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Broadband Instability of Electromagnetic 
 Waves in Nonlinear Media 

Sergey Vlasov, Elena Koposova and Alexey Babin 
Institute of Applied Physics, Russian Academy of Science 

Russia 

1. Introduction 

Wave propagation in nonlinear media is usually accompanied by variation of their space-

time spectra (V.I. Bespalov & Talanov, 1966; Lighthill, 1965; Litvak & Talanov, 1967; 

Benjamin & Feir, 1967; Zakharov & Ostrovsky, 2009; Bejot et al., 2011). The character of this 

variation is frequently explained in terms of modulation instability which occurs, in 

particular, for electromagnetic waves in cubic media, where polarization is approximately 

equal to the cube of electric field intensity. Modulation instability manifests itself in 

partitioning of the originally uniform packet into separate beams and pulses. It has been 

studied in ample detail for the perturbations whose frequencies and propagation directions 

slightly differ from those of intense waves (pump waves), i.e., temporal and spatial spectra 

of the waves participating in the process are rather narrow (paraxial approximation) (V.I. 

Bespalov & Talanov, 1966; Litvak & Talanov, 1967; Agraval, 1995; Talanov & Vlasov, 1997). 

In this case, modulation instability is described by the nonlinear parabolic equation for a 

wave train envelope. 

The instability is quite different, if the nonlinearity is higher than the third order of 

magnitude. It was shown in (Talanov & Vlasov, 1994; Koposova & Vlasov, 2007) that the 

wave propagating in such a medium may be unstable relative to collinear perturbations at 

frequencies so high that not only wave packet envelope but the structure of each wave in the 

packet may change too. The parabolic equation does not hold for description of such 

phenomena; hence, the methods for solution of wave equations in a wide frequency band 

developed in (Talanov & Vlasov, 1995; Brabec & Krausz, 1997; V.G. Bespalov et al., 1999; 

Kolesic & Moloney, 2004; Ferrando et al., 2005; Koposova et al., 2006) are employed. One of 

such methods, namely, the technique of pseudodifferential operators (Koposova et al., 2006) 

is used in the current paper. 

The first part of the paper that is an extension of (Talanov & Vlasov, 1994) is concerned with 

the instability of perturbation waves at combination frequencies noncollinear to pump for 

the case of nonlinear polarization represented as a polynomial of arbitrary but finite degree. 

Further, application of the theory to air, for which dielectric permittivity may be represented 

in the form of a polynomial, is addressed (Loriot et al., 2009). Finally, methods of finding 

amplitude and phase distribution of electric field in an ultrashort wave packet by analyzing 

signals from intensity autocorrelator traditionally used for measuring duration of ultrashort 

laser pulses are considered. 
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2. Plane wave instability in media with polynomial nonlinearity 

Consider a linearly polarized wave packet propagating along the z -axis. We will make use 

of the equations for field E  in this beam: 
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obtained in (Koposova et al., 2006). In Eq. (1), ( )n i
t





 is the operator describing linear 

dispersion of the medium; for the processes exp[ ] i t  stationary in time, ( )n   is the index 

of refraction at circular frequency  ;   is Laplace operator in 


r  coordinates transverse to 

the propagation direction; NLP  is nonlinear polarization; and c  is the velocity of light. 

Assuming the angular difference between the directions of the interacting waves to be small, 
we will neglect dispersion of the nonlinear polarization coefficient and the Laplace operator 
in the right-hand side of (1) and suppose that 
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where 2( ) ( )n    is the dielectric permittivity at the same frequency. 
We will describe the polarization by the polynomial dependence on the magnitude of 
electric field:  
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P E ,                                                      (2) 

where (2 1)N  are (2 1) N th  order susceptibilities, and 2 1S  is the highest degree 

polarization taken into consideration. 
To the first approximation of the asymptotic theory of nonlinear oscillations (Bogolyubov & 

Mitropol’skii, 1958), a steady-state plane wave 
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generated by each term of the series (2) and related to the nonlinearity of degree 2 1N , the 

nonlinearity coefficient 2 1
N  in (4) is of the (2 1) N th  order of magnitude. 

We will study stability of the solution relative to two-frequency perturbations of the form 

1 1 2 2exp[ ( ) ] exp[ ( ) ]       
  

u i t hz ik r u i t hz ik r  , 


k  being their transverse wave number. 

Wave frequencies 1  and 2  and their propagation constant h  will be found from solution 

of dispersion equations for perturbations. 
We will seek solution of Eq. (1) in the form 
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where 0 0 0 t h z  , 1 1 t hz  , 2 2 t hz  . Among the polarization terms with the 

perturbation of the first degree 1u  and *
2u  we will select the terms of identical degrees 0A  

and *
0A :  

   
  2
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N
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and the terms whose difference of degrees 0A  and *
0A  is equal to the even integer 

2 2M N : 

 * *
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If the conditions 

    0 1 22M ,         0Mh h                 (8) 

are fulfilled, for definite values of 1,2  and h  the terms (6) and (7) will be synchronous, i.e., 

they will have identical frequencies and propagation constants. Sets of frequencies 1,2  and 

propagation constants h  will be different for 1M , 2M , and so on. In other words, 

solution of the form (5) may have M branches, with the characteristics of branch M  

depending on nonlinear polarization terms with indices  M N S . For 1M , we have 

perturbations near carrier frequency – the well-known modulation instability describing 

variations of the wave packet envelope that are slow compared to the carrier. 
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real in the frequency range under consideration, from Eq. (1) we obtain for the functions 1u  

and *
2u  the following system of equations  
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Solutions to (9) are sought in the form 

 1 1 1exp[ ]u A iH z , 

 * *
2 2 1exp[ ]u A iH z , 

constants 1A  and *
2A  are found from the system of linear equations with constant 

coefficients the determinant of which is a characteristic equation for the corrections MH  to 

the propagation constants 0 Mh h . The determinant has the form  

          { }{ } 0M M M M M MH H .   (10) 

For the corrections MH  to the propagation constants we have 

 
        

 

 
  

2( )

2 4
M M M M

M M MH .    (11) 

By wave of illustration we present in Fig. 1 the diagram of wave vectors 1( )

k  , 2( )


k  , 


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0( )k  for the considered effects in the case 2M  , when the inequality 
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c c

      or 0 0(2 ) ( )n n   is met. 

 

 

Fig. 1. Wave vector diagram of converting frequency 0 to the frequency close to the second 

harmonic for modulation instability and condition 1 0( ) 2 ( )k k  . 

The latter inequality is satisfied if the frequencies 0  and 02  are in one transparency band 

of the substance (Born & Volf, 1964). The wave vector diagram shows that in this case the 

waves at frequencies 0  and 02  may be synchronized during propagation in the direction 

of vector 0


k , which is accompanied by transformation of four vectors (quanta) of frequency 

0  into two vectors (quanta) of frequency 02 . 

Let us study (12) in more detail in the quasiparaxial approximation, omitting   everywhere 

except the expression   2 2
0( )k M k . Let us designate mismatches as 
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For 1M  (modulation instability) the radicand (11) is rewritten in the form 

     2( ) ( )D k k .  (12) 
In (12) we have 
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d d
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dI dI   

that is equal to the product of the derivative of the nonlinear additive to intensity and 

intensity. In the case of cubic nonlinearity, this expression is equal to the additive. 

The modulation instability occurs (Litvak & Talanov, 1967) at 0D . Its behavior changes as 

a function of the signs of k  and  . For 0, 0   k , perturbations with spatial scale 

are more pronounced (“self-focusing” instability); whereas for 0, 0   k , perturbations 

with temporal scales come to the forefront. Note that the modulation instability increments 

turn to zero at ( ) 0 k  and 
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From the latter condition it follows that the increments produced by different terms in the 

expansion (2) may “obliterate” each other under certain conditions. 

For 2M , in the paraxial approximation we obtain 
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The propagation constant MH  will be a complex one, and instability will occur, given 

    Mk   . The increment reaches its maximum near zeros of the expression  

 0Mk     ,    (15) 

with the increment being of order  

  0MH k .   (16) 
The expression may become zero at an arbitrary sign of nonlinear additive due to 

appearance of a transverse component of the perturbation wave number on a certain curve  
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on the , k -plane. At normal dispersion 
2

2




k


|

0
0 M   and frequencies 0M  and 0  

located in one transparency band of the substance, the equality (15) is fulfilled for the 
hyperbolae (17). There exists in this case a minimal value of the transverse wave number  
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at which instability occurs at arbitrary weak nonlinearity. Fulfillment of the equality (18) 
indicates the presence of conic radiation.  

3. Intense plane wave instability in air 

Consider the effects in air. The dependence at normal pressure of the nonlinear index of 

refraction 
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taken from (Loriot et al., 2009). is shown in Fig. 2. Curve 1 is plotted taking into 

consideration four (all known from (Loriot et al., 2009)) terms, curve 2 taking into 

consideration two terms, and curve 3 taking into consideration only the first term, when 

purely cubic nonlinearity occurs. Note that for curve 1 there exist unstable branches at 

1,2,3,4M , and for curve 2, despite its qualitative coincidence with curve 3 (one 

maximum), the instability branches exist only at 1,2M ; for curve 3 instability known as 

modulation (self-focusing) instability occurs at 1M .  
 

 

Fig. 2. Nonlinear additive to the index of refraction of air as a function of intensity 1– four-
term approximation, 2– two-term approximation, 3– one-term approximation. 
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The instability regions on the plane of transverse wave numbers and frequencies within the 

5-octave band for air, where the frequency dependence of refractive index is known 

(Grigor’ev & Melikhov, 1991), are shown in Fig. 3 for two values of intensity: 
215 /I TW cm  and 219 /I TW cm  for 14 1

0 7.85 10 s   , which corresponds to the 

radiation wavelength 0

0

2
0.8  m

k

  . The shadow density is proportional to the value of 

the normalized increment 
0

M
M

H
H

k
 .  In the first case, the intensity is smaller than its value 

at maximum nonlinear additive to permittivity and 0  . In the second case, the intensity  

is larger than its value  at maximum nonlinear additive to permittivity and 0  . 
 

 

Fig. 3. Instability increment MH  in air on the plane of parameters 0 0/ , / k k   for 
215 /I TW cm  (a) and 219 /I TW cm  (b) at 0 0.8 m   for different instability branches 

 1,2,3,4M . 

For the values of intensities given above, the increments are different for all branches. At 

small intensities, 215 /I TW cm , the increment is largest for 1M  (modulation 

instability); at large intensities it is largest for 2M . The increment for perturbations with 

2,3M  attains its maximum near the frequencies 02  and 03 , respectively, for the values 

of   satisfying the equality (15). It should be born in mind that accuracy of estimates 

becomes worse near the boundaries of the frequency interval 0  , 05  . 

Fig. 4, that supplements Fig. 3., demonstrates maximal increments as a function of intensity, 

with the maximum attained for each branch and each value of intensity at definite values of 

frequency and transverse wave number that are also functions of intensity and number of the 

branch. For the branch 1M , the increment becomes small when   vanishes to zero; for the 

other branches, the increments grow with increasing intensity in the 210 /I TW cm  region. 
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Fig. 4. Maximum value of increment ,maxMH versus intensity.  

The studied instability may be one of the mechanisms of conic beam generation (Nibbering 
et al., 1996; Dormidontov et al., 2010). 

4. Analysis of characteristics of ultrashort wave packet phase modulation by 
means of autocorrelation intensity function  

It has been demonstrated above that the originally spectrum-limited powerful short wave 

packet is phase modulated during propagation in a nonlinear medium. In this Section we 

will show that some characteristics of the acquired phase modulation may be measured by 

analyzing the intensity autocorrelator signal usually used for measuring duration of 

ultrashort laser pulses. In addition, it is possible to qualitatively assess by the shape of this 

signal the presence of phase modulation in the studied light signal. Basically, solution of this 

problem allows retrieving amplitude and phase distribution of electric field in an ultrashort 

wave packet.  

Methods for retrieving the total field of an optical pulse may conventionally be divided 

into three groups. The first group includes techniques based on interference 

measurements. They have a long history and, consequently, have been developed most 

comprehensively. It is clear that, based on the interference of an ultrashort pulse in the 

temporal or spectral domain, one can in principle derive information on the phase 

distribution of the studied field. A great number of publications, from which we cite only 

the key papers (Kuznetsova,   1968; Verevkin et al., 1971; Sala et al., 1980; Diels et al., 1985; 
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Naganuma et al., 1989; Iaconis & Walmsley, 1998), are devoted to interference 

measurements. Another group of fairly recent publications (Naganuma et al., 1989; 

Iaconis & Walmsley, 1998;  Delong et al., 1996; Koumans & Yariv, 1999; Kane, 1999) take 

advantage of the mathematically proven fact that a multi-dimensional (noninterference) 

auto- or cross-correlation function allows retrieving the phase distribution of a short 

pulse. A two-dimensional signal distribution on the frequency-delay plane is usually 

measured in experiment, and then an iterative processing algorithm yields the desired 

parameters. The most advanced to-date technique of this group is referred to as FROG in 

the literature (Kane, 1999). The third group of methods (Naganuma et al., 1989; Kane, 

1999; Peatross et al., 1998; Nicholson et al., 1999), that are based on the results of 

simultaneous spectral and correlation energy measurements and some iterative 

algorithm, also make it possible to determine phase and amplitude characteristics of an 

optical pulse.  

The interference methods of retrieving ultrashort wave packet field parameters are 

simpler for implementation and in terms of processing than the methods of the second 

group. However, despite the fact that the speed of obtaining qualitative information for 

the latter techniques often does not meet the needs of experiment, such techniques are 

clearer, since the form of phase modulation of an optical pulse can qualitatively be 

deduced immediately from a two-dimensional distribution of the obtained signal. In this 

respect, methods of the third group are much faster, as the corresponding iterative 

retrieval procedure is based on operations with one-dimensional data files. However, the 

problem of accuracy of retrieval of the desired parameters remains open for such 

methods. In this part we demonstrate that in certain cases, the interference methods can 

also ensure clear, simple, and fast acquisition of information on the amplitude and phase 

of an optical pulse. In our opinion, the present part is methodical to a significant extent, 

although it has practical applications related to measuring dispersion characteristics of 

optical materials. It can easily be shown that the output signal from the photodetector of 

an interferometric intensity autocorrelator, whose scheme can be found in a number of 

publications (e.g., Krukov, 2008), has the form: 

           




        
22 2( ) ( ) ( ) 2 ( ) ( ) cos[ ( ) ( )]U t t t t t t dt   (20) 

where ( )t  and ( )t , respectively, are the slowly varying amplitude (envelope) and phase 

of the optical-pulse field 

      ( ) ( ) exp[ ( )] . .E t t j t c c  (21) 

Equation (20) is known (Akhmanov, Vysloukh & Chirkin, 1988) to be valid as long as the 

inequality 0 0 1   is satisfied, i.e., if the envelope ( )t  contains at least a few optical cycles. 

Here, 0  and 0  are the central frequency and duration of the wave packet envelope, 

respectively. Note that, strictly speaking, the signal (20) contains the intensity 

autocorrelation function 

     




   2 2( ) ( )G t t dt  (22) 
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but is not equal to it. In addition to an informative component, Eq. (20) for ( )U   comprises a 

constant background which usually impedes experimental measurement of temporal 

characteristics. This well-known fact was extensively discussed in the literature 

(Kuznetsova, 1968; Krukov, 2008). It is not difficult to design the scheme of the so-called 

background-free autocorrelator for which the output signal is free of this background. 

However, it follows from Eq. (20) that in this case, information on the phase structure of a 

pulse is completely lost. Nevertheless, such devices for measuring temporal parameters of 

ultrashort pulses are widely used in experiments, as they yield fairly reliable information on 

the wave packet envelope duration. 

It follows from Eq. (20) that the signal ( )U   contains information on the time dependence of 

the envelope amplitude and phase. Typically of inverse problems, it is impossible to retrieve 

parameters of the field ( )E t  in the general case, since the integral equation (20) is ill-posed. 

However, in certain particular cases of practical importance, ( )t  and ( )t  can be found 

from this expression. Consider this possibility in more detail. 
Assume that the slowly varying envelope ( )t  has a Gaussian profile, while the phase ( )t  

can be described by a cubic polynomial: 

  


  
2

0 2
0

( ) exp( )
2

t
t ;       

       2 3
0( )

2 3
t t t t .   (23) 

where  is the coefficients   and   refer to the linear and quadratic frequency chirps, 

respectively. Within the framework of this assumption, the temporal distribution of the wave 

packet envelope is determined by one parameter, the envelope duration 0 , and the phase 

distribution by two coefficients   and  . Representation of the phase in the form given by 

Eq. (23) corresponds to a Taylor expansion in which any higher-order term is much less than the 

previous lower-order one. It usually suffices to use such a phase expansion for an ultrashort 

wave packet, for which Eq. (21) is valid, propagated in a substance with weak dispersion, i.e., in 

the transparency band. Let us firstly put 0 , i.e., allow for only a linear chirp of an input 

optical pulse. Then Eq. (20) for the autocorrelator output signal ( )U   takes the form  

                      

2 2

0 0 0

(2 ) / 4 2 2 2( ) 1 2 ( ) ( ) cos2 4 ( ) cos cos 1 /4
L L

U G G G L ,  (24) 

Here, L  is the temporal-compression ratio of an initial phase modulated pulse with 
envelope duration τ0 due to compensation for its quadratic phase (Akhmanov,  Vysloukh  & 
Chirkin, 1988): 

 
 



  


2 2 2 2
0

0

( ) 1 ( )L ,  (25) 

  is the spectrum width of an input optical signal, and 0 01    is the spectrum width 

of a transform limited pulse for which 0  and, therefore, 1L . Note that Eq. (24) was 

derived in (Sala, Kenney-Wallace & Hall, 1980; Diels, Fontane, McMichel & Simoni, 1985). 

However, the authors of (Sala, Kenney-Wallace & Hall, 1980). did not reduce it to such a 

clear form, which seemingly impeded its further analysis, while the approximation of the 

upper and lower branches of the envelope of the signal ( )U   used in (Diels, Fontane, 

McMichel & Simoni, 1985) is not sufficiently accurate for retrieval of the parameter α, 
especially for an analysis of few-optical-cycle pulses.  
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Let us analyze the obtained expression. In fact, the signal ( )U   is not equal to the intensity 

autocorrelation function (22) even for a transform limited optical signal and contains several 

characteristic temporal scales. The largest one, 1 0~ 2  , is related to the duration of the 

envelope ( )t  and is determined by the function 2 2
0( ) exp[ /(2 )] G    . The next, shorter-

term scales  

 0
2 2 1/4

2

( 1)L




 ;     



 0

3 2 1/2

2 2

(2 )L
;     

  0
4

2

L .  (26) 

are determined by the third and fourth terms on the right-hand side of Eq. (24). Finally, the 

minimum temporal scale 5 0~ 1 /   in Eq. (24) is determined by the optical cycle of a pulse. 

If 1L , then the hierarchy of these temporal scales is as follows: 1 2 3 4 5        . This 

means that the signal ( )U   in the presence of a linear chirp should have an oscillatory 

component near 0 , which is primarily determined by the last term on the right-hand 

side of Eq. (24), and smooth wings with shape determined by the function ( )G  . In this case, 

the larger the value of L , i.e., the greater deviations of an optical pulse from a transform 

limited one, the more prominent the localization of the oscillatory component of such a 

signal in the vicinity of 0 . If the averaging over the shortest scale 5  is performed in the 

operation of a detecting system, then the signal ( ) ~ 1 2 ( )U G   does not contain 

information on the optical pulse phase. This is also a well-known fact (Diels, Fontane, 

McMichel & Simoni, 1985 ; Krukov, 2008).  

The function ( )U   calculated using Eq. (24) for various values of the pulse duration 0  and 

the parameter L  is plotted in Fig. 5. It follows from analysis of these plots that, despite the 

fact that it is impossible to obtain the actual autocorrelation function from the signal of an 

interferometric intensity autocorrelator, the duration of a transform limited optical pulse can 

be determined with experimentally plausible accuracy using the upper branch (7 ( ) 1)G   of 

the oscillatory-component envelope of the signal. This fact is quite pleasant, as namely such 

a technique for measuring durations of ultrashort optical pulses is used by virtually all 

researchers. The appearance of smooth signal wings without any periodic modulation is 

indicative of a quadratic phase modulation of the studied wave packet. Hence, the form of 

the measured function ( )U   provides information on the presence of a linear frequency 

chirp in the optical band. In follows from Eq. (25) that for finding the numerical value of the 

coefficient α one should determine L  and 0 . In what follows, when discussing the 

experimental verification of the calculations, we describe in detail a procedure for 

determining these quantities. Here, we only note that the sign of the coefficient  , as is seen 

from Eq. (25), cannot be specified by this method; its determination requires either some a 

priori information or an additional experiment.  

Let us now turn to analysis of the effect of the nonlinear frequency chirp, i.e., the cubic 

additive to the phase in Eq. (23) on the signal profile ( )U  . For this, we put 0  in 

Eq. (23). This can be done experimentally, if the quadratic phase is pre- compensated using, 

e.g., a prism dispersion compensator. With allowance for this assumption, we can also find 

an analytical formula for the output signal of an interferometric intensity autocorrelator 

 
21 1/4 ( )24( ) 1 2 ( ) ( ) 4 ( ) 3cos ( ) 4[ ( )] cos ( ) 1/ ( )FV G G F G F                   (27) 
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Fig. 5. Profile of the signal ( )U   for 1L (a), 

2L (b), 4L (c), and 6L (d) in the case 

of a pulse of duration 0 10 fs  with 

quadratic phase modulation.  

Fig. 6. Profile of the signal ( )V   for 

1K (a), 5K (b), 20K (c), and 

50K (d) in the case of a pulse of duration 

0 10 fs  with cubic phase modulation.  

where 

      2 2
0( ) 1 ( 1) ( / 2 )F K  ,  (28a) 

 2 3 2
0 0 0( ) 2 0.5 tan ( / ) 1 ( / ) ( 1) /6       a K K         (28b) 

a a

b b

cc

d d
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                 2 2 3 2
0 0 0( ) 0.5a tan ( / 2 ) 1 1 /16 ( ) 1 /12 ( / ) 1K F K   (28c) 

  2 3 2
01 ( ) .K   (28d) 

It follows from Eq. (27) that the formula for ( )V   is analogous to Eq. (24). The first two 

terms in these formulas are identical, while the third and fourth terms are oscillatory 

additives. The physical meaning of the parameter K  is similar to that of the parameter L  

specified above. Note that in the considered case, localization of the oscillatory component 

of a signal near 0  is less prominent than for a quadratic phase since the exponent of the 

function ( )G   in the last term on the right-hand side of Eq. (27), which determines this 

localization, tends to unity with increasing K . Moreover, it follows from Eqs. (27) and (28) 

that the output signal modulation becomes much more aperiodic than in the case of a linear 

frequency chirp, and the aperiodicity of the observed oscillations is the stronger, the larger 

the parameter K  Therefore, the presence of a linear frequency chirp in a signal can be 

determined from broadening of the profiles of the harmonics of the signal ( )V   at the 

frequencies 0  and 02 . 

The signal profiles ( )V   for various K  are plotted in Fig. 6. Analysis of these plots shows 

that, as the behavior of the curves ( )V  , especially for small K  impedes finding any 

features entirely determined by 0  or  , the procedure of determining the parameters 0  

and   is more difficult and complicated in this case than in the case of a linear frequency 

chirp. If the phase modulation is relatively weak ( 5K ), then, in contrast to the case of a 

quadratic phase, the obtained dependences are close to the signal ( )V   for 1K . Of course, 

this makes retrieval of the desired quantities from experimental data more difficult. The 

difference in the functions ( )V   for different K  is quite measurable for 5N  , so that the 

above mentioned features or specific components can already be pointed out. Therefore, the 

parameters 0  or   can quite easily be determined in this case. However, such large values 

of K  can hardly be realized in practice. In the limiting case of 1K , the signal ( )V   has a 

smooth shape, determined by the first two terms in Eq. (27), with a very narrow, the so-

called coherence peak in the vicinity of 0 , because (0) 8V   in any case. Determination 

of the sign of  , as in the case of a quadratic phase modulation, is impossible. This is 

explained by the physical principle of operation of this correlator. Therefore, the possibility 

of experimental measuring of a cubic phase of an ultrashort optical pulse using an ordinary 

interferometric intensity autocorrelator seems very problematic, except probably for some 

special cases. 

If the studied optical signal comprises both quadratic and cubic phase modulation, then the 

output signal of an interferometric intensity autocorrelator can also be found analytically 

assuming a Gaussian signal envelope. The resulting formula is similar to the functions ( )U   

and ( )V   obtained above, but is much more cumbersome and, correspondingly, far less 

illustrative than the formula for ( )U  .  

To check the results of calculation, we performed an experiment in which the signal from an 

interferometric intensity autocorrelator was obtained for a phase-modulated ultrashort 

optical pulse. The femtosecond ring laser described in (Babin, Kiselev, Kirsanov & Stepanov, 

2002) was used as the radiation source. An external prism dispersion compensator mounted 

immediately after the output mirror was used to compensate for the dispersion of the 
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substrate material of this mirror to ensure that a transform limited wave packet is input to 

the autocorrelator. The total duration 02  of the compensated pulse measured using its 

interference autocorrelation function (Fig. 7.) amounted to about 20 fs at the 1e -folding 

level of the maximum intensity. The measured value of the product 0  was equal to 1.3, 

which is 30% larger than the corresponding value for a transform limited Gaussian pulse. 

This is known (Rousseau, McCarthy & Piche, 2000) to be related to a slight deviation of the 

generated spectrum from the Gaussian one, as is the case for the considered experiment. 

Note that hardware averaging of the autocorrelation function shown in Fig. 7 over fast 

oscillations yields the same value of 0 , which, according to Eqs. (24) and (27), is indicative 

of absence of phase modulation of the optical pulse at the compensator output. 
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Fig. 7. Output signal of interferometric intensity autocorrelator for a transform limited wave 

packet. The bold and fine curves are for the experiment and the calculation using Eq. (24) for 

1L , respectively. 

The idea of the experiment is fairly simple: to introduce a chirp in an initial transform 

limited laser pulse and to check the resulting output signal of the autocorrelator. It is known 

(Akhmanov,  Vysloukh & Chirkin, 1988)  that an ultrashort optical pulse can easily be phase 

modulated upon propagation through a linear dispersive medium. To realize this 

experimentally, we mount plane-parallel plates made of various materials immediately 

before the autocorrelator input.  

, .Amplitude rel units

 ( )fs
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Fig. 8. Output signal of interferometric intensity autocorrelator for a phase modulated wave 

packet. The initial transform limited signal passed through a 3.25 mm thick ZnSe plate. The 

solid and dashed curves are, respectively, for the experiment and the calculation using 

Eq. (24) for 0 33.5 fs  and 4.47L . 

Fig. 8. shows a typical profile of the output signal obtained in this case. It follows from this 

figure that the observed picture fully agrees with the theoretical analysis for the case of a 

quadratic phase. Note that a similar profile was obtained in (Sala, Kenney-Wallace & Hall, 

1980) for a linearly chirped pulse of about 13 ps in duration. Excess noise in the signal is due 

to a nonoptimal frequency band of the amplifier used in our experiment. Let us find the 

parameters of a phase modulated optical pulse input to the correlator assuming that a 

substance gives only a quadratic additive to the phase. The envelope duration 0  can most 

easily be derived from the profile of the wings of the signal ( )U  . According to Eq. (24), the 

shape of the signal wings is described by the formula ( ) ~ 1 2 ( )U G  . Therefore, the 

parameter 0  is readily determined for a wave packet with Gaussian envelope. The next 

step is to appropriately choose the parameter L  to ensure the best agreement between the 

oscillating parts of experimental and theoretical functions ( )U  . Note that one more 

parameter, 0 , entering Eq. (24), can easily be found either from the period of oscillations in 

Fig. 7 or from the measured average frequency of the spectrum of the analyzed pulse. 

Hence, the formulated problem is solved completely in this approximation, i.e., we have 

, .Amplitude rel units

 ( )fs
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measured the parameter τ0 and the coefficient   of the quadratic phase using the output 

signal of an interferometric intensity autocorrelator. A cubic phase additive is known to be 

much less than the quadratic one for transparent optical materials. Therefore, in our case, 

this additive has almost no impact on the increase in the envelope duration 0 . This means 

that the parameter K  is close to unity and, according to the above theoretical analysis, it is 

impossible to measure the parameter   in the experiment. In this experiment, using a 

scanning intensity autocorrelator, we actually determined the averaged parameters of an 

ultrashort wave packet, as the analyzed signal had the shape of a femtosecond pulse train 

with a repetition rate of about 100 MHz. In principle, a similar interference autocorrelator 

can also be realized for rarely repeated or even single optical pulses if, as was proposed in 

(Brun, Georges & LeSaux, 1991), the standard scheme of a single-pulse correlator (Brun, 

Georges & LeSaux, 1991) including a nonlinear crystal with tangential (superwide angular) 

synchronism is used. 

5. Conclusion  

To conclude we enumerate the principal results of the work. It was shown that in media 
with nonlinearity described by a finite-degree polynomial, instability may develop at 
frequencies greatly exceeding the carrier frequency. Increments of these frequencies are 
found. Methods of measuring temporal characteristics of femtosecond pulses were 
analyzed. Retrieval of amplitude and phase modulated wave packets by means of 
interference intensity autocorrelator were demonstrated theoretically and experimentally.  
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