy-mediated protein turnover mechanisms. It has long been suspected that 

alterations in protein turnover mechanisms play a significant role in the cytopathogenesis of 

AANDs. Under normal conditions, much of the proteolytic turnover of small cytosolic 

proteins such as tau, asyn and very likely PrP as well is accomplished via the 

ubiquitin/proteosome pathway (88, 181, 218). The aggregation of these proteins blocks this 

pathway, apparently due to the steric limitations of the proteosome, resulting in the 

ubiquitination of tau and Asyn aggregates typically seen in AANDs (158, 220). This 

provokes the upregulation of the macroautophagy (or simply autophagy) pathway, 

producing endosomal and lysosomal hypertrophy (35, 36, 165, 167) presumably due to the 

diversion of proteosome-mediated turnover of AAND associated proteins to the autophagy 

pathway. It is now becoming clear that aberrant autophagy pathway function is a general 

phenomenon in AANDs, and increasingly appears that autophagy pathway insufficiency 

rather than overactivity is the key cytopathological factor (105, 220), reviewed in (153). Since 

autophagy can function to remove cytosolic debris from cells via lysosomes as well as 

recycle cytosolic components, this may provide a secretion route for aggregated or 

misprocessed proteins in AANDs, especially if lysosome-mediated proteolysis is compromised 

(see Figure 2). Specific inhibition of autophagy combined with tau overexpression results in 

tau aggregate formation even in cultured neuronal cells, with tau aggregates (104) and toxic 

cleavage fragments (129) accumulating in lysosomal compartments. Blockade of normal 

retrograde axonal transport of lysosomes in AD (23) or by specific mutation (178) appears to 

inhibit autolysosome function indirectly by preventing amphisome-lysosome fusion in the 

soma, which may favor secretion by diverting incompletely degraded cytoskeletal material 

into exosomal secretion pathways (Figure 2). Such secretion has been described as 

“exophagy” in yeast (2). It is quite possible that this kind of diversion into exosomal 

secretion pathways may apply generally in AANDs, as autophagy disruption also occurs to 

a significant extent in association with asyn, Abeta, and PrPSc-positive lesions in AANDs 

(154, 164). Moreover, the tendency of AAND associated proteins to disrupt retrograde 

transport of autophagosomes (229) could very well promote exosomal secretion of these 

proteins from ectopic locations in the distal axons, providing a mechanism for the long 

distance lesion propagation seen in AD (203) and other AANDs (9-11) - see further 

discussion below). 
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Fig. 2. Overview of possible secretion routes for AAND-associated proteins based on current 
literature Unconventional secretion has now been demonstrated for tau, asyn, PrP and Abeta 
in various model systems  
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This schematic illustrates how an aggregation-prone cytosolic protein with alternative 
membrane-associated ligands (in this case tau and fyn, respectively) might become 
aberrantly included in one of several possible vesicle trafficking pathways leading to 
unconventional release if it is released from its normal cytosolic ligand (microtubules) due 
to disease-associated conditions, which include hyperphosphorylation and microtubule loss, 
and which can be mimicked by overexpression (142). While tau is shown in this figure, the 
exosomal secretion pathways for Asyn, A beta, and PrP appear to be similar, especially since 
misprocessing of each of these proteins favors membrane-associated misprocessing (1) in 
association with the activation of autophagy (2) combined with disruption of downstream 
autophagic mechanisms that are necessary for the complete degradation of proteins in the 
autophagosome (3). While the secretion mechanism that has been identified for any of these 
proteins is nominally the “classic” exosomal pathway, marked by the presence of exosome–
enriched proteins (e.g. Alix), it is likely that exosome secretion occurs via a number of 
closely related pathways that are associated to a greater or lesser degree with 
macroautophagy and lysosome-mediated protein turnover. Some of these pathways are 
indistinguishable from (or even included in) the “classical” exosome pathway (which does 
not involve lysosomal processing) and can be identified only via the identification of 
autophagosomal marker proteins (e.g cleaved LC3 (LC3II), cytoskeletal/mitochondrial 
proteins (COX, tubulins) and/or lysosomal markers (LAMP2, cathepsins) copurifed with 
exosomal/MVB markers and the AAND-associated protein in question. Involvement of 
autophagy-associated mechanisms to form a hybrid “exophagy” pathway (2) is particularly 
likely if misprocessing is associated with aggregate-induced impairment of autophagy, as 
occurs in AANDs. Secretion pathways are elaborated from Abrahamsen et. al. (2) and Nickel 
(163). (1) microvesicle shedding– this pathway is driven by srk kinase activity and oligomer-
mediated “patching”, but does not involve endocytosis, (2) endosome recycling pathway, (3) 
classic exosome pathway, (4) non-exosomal autophagosome dumping (commonly seen with 
tau overexpression models), (5-6) “exophagy” pathways either without autophagolysosomal 
formation. 
Unconventional secretion may be linked to axonal transport and neuronal polarity 
defects caused by AAND-associated protein misprocessing. Another attractive area to look 
for common links between AAND associated aggregation and secretion of tau, PrP, asyn 
and APP is that of axonal transport and axonal identity. Each of these proteins is normally 
axonally localized (22, 127, 150), and the misprocessing of each protein has been shown to 
disrupt axoplasmic transport in AANDs and AAND models, (157, 162, 199, 200, reviewed in 
183), while disruption of dynein/dynactin mediated transport produces a phenocopy of 
AAND-like syndromes (132). General abnormalities in axonal transport are likely relevant to 
common neuropathological characteristics of AANDs, such as the anterograde and retrograde 
propagation of lesions between distant areas of the brain and the disproportionate 
involvement of large neurons, presumably due to their inherently increased vulnerability to 
mitochondrial misdistribution and growth factor deprivation (160, 190, 206).  
The reported nature of the disruptions of axonal transport has most often involved the 
obstruction of axonal transport and accompanied by neurodegeneration via what may be 
effectively an axotomy syndrome related to synapse loss and growth factor deprivation 
(157, 195) However, the more interesting possibility, at least with respect to lesion 
propagation, is that misprocessed tau, asyn or PrP could be itself aberrantly transported 
along the axon in ways that could account for disease-specific features of AANDs. There is a 
great deal of circumstantial and correlative evidence in favor of a major role for axonal 
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transport of vesicle-associated pathogens within the CNS, which closely resembles the 
movement of infectious prions within the brain (3, 53, 215). Interneuronal movement of HIV 
has recently been shown to involve PrPC mediation (181) and the binding of a raft-localizing 
domain that also mediates Abeta and PrPSc localization to rafts (149), lending direct support 
to the operation of this mechanism in AANDs. The transfer of PrPSc from the gut to the CNS 
in diseases such as kuru and vCJD involves passage through lymphatic tissues where 
intercellular movement of both proteins and viral particles occurs via exosomes (215) the 
unconventional secretion pathway common to asyn, Abeta, PrP and tau (68, 73, 176, 185). 
Each of these proteins is associated with axonally transported vesicles (71, 76, 123, 127, 140, 
141, 150, 230), sometimes in colocalization with (71) or functionally linked with one another 
(134) in synapses. Moreover, exosome release of PrP has recently been tied to synaptic 
function with specific neurotransmitters (135), illustrating one mechanism by which specific 
anterograde and or retrograde pathways might be targeted. The possible operation of 
common a “prion like” propagation of vesicle-associated misprocessed protein in AAND 
pathogenesis is further strengthened by the demonstrations that Abeta toxicity can be 
propagated from the peritoneal cavity to the CNS in a manner similar to ingested prions 
(65), and that vesicle-associated tau can be dendritically transported and secreted in an in 
situ tauopathy model (123, 141). Finally, numerous studies of LBD, AD and CJD pathology 
in human patients and/or disease models have now documented the selective colocalization 
of axonally transported tau and asyn in dystrophic neurites associated with neurofibrillary 
lesions (neuritic plaques) produced by APP and/or PrP based amyloids (81, 82, 109) 
suggesting that synergistic interactions associated with vesicle formation (presumably 
during endocytosis or endosomal processing) may play a role in the lesion overlap and risk 
synergy so often seen in AAND neuropathology and epidemiology. 

Is polarity loss connected to the misprocessing and secretion of tau and other AAND-
associated proteins? 

Another aspect of axonal function that is of particular relevance to tauopathies and AD, but 
may well be involved in any or all of the AANDs under discussion, is the selective effect of 
tau misprocessing on axonal identity, process outgrowth and synaptic connectivity in AD 
and non-AD tauopathies. Tau is normally axonally localized in neurons (22) and plays a 
well-established role in axonal outgrowth (20, 34, 60, 235, reviewed in 91) and in the 
generation of axonal identity in at least some CNS neuron types (21, 34). Much of this 
developmental activity of tau involves interactions with the plasma membrane and signal 
transduction elements rather than MTs (20, 115, 235), and appears to be partly recapitulated 
in AD and tauopathy pathogenesis with the outgrowth of axonlike processes (neuropil 
threads). Another aspect of AD pathogenesis that reflects developmental tau function is the 
loss of neuronal polarity seen in the neuropathology of AD and non-AD tauopathies, which 
is manifested in a) the progressive movement of tau from the axons to the somatodendritic 
compartment with the development of neurofibrillary pathology (15, 89) and b) the 
origination of many tau-positive neuropil threads from the dendrites of neurons in AD (107, 
174).  
The link between AAND neuropathology and polarity loss accounts for important 
neuropathological and etiological peculiarities of AD, including: a) the mislocalization and 
trapping of signal transduction elements essential to the establishment of axonal identity 
and neuronal polarity, such as CRMP-2 (159, 228) and PAR1/MARK kinase (21), and b) the 
greatly increased risk (up to 19 fold) that traumatic brain injury (TBI) and chronic injury 
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caused by multiple concussions (CTE) poses for the development of neurodegenerative 
disease, AD in particular (152). Torsion and stretching injury to the brain resulting in occult 
axotomy of long tracts in the CNS is a major pathological feature in CTE (212), and can 
occur very close to the soma of the axotomized neuron without killing it (194). Such injury 
results in the accumulation of axonally transported asyn, APP, PrP and in some cases tau at 
the proximal axon stump of injured neurons that are reminiscent of axonal swellings 
containing these proteins in AANDs (15, 162, 212).  
Studies in lower vertebrate (98, 99, 101) and mammalian (45, 144, 182) systems have 
consistently suggested that polarity loss induced by proximal axotomy could be a mechanism 
capable of linking axonal injury and the development of AAND-like neuropathology. 
Proximal axotomy induces ectopic axonlike sprouting (98, 182), the aberrant phosphorylation 
and missorting of cytoskeletal proteins (99, 100) and thus reproduces key aspects of AD 
neuritic pathology (26, 107, 174). Missorting of axonal elements such as tau can produce AD-
like loss of function degenerative changes in the axon such as synapse loss (54) as well as 
somatodendritic hyperphosphorylated tau accumulation, which it does even at low levels of 
overexpression in murine transgenics (30, 86). Interestingly, tau induced neuropathology in 
tauopathy models produces a number of toxic changes in the dendrites that might shed light 
on the link between tau misprocessing and interneuronal tau transfer. Tau expression in 
models causes progressive dendritic degeneration (101) and has specific effects on dendritic 
MT number (103) and function (61) that resemble both AD pathology (27, 151) and the 
effects of proximal axotomy (72, 182 , 200, 101). A recent result of particular interest in this 
context is the recent demonstration by Ittner and co-workers (117) that ectopically localized 
dendritic tau mediates Abeta toxicity in a transgenic mouse tauopathy model. This finding 
highlights the possibility that Abeta-mediated tau misprocessing might be initiated by the 
aberrant juxtaposition of (normally axonal) tau with membrane-associated signal transduction 
partners that are present in dendrites, causing abnormalities in tau processing that lead to 
aggregation and eventually secretion, possibly via interactions with synaptic Abeta (71, 135). 
The dependence of neuronal polarization and axonal outgrowth on normal interactions 
between tau and localized membrane-associated tyrosine kinases (20, 21, 55) and the 
sensitivity of dendritic integrity to disruption of dendritic signal transduction pathways by 
mislocalized PrP (115) suggests that the relocalization of key proteins in AANDs might be a 
generally applicable mechanism in the misprocessing of AAND proteins by which normal 
cellular functions and interactions are replaced by abnormal ones by missorting events 
associated with damage to axonal transport and identity mechanisms. 

4. Summary and conclusions 

The aggregation of the AAND-associated proteins tau, asyn, PrP and APP/Abeta appears to 
be triggered by one or more post-translational events (cleavage/phosphorylation/ 
glycosylation) that redistribute charges so as to change the predominant secondary structure 
from an unfolded/alpha helical pattern to a beta pleated sheet pattern. This change is 
associated with and driven by familial disease mutations, and may also be favored by the 
interaction with hydrophobic elements in cellular membranes and/or the binding of 
perimembranous polyanions (e.g. HSPGs), raising the interesting (and heretofore largely 
ignored) possibility that aggregate formation in AANDs may depend at least in part on 
interactions with cellular membranes. The relationship between membrane associated 
misprocessing and the cytopathogenesis of AANDs is summarized in Figure 3.  
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Fig. 3. Summary of common cellular misprocessing pathways linking aggregation and 
interneuronal transfer of AAND-associated proteins  
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Hypothetical scheme by which the initial misfolding of AAND-associated proteins (tau asyn, 
PrP and Abeta) produces intracellular aggregates and other typical AAND cytopathological 
features in combination with the propagation of this pathology to adjacent, presynaptic and 
postsynaptic neurons. AAND cytopoathology is produced via a combination of pathological 
gain of function and loss of function toxicity pathways as indicated. Recent evidence for a 
common membrane associated misprocessing route that causes the diversion of endocytosed 
proteins into abnormal vesicle trafficking pathways is highlighted, as it links oligomeri 
formation with interneuronal transfer and offers multiple opportunities for the colocalization 
and synergistic interaction (e.g. co-oligomerization) between AANDs at the cellular level 
necessary to explain the clinical and neuropathological evidence for synergy between 
AANDs. The classical cytosolic route for aggregate formation is also shown. Novel 
relationships suggested by recent studies (peach - see text for discussion) that account for 
key common and/or specific AAND features and could be fruitful foci of future research 
include links between a) axonal damage, protein mislocation due to polarity loss, and 
aberrant toxic interactions with dendritic signalling pathways and b) membrane-associated 
oligomerization and aggregate formation are shown as well, as c) the possible link between 
damage to axonal transport (failure of normal autophagosome/lysosome colocalization) 
and unconventional secretion.  
Current evidence indicates that initial protein misprocessing in AANDs becomes irreversible 
due to cleavage and/or crosslinking events that are favored by and occur during the 
oligomerization/aggregation process and that novel emergent pathological interactions due 
to polymerization eventually become dominant in the affected neuron, leading both to the 
dysfunction and death of the aggregate-containing neuron and the spreading of the 
aggregation tendency to other neurons, where the degenerative cycle is repeated. The 
retrograde and/or anterograde transfer of membrane associated, oligomerized, toxic protein 
to other neurons involves axonal propagation of endosome-derived vesicles via transport 
mechanisms that may have been altered by aggregate-mediated toxicity. Lesion spreading 
occurs either 1) via a toxic consequence of aberrant neuronal function, such as the loss of 
transneuronal trophic factor transmission or the increased generation of toxic byproducts of 
degeneration, or 2) via the actual transfer of misprocessed proteins from one neuron to 
another. Evidence supporting the latter possibility (that lesion spread occurs via actual 
protein transfer in AANDs) has accumulated recently, as specific secretion, uptake, transfer 
and interneuronal toxicity transfer has now been observed for each of these proteins (47, 57, 
73, 74, 75, 85, 123, 124, 128, 135, 140 - summarized in Table 1) and a common unconventional 
secretion pathway (i.e. exosome-mediated secretion) has been identified for PrP and Abeta 
(73, 176) and (quite recently) asyn and tau (68, 185). A hypothetical common misprocessing 
pathway for these proteins in AANDs is schematized in Figure 3.  
The focus of this discussion has been on the shared characteristics of tau, asyn, PrP and 
Abeta that could allow each to a) associate with signal transduction elements in membrane 
raft domains and b) interact and oligomerize in association with elements capable of driving 
endocytosis (HSPGs, each other, possibly RNA, possibly via acidification driven charge-
charge interactions) under circumstances which allow entry to exosomal secretion pathways, 
possibly via modifications induced in protein turnover mechanisms (autophagy) by aggregate 
toxicity. In particular, I have focused on whether this hypothesis is consistent with the now 
voluminous evidence that AANDs involving tau, asyn, PrP and APP misprocessing overlap 
one another in their etiology and pathogenesis, and whether and how well this 
hypothesized common link between aggregation and lesion propagation accounts for the 
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peculiarities of a specific protein–disease pair (tau and AD). While the necessarily general 
nature of this analysis precludes the accurate identification of emergent common mechanisms 
of AAND pathogenesis in any detail, it is hoped that it can provide a framework that may 
help guide further investigation in this rapidly changing field. 
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