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1. Introduction  

Multiple sclerosis (MS) is a chronic disabling disease characterized by inflammation, 
demyelination, and axonal damage in the central nervous system (CNS), affecting both 
white and grey matter. Commonly observed symptoms are visual and balance disturbances, 
spasticity, bladder dysfunction, pain, and fatigue. At a later disease stage, paralysis may 
occur (Compston& Coles 2008; Sospedra& Martin 2005). 
For both exploratory and applied research into MS the use of a valid animal model is 
indispensable. The most widely used animal model for MS is experimental autoimmune 
encephalomyelitis (EAE), which is induced by active immunization with myelin derivatives 
formulated in adjuvant. EAE has been induced in a wide variety of species, including 
rabbits, guinea pigs, rats, mice, and non-human primates (Brok et al 2000; Genain et al 1995; 
Gold et al 2006; Massacesi et al 1995; Wekerle 2006).  
The EAE model in the common marmoset (Callithrix jacchus), a small-sized New World 

monkey, is exquisitely suitable for translational research into pathogenic mechanisms and 

therapy development for MS. A feature that distinguishes the model from classical rodent 

EAE models is that marmosets are exposed to the same environmental cues as humans, 

including those associated with MS susceptibility, i.e. viral pathogens. In this chapter, we 

will summarize our investigations into the core pathogenic autoimmune mechanisms 

underlying the development of pathology and clinical symptoms. In addition, we will 

discuss the separate and combined role of B cells and T cells, in this model. Finally, we will 

briefly discuss how the model can be used for testing new therapies. 

1.1 Immunology and genetics of the common marmoset 

The marmoset is immunologically, anatomically, and neurologically more closely related to 

humans than rodents. In contrast to laboratory rodent strains, the marmoset is an outbred 

species, and the clinical and pathologically heterogeneity of the EAE model resembles the 

heterogeneous situation in MS. 

A particularly interesting aspect of marmosets is the stable bone marrow chimerism 

between twin siblings that is caused by the sharing of the placental blood stream. 

Consequently, the immune systems of twins are educated in the same thymic environment, 

making fraternal siblings immunologically more similar than siblings from different births 
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(Niblack et al 1977). This principle can be used in therapy trials where one twin sibling is 

treated with an experimental agent and the other sibling with placebo. 

The strongest genetic influence on MS susceptibility in the human population is exerted by 
the major histocompatibility complex (MHC). The MHC is a highly polymorphic genetic 
region that encodes for antigen presentation molecules, which according to international 
consensus nomenclature are indicated with the acronym Caja, being derived from Callithrix 
jacchus. MHC class II molecules are constitutively expressed on B cells and antigen 
presenting cells (APC) and are involved in the activation of CD4+ T cell responses. MHC 
class I molecules are expressed on all nucleated cells and are involved in the activation of 
CD8+ T cells. In the marmoset, MHC class I diversity is more limited than in humans. The 
classical A, B, and C molecules could not be identified in marmosets, but non-classical E 
(oligomorphic) and G genes (polymorphic) have been described (Cadavid et al 1997; Knapp 
et al 1998). The marmoset MHC class II region contains DQA1, DQB1, and DQB2 genes, but 
DQA2 and DP genes could not be identified. Marmosets contain one DRB region 
configuration, containing the three lineages DRB1*03, DRB*W12, and DRB*W16. Caja-
DRB1*03 and -DRB*W16 are polymorphic with 13 and 20 alleles, respectively. Caja-
DRB*W12 appears to be monomorphic with two alleles, which differ only at two codons. All 
marmosets express DRB*W1201 or DRB*W1202 (Antunes et al 1998; Doxiadis et al 2006; 
Prasad et al 2006; Wu et al 2000). 
Despite the limited polymorphism of the MHC, marmosets contain a diverse and 

evolutionary stable T cell receptor - and -chain repertoire (Fujii et al 2010; Uccelli et al 

1997). 

1.2 Myelin oligodendrocyte glycoprotein 

Demyelination is the pathological hallmark of MS and is caused by a combined cellular and 

humoral autoimmune attack on myelin. The myelin sheath is produced by oligodendrocytes 

and is wrapped around axons to ensure fast saltatory pulse conduction. Myelin is composed 

of 80% lipids and 20% proteins, such as myelin basic protein (MBP), proteolipid protein 

(PLP), and myelin oligodendrocyte glycoprotein (MOG).  

MOG is a type I membrane glycoprotein and a member of the Ig superfamily produced by 

oligodendrocytes. MOG is located on the outer myelin sheath with the N-terminal amino 

acids 1 to 125 exposed to the extracellular environment where it is accessible for immune 

cells (Kroepfl et al 1996; Ohler et al 2004). MOG probably forms homodimers (Clements et al 

2003) and is highly conserved among species (Delarasse et al 2006; Mesleh et al 2002).  

The function of MOG in the CNS is unknown, as MOG-deficient mice do not present clinical 

or histological abnormalities (Delarasse et al 2003). However, MOG is an important target of 

the autoimmune attack in EAE. Autoimmunity against MOG is crucial for the progression of 

EAE in Biozzi ABH mice (Smith et al 2005) and marmosets (Jagessar et al 2008). 

Immunization with recombinant human MOG (rhMOG) protein or MOG peptides induces 

pathogenic antibody and T cell responses (Iglesias et al 2001; von Büdingen et al 2001). 

Antibodies against MOG facilitate demyelination and phagocytosis in vitro (Kerlero de 

Rosbo et al 1990; Van der Goes et al 1999) and enhance demyelination in vivo in mice 

(Morris-Downes et al 2002), rats (Linington et al 1988; Schluesener et al 1987), and 

marmosets (Genain et al 1995; McFarland et al 1999). T cell responses against MOG are 

found in EAE models in mice (Mendel et al 1995), rats (Stefferl et al 2000), marmosets (Brok 

et al 2000), and rhesus macaques (Kerlero de Rosbo et al 2000).  
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2. Modelling of MS in the common marmoset 

The marmoset EAE model was first developed by Genain and co-workers (Massacesi et al 

1995). Since then, the model has been continuously refined to improve the similarity with 

MS ('t Hart et al 2009). All EAE models that have been developed in the past years vary in 

their clinical and pathological features, see Table 1.  

The first documented EAE model in the marmoset was induced with human myelin 

emulsified in complete Freund’s adjuvant (CFA) supplemented with Bordetella pertussis 

particles. The disease was very acute and gave an acute disseminated encephalomyelitis 

(ADEM) like disease (Massacesi et al 1995). Several large seriously destructive lesions in the 

white matter of the brain and spinal cord were detected in this model.  

EAE induction with human or mouse myelin in CFA, but without Bordetella pertussis, gave 

essentially the same pathology but had a slower disease progression. We observed in these 

models high T and B cell responses against various myelin proteins, i.e. MOG, MBP and 

PLP; we chose to study the role of MOG in more detail. To confirm the pathogenic 

significance of MOG, one sibling of a marmoset twin was sensitized against myelin derived 

from wild type C57BL/6 mice and the other sibling with myelin derived from MOG 

deficient mice of the same strain (Jagessar et al 2008). Animals immunized with MOG 

deficient myelin showed only mild clinical EAE symptoms, inflammation and small 

demyelinated areas in the white matter. We assume that these are caused by autoimmune 

reactions against other myelin proteins, such as MBP and PLP.  

The addition of a physiological dose of recombinant MOG to mice immunized with MOG-
deficient myelin restored the induction of chronic relapsing EAE in Biozzi ABH mice (Smith 
et al 2005). This observation emphasizes the immunodominance of MOG, which was 
investigated in further detail in marmosets immunized with recombinant human MOG 
(rhMOG) in CFA. This formulation induced a more chronic disease and a typical MS like 
pathology, characterized by active lesions in the CNS with macrophages containing myelin 
degraded products (Kap et al 2008). Moreover antibody formation against the whole MOG 
protein and specific MOG peptides were observed, such as MOG14-36, MOG34-56 and MOG54-

76. Interestingly, animals that developed clinical EAE signs showed specific T cell 
proliferation against MOG34-56 and MOG74-96. 
To test the immunogenicity of the peptides, marmosets were immunized with some of the 
peptides separately in CFA. It was observed that MOG14-36 is only moderately 
encephalitogenic inducing only small-sized inflammatory lesions (Brok et al 2000). MOG74-96 
was not encephalitogenic, whereas marmosets immunized with MOG34-56 displayed 
essentially similar pathology and disease course as the EAE model with rhMOG in CFA 
(Kap et al 2008). Antibodies against rhMOG, MOG34-56 and the overlapping peptide MOG24-

46 were formed in the MOG34-56/CFA EAE model.  
The absence of antibodies binding MOG protein directs the attention to the MOG34-56 specific 
cytotoxic T cells as a cause of the widespread demyelination that was observed in the 
MOG34-56/CFA model. T cell lines raised against MOG34-56 were phenotypically 
characterized as CD4+, CD8+ or CD4/8 double positive, expressing also CD56+ but not CD16 
(Kap et al 2008). Interestingly, T cells with a similar phenotype have been associated with 
demyelination in MS (Vergelli et al 1996; Antel et al 1998). Further phenotypical 
characterization in humans showed that the T cells were CD45RO-, CD27+CD28-CCR7-, 
being a phenotype reminiscent to the NK-CTL effector memory subpopulation (Mazzarino 
et al 2005). 
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CFA is a major cause of the serious discomfort experienced by animals engaged in the EAE 

model. This prompted us to test if EAE could be induced without usage of CFA. Hence, 

animals were subjected to a challenge-boost protocol with MOG34-56 in incomplete Freund’s 

adjuvant (IFA) (Jagessar et al 2010). It is of note that the inoculum lacked microbial antigens 

for innate immune activation. Nevertheless, all animals developed clinically evident EAE, 

which was characterized by marked inflammation and demyelination in the grey and white 

matter of the brain and spinal cord. Freshly isolated T cells also showed the NK-CTL 

phenotype, with cytolytic capacities and a Th17 cytokine profile as immunological hallmark. 

The replacement of CFA by IFA makes this model more useful for the study of subtle 

regulatory networks that keep T and B cells in check and maintain homeostasis within the 

CNS.  

 

Antigen Adjuvant 
Disease 

type 
Demyelination T cells 

IgG to 
rhMOG 

   
Grey 

matter 
White 
matter 

  

Human myelin 
CFA+ B. 
pertussis 

Acute N/A + N/A N/A 

Human myelin CFA Acute N/A + N/A N/A 

Mouse myelin CFA Acute N/A + N/A N/A 

MBP CFA Mild N/A +/- N/A N/A 

MOG-/- mouse 
myelin 

CFA Mild N/A +/- N/A - 

rhMOG CFA Chronic + + Th1/Th17 + 

MOG14-36 CFA Chronic N/A + N/A + 

MOG34-56 CFA Chronic + + Th1/Th17 + 

MOG34-56 IFA Chronic + + Th17 - 

CFA, complete Freund’s adjuvant; IFA, incomplete Freund’s adjuvant; MOG, myelin oligodendrocyte 
glycoprotein; N/A, not available 

Table 1. All marmosets EAE models with their characteristics. 

3. Role of B cells in the marmoset EAE models 

We observed no relation between the diversity of the antibody response and the rate of EAE 

progression in marmosets (Kap et al 2008). In addition, EAE can be induced in the absence 

of anti-rhMOG antibodies (Jagessar et al 2010). This was not entirely unexpected. Although 

a role of anti-MOG antibodies in the induction of CNS demyelination has been proven 

(Genain et al 1995; Genain et al 1999), the main pathogenic antibody reactivity is thought to 

be mainly directed against non-linear/conformational epitopes (von Büdingen et al 2004).  

Recently, treatment with Rituximab, an anti-CD20 antibody, in MS patients showed clear 
beneficial effect. The amount of lesions and relapses reduced significantly in the anti-CD20 
treated group compared to the placebo group, although antibody levels did not reduce 
significantly (Hauser et al 2008; Bar-Or et al 2008). These data suggest that Rituximab does 
not deplete plasma cells, which lack CD20 expression, and that the antigen presentation or a 
regulatory role by B cells may play a key role in disease development.  
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A similar study in marmoset monkeys was performed to understand the role of B cells in 
further detail (Kap et al 2010b). This study showed a profound effect of anti-CD20 treatment 
in animals with EAE, see also section 6.4. In addition to the study in MS patients, impaired 
activation of autoreactive T cells in lymphoid organs was observed and reduced mRNA 

levels of IL-7 and pro-inflammatory cytokines, e.g. IL-6, IFN and TNF. Also less 
inflammation and demyelination was detected in the white as well as the grey matter.  
It is assumed that there is a relation between MS and EBV infected B cells, see section 5.2. To 
investigate the role of EBV transformed B cells, we are creating an in vivo model for EBV 
infection in marmosets. Marmoset monkeys will be infused with autologous B 
lymphoblastoid cell (B-LCL) induced with the marmoset EBV B95-8 virus. By ex vivo pulsing 
of the B-LCL with the dominant MOG peptide 34 to 56, and injecting them back, the B-LCL 
will acquire the capacity to activate encephalitogenic T cells. As control, the sibling will be 
infused with B-LCL, but these cells will not be pulsed with the MOG peptide. 

4. Role of T cells in the marmoset EAE models 

T cells reactive against MOG are present in the natural T cell repertoire of healthy human 
individuals (Diaz-Villoslada et al 1999; Koehler et al 2002) as well as in healthy marmosets 
(Villoslada et al 2001). These autoreactive T cells are not depleted during development of the 
immune system because MOG is absent outside the CNS (Bruno et al 2002) and is likely 
expressed within the CNS relatively late during fetal development (Allamargot & Gardinier 
2007). A significant increase in the number of MOG-specific T cells was reported in blood 
and cerebrospinal fluid (CSF) of MS patients (Kerlero de Rosbo et al 1993; Sun et al 1991).  
T cells play a central role in the marmoset EAE model, as EAE can be induced by the activity 
of MOG-specific T cells without support of autoantibodies. Below, the specificity, 
phenotype, and function of the T cells that are activated in the EAE model will be discussed. 

4.1 Specificity 
Immunization of marmosets with rhMOG in CFA leads to a 100% disease incidence that 
maps to the MHC class II allele Caja-DRB*W1201, which is ubiquitously expressed in 
marmosets (Antunes et al 1998; Brok et al 2000; Doxiadis et al 2006). In marmosets 
immunized with rhMOG, Caja-DRB*W1201 presentation of MOG24-36 leads to the activation 
of MOG24-36 specific Th1-cells in all animals (Brok et al 2000). However, T cells against this 
peptide alone are not sufficient to induce the full aspect of the disease as shown by 
immunization (Brok et al 2000) or adoptive transfer (Villoslada et al 2001). This suggests an 
important pathogenic role of T cells directed against other MOG epitopes. 
In a meta-analysis of T cell response profiles from about 30 rhMOG-immunized marmosets, 
we observed that T cells from monkeys developing clinically evident EAE early after 
immunization (fast progressors) proliferate against a wider range of MOG peptides than T 
cells from monkeys developing overt disease at a later time point (slow progressors) (Kap et 
al 2008). T cell responses against the peptide MOG34-56 were confined to fast progressor 
monkeys. As discussed above, immunization with MOG34-56 in either CFA or IFA leads to 
EAE (Jagessar et al 2010; Kap et al 2008). This shows that MOG34-56 contains crucial T cell 
epitopes for the activation of T cells that can induce neurological disease. 
The T cell response in marmosets against MOG is similar to MS, being mainly directed 
against three domains in the extracellular part of MOG, i.e. 1-22, 34-56, and 64-96 (Bielekova 
& Martin 2004; Kerlero de Rosbo et al 1997; Van der Aa et al 2003).  

www.intechopen.com



 
Pathogenesis of Encephalitis 

 

328 

4.2 Phenotype and function 

It has long been thought that CD4+/Th1 cells were the main pathogenic T cells in MS, but 
more recent literature highlights an important pathogenic contribution of Th17 cells and 
CD8+ T cells as well (Brucklacher-Waldert et al 2009; Ifergan et al 2008; Kebir et al 2007; 
Serafini et al 2007; Tzartos et al 2008). We have investigated the role of the different T cells 
subsets in more detail in the marmoset EAE model. 
Immunization of marmosets with rhMOG or MOG34-56 leads to the proliferation of 
CD4+CD8-, CD4-CD8+, and CD4+CD8+ MOG34-56-specific T cells. In addition, a large 
population of these T cells expresses CD56, which is a marker for natural killer-cytotoxic T 
lymphocytes (NK-CTL).  
MOG34-56-specific T cells have also other characteristics of NK-CTLs, as they are able to lyse 
MOG34-56 pulsed cells (Jagessar et al 2010; Kap et al 2008). This is similar to MS patients, in 
which cytotoxic MOG-specific T cells have also been observed (Koehler et al 2002; Van der 
Aa et al 2003). This suggests that MOG34-56 specific T cells can induce cytolysis of 
oligodendrocytes leading to demyelination. 

The contribution of IFN- producing Th1 and IL-17A producing Th17 cells is an ongoing 
debate in MS, but also in the EAE models (Haak et al 2009; Komiyama et al 2006; Kroenke et 
al 2008; Langrish et al 2005; O'Connor et al 2008). Immunization of marmosets with rhMOG 
in CFA leads to the activation of both Th1 and Th17 cells (Kap et al 2010a). Inhibition of IL-
17A in this model has only a marginal effect on the disease course, suggesting that Th1 cells 
or the cytotoxicity of these T cells are more crucial than the single cytokine (Kap et al 2010a). 
Immunization of marmosets with MOG34-56 in IFA leads to the production of IL-17A, but not 

to IFN-, suggesting that Th17 and cytotoxic T cells dominate in this model. 

5. Role of viruses 

It is believed that the origin of autoimmune diseases, i.e. MS, has multiplex backgrounds. 
The role of genetic predisposition and environmental factors are much less defined, 
although viral infections have long been associated with MS development. Viral infections 
are known as the most critical environmental factors. Herpesviruses, such as human 
herpesvirus type 6 (HHV-6) (Fotheringham & Jacobson 2005; Lunemann et al 2007), Epstein-
Barr virus (EBV) and to a lesser extent cytomegalovirus (CMV) (Kanzaki & Yabuki 1994) are 
suspects.  

5.1 CMV 

CMV is a beta herpes virus and a leading cause of opportunistic infection in the human 
population. CMV infection is estimated at a range from 50% to 80% in humans, and remains 
asymptomatic in the vast majority of infected individuals (Staras et al 2006). The prevalence 
is quite variable as it varies in different geographic areas, different social economic 
population and ethnic origin. CMV has been associated with several autoimmune diseases, 
i.e. Systemic Lupus Erythematosus (Sekigawa et al 2002), diabetes mellitus type 1 and 2 
(Filippi & von Herrath 2005; Roberts& Cech 2005) and with the Guillain-Barré Syndrome, a 
demyelinating disorder of peripheral nervous system (Yuki et al 2001), but there is no 
obvious association with MS. However, the virus has been involved in acute CNS 
inflammatory disorders, causing meningo-encephalitis in immunocompromised and 
immunocompetent individuals (Devetag & Boscariolo 2000). Moreover, recently it was 
observed that MS patients sufficient for Vitamin D were associated with an increased CMV 
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antibody level, while such an association was absent or in the opposite direction in controls 
(Mowry et al 2010). Furthermore, CD8+ T cells specific against CMV could be isolated from 
brain lesions of MS patients (Scotet et al 1999). In support of a role of CMV in MS is the 
observation that CD8+ T cells from rhesus EAE monkeys immunized with MOG34-56 in CFA 
display high proliferation against a 9-mer peptide derived from the immunodominant UL86 
antigen of human CMV, encoding the major capsid protein (Sylwester et al 2005). 
Interestingly, the amino acid sequence 986 to 993 (WLRSPFSR) of the major capsid protein 
showed striking similarity with the MOG sequence 39 to 46 (WYRPPFSR). T cells from 
rhesus monkeys sensitized against the mimicry motif proliferated against MOG34-56, whereas 
CD3+ T cells infiltrates were detected within the CNS white matter and meninges (Brok et al 
2007). This data suggests that anti-CMV memory T cells can be activated by APC that 
present MOG34-56. We hypothesise that CMV does not provoke MS, but those individuals 
that are predisposed with CMV generate a repertoire of memory T cells. These memory T 
cells might exacerbate CNS inflammation and demyelination upon activation with MOG34-56 
presenting APC as in the marmoset EAE model (Kap et al 2008). 

5.2 EBV 

EBV is a gamma herpes virus, which causes lymphoproliferative diseases, such as Hodgkins 
lymphoma, nasopharyngeal carcinoma and acute infectious mononucleosis (Levin et al 
2003). The prevalence of EBV infection in Western countries is very high; in adulthood more 
than 90% of the population are infected with EBV. Half of this population becomes EBV 
positive after the age of ten. Individuals (30-50%) who experience a primary EBV infection 
in adolescence will develop infectious mononucleosis. A CD8+ T cell response develops 
against an impressive expansion of EBV infected B cells, where 10 to 30% of the B cells carry 
the virus (Cohen et al 2000).  
In developing countries most of the children become in contact with EBV, before the age of 
ten; all children are EBV infected and mostly without symptoms. This indicates an age-
related association between a primary EBV infection and infectious mononucleosis. 
Over the years many studies have found an association between EBV infection and the 
development of MS. MS patients showed a significant increase of anti-EBV antibody levels, 
i.e. anti-EBNA-1, compared to controls (Sumaya et al 1980). It was also found that the 
antibody levels increased before the onset of MS (Levin et al 2005). Meta-analysis of thirteen 
studies has found an odd ratio of 0.06 for the risk to develop MS, when EBV seronegative 
individuals were compared with seropositive individuals. Of all MS patients, 99.5% were 
seropositive for EBV related to 94% of the controls. In children with MS 99% were positive 
for EBV, while 72% of the age-matched controls were negative (Ascherio& Munger 2007; 
Pohl et al 2006). In MS patients also increased CD4+ T cell responses to EBNA-1 were 
observed compared to controls (Lunemann et al 2006; Lunemann et al 2008).  

6. Immunotherapies tested in the marmoset EAE model 

The immunological proximity to humans and the clinico-pathological similarity with MS 
makes the EAE model in marmosets an exquisite test system for the preclinical evaluation of 
novel immunotherapies. This is especially the case for biological agents, which due to high 
species-specificity are inactive in lower species. A particularly attractive aspect of the 
marmoset model is the possibility to visualize the large-sized lesions in the brain with 
clinically relevant magnetic resonance techniques (Blezer et al 2007; 't Hart & van Kooyk 
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2004). This has enabled determination of the direct effect of new immunotherapies on 
lesions independent of the effects on neurological signs ('t Hart & Heije 2005). 
In the past years a variety of biological agents was tested mainly aiming at modulating 
APC-T cell interactions. 

6.1 Anti-human CD40 mAb 

CD40 is a costimulatory molecule that is constitutively expressed on B cells and induced on 
myeloid antigen presenting cells, e.g. dendritic cells and macrophages. The interaction of 
CD40 with its ligand CD154 induced on activated T cells plays an important role in the 
activation of T and B cells as well as of myeloid antigen presenting cells and macrophage 
effector functions. The pleiotropic effects of CD40-CD154 interaction on immune functions 
create an attractive target of immunotherapy in autoimmune diseases, such as MS. Indeed, it 
was found that a chimeric antagonist anti-CD40 antibody administered during the onset of 
EAE in marmosets had a strong inhibitory effect on the disease (Boon et al 2001).  

6.2 Anti-human IL-12p40 mAb 

One of the factors produced by activated APC of the myeloid lineage is IL-12, which is a 
critical cytokine in the induction of Th1 responses. The notion that Th1 cells have a key 
pathogenic role in relapsing-remitting MS warranted efficacy evaluation of ustekinumab, a 
novel human-anti-human IL-12p40 antibody, in the marmoset EAE model. A prophylactic 
study-design in marmoset EAE induced with human myelin in CFA, showed complete 
protection against EAE (Brok et al 2002). Next, the same antibody was tested in a therapeutic 
setting, i.e. starting treatment when brain white matter lesions could be detected on T2-
weighted MR images. This experiment showed complete suppression of the inflammatory 
activity in lesions as well as of lesion enlargement, but only delayed the onset of 
neurological deficit ('t Hart et al 2005).  

6.3 Anti-human IL17A mAb  

Many of the immunopathogenic mechanisms driving EAE that were previously assigned to 
the IL-12-Th1 pathway are actually mediated via the IL-23-induced activation of Th17 cells 
(Cua et al 2003; Langrish et al 2005), which exerts its pro-inflammatory effects via IL-17A/F, 

IL-6 and TNF-. Therefore, we tested the effect of a neutralizing human antibody against 
human IL-17A in the rhMOG/CFA-induced EAE model. It was observed that the antibody 
did not protect against EAE, but caused only a moderate delayed onset of neurological signs 
(Kap et al 2010a). Our interpretation of this experiment is that it supports a role of IL-17A in 
late stage disease, rather than in the disease onset. This is in agreement with the observation 
that the MOG34-56 specific T cells that are associated with onset of neurological signs display 
IL-17A production as immunological hallmark. 

6.4 Anti-human CD20 mAb  

MS has for a long time been regarded as a T cell-driven disease, with a less important 

contribution of B cells, i.e. only the amplification of demyelination via the secretion of anti-

myelin antibodies that elicit complement- (CDC) or macrophage-dependent (ADCC) 

cytotoxicity reactions. In this light it was rather unexpected that antibody-mediated 

depletion of CD20+ B cells with rituximab had an almost immediate and longlasting 

beneficial effect on relapsing-remitting MS (Hauser et al 2008). As serum antibody levels 
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remained essentially unaltered the mechanism underlying this remarkable clinical effect is 

poorly understood. Recent work in rheumatoid arthritis shows a reduction of Th17 

responses in patients treated with rituximab, an effect that could be highly relevant for MS 

as well.  

We have tested another human-anti-human CD20 antibody related to ofatumumab in the 

rhMOG/CFA induced marmoset EAE model. It was observed that weekly administration of 

the CD20+ B cell depleting antibody, which was started at day 21 post-immunization, had a 

similar profound clinical effect as rituximab in relapsing-remitting MS (Kap et al 2010b). 

Remarkably, at the pathological level we observed the complete absence of lesions in the 

white as well as the grey matter. Mechanistically, suppressed autoantibody levels and 

profoundly altered cytokine profiles, especially of IL-7 and IL-17A, were detected.  

7. Conclusion 

The data discussed above clearly demonstrated that the outcome of a preclinical efficacy test 

with a new candidate therapeutic is strongly influenced by the chosen animal model. It is 

not surprising that reagents targeting Th1 cells are effective in EAE models induced with 

CFA, as CFA skews cellular immune reactions into the direction of Th1, with a less 

prominent pathogenic role of Th17 cells. By contrast, our data show that the marmoset EAE 

model induced with antigen in IFA is more dominated by Th17 cells; thus would thus be the 

elected model for testing reagents targeting Th17 cells. Obviously, the most important 

question is which model is the best representation of MS. Much could be learned from 

mechanistic analysis of successful and failed trials in MS. There is a marked discrepancy 

between the positive effect of the anti-human IL-12p40 antibody, ustekinumab, in the 

rhMOG/CFA-induced marmoset EAE model (Brok et al 2002; 't Hart et al 2005) and the 

inefficacy in relapsing-remitting MS. This may suggest that Th1 cells have a less prominent 

role in relapsing MS than in the EAE model, being consistent with the notion that Th17 cells 

may be pathogenetically more relevant in MS (Langrish et al 2005). On the other hand, 

depletion of CD20+ B cells has a similar beneficial effect in the rhMOG/CFA-induced 

marmoset EAE model and relapsing MS (Hauser et al 2008; Kap et al 2010b). Intriguingly, 

the depletion of B cells also diminishes IL-7 mRNA levels in the lymphoid organs (Kap et al 

2010b), which could impair the activation of Th17 effector memory cells (Liu et al 2011). The 

MOG34-56/IFA EAE model shows that the T cells that mediate CNS inflammation and 

demyelination in marmosets can be in vivo activated without the need of APC activating 

innate receptor ligands, suggesting that they may be effector memory cells (Jagessar et al 

2010). Data obtained from MS patients suggests that this may also be the case in MS 

(Bielekova et al 2004). 

As discussed, the marmoset EAE model resembles MS closely and is a valid model for 

exploratory and applied research. Future work should make clear which model resembles 

MS most and should be used for preclinical testing.  
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