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1. Introduction 

Over the years, experts on soil science have brought together researchers from various fields 

with the aim of pooling efforts in order to characterize the properties of soils. The use of 

these results in agriculture through various activities can be directed towards a 

development whose natural resource base can be maintained in a long term.  

Conservation, minimization of soil pollution together with the development of irrigation 

and more efficient and more cost effective drainage systems optimize the efficiency of water 

use and nutrients in agricultural production. 

The soil can be preserved through management methods, which seek to prevent 

deterioration, induced erosion and deposition of sediments into rivers. Environment 

degradation can be caused naturally and by humans. The way in how to use the soil can 

cause degragation and excessive compression, salinisation and acidification. 

Several conventional techniques have been used to find answers to the various physical 

mechanisms and also the chemical and biological processes that occur in soils. Among those 

techniques are included: neutron probe, gravimetry, direct transmission of rays, plotters, 

microscopy and mercury intrusion, however these mechanisms have limitations.  

New techniques that enable an accurate prediction aim at managing the flow of 

contaminants through unsaturated soil zone. With the goals of acquiring non-invasive 

samples and reaching higher resolutions on Ǆ and x-rays computerized tomography (CT) 

and on Nuclear Magnetic Ressonance (NMR), which provide cross-section images from the 

analysed objects. NMR, however, presents strong restrictions for its use in porous media 

that contain paramagnetic materials (Crestana & Nielsen, 1990) and, besides this, it is 

difficult or even impossible to quantify the results by correlating the NMR signal and the 

content of water. However, by means of CT it is possible to figure out a good correlation 

between the x-ray linear attenuation coefficients and the water content in soils. 

The quality of an image is one of the key requirements for its analysis and it is desirable that 

the reconstructed object is very close to the tested sample. The use of algorithms developed 

for the areas of human knowledge has grown considerably and has improved image 

processing for visual information analysis and human interpretation or the automatic 

perception of machines. In human interpretation, x-ray images are used not only in 

medicine, but also in geology, in archaeology, and in soil science for agricultural purposes. 
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On the other hand, the perception of automatic machines for present automatic recognition 

of faces, characters, fingerprints, computer vision, control of robots for surveillance, 

automatic processing of satellite images for fire recognition, climate change and 

identification of storms and hurricanes.  

Image processing aims at modeling the characteristic of the human eye, study processed 

images, such as Fourier transform and other separable image transforms. It also allows 

designing filters used to retrieve an image and use masks so that the processed image is 

more applicable than the original (real).  

This study aims at improving the quality of tomographic images by filtering the signals 

before their reconstruction and reaching an image quality in the reconstructed slice obtained 

by the projections close to the real one.  

Digital processing algorithms can be used to work with the image by using computer vision 

techniques such as segmentation (for feature extraction) and Hough transform (used in 

order to detect geometry, ie, detection of pores), which allow the count of pores in the soil. 

Classification algorithms can also be used to characterize the type of soil as well as its 

chemical components based on the values of pixels and density.  

Both kinds of algorithms can be an auxiliary tool for a reliable analysis on the impacts of the 

use of agricultural machinery on the soil, which result in the increase of soil density due to 

the compression caused by the machinery axis. This increase is directly linked to the 

reduction of larger diameter pores that cause a decrease in water and in nutrients and also 

to the gas diffusion and root penetration. 

Besides, this chapter aims at presenting the use of unscented Kalman filter (UKF) and the 

algorithm used to separate a noise from a signal. This will be done by showing that the 

unscented Kalman filter together with artificial neural networks is the best option for 

filtering. There will be an overview and a specification after each equation of the algorithm. 

Moreover, this study complemented previous works that aimed at creating a better 

algorithm by modeling and testing results with different types of Kalman filter and with 

different approaches in the physical model and kinds of noise (Laia et al., 2007; Laia & 

Cruvinel, 2008a; Laia et al., 2008b; Laia & Cruvinel, 2009; Laia & Cruvinel, 2011), which also 

present a comparison with an artificial neural network (ANN) solution. 

2. Computerized Tomography scanner  

In radiology, computed tomography (CT) consists of an image that is derived from 

computerized processing of data obtained from a series of x-ray angled projections which 

reproduce a cross-section (a "slice") of the object under study. CT, such as conventional 

radiology, is based on the fact that x-rays are partially absorbed by various materials. 

While materials like plastic and water are easily traversed by x-rays, others, like metals, 

are not. 

This technique had already been widely applied to medical areas, however its use in soil 

science was introduced by Petrovic (Petrovic et al., 1982), Hainswoth and Aylmore 

(Hainswoth & Aylmore 1983) and Crestana (Crestana, 1985). Petrovic made it possible to 

use x-ray CT to measure the density of soil volumes, while Crestana demonstrated that CT 

can solve problems related to studies of the water physics in the soil. From these studies, a 

project that developed a scanner for soil science has been created (Cruvinel, 1987; Cruvinel  

et al., 1990; Cruvinel et al., 2009). 
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2.1 Computerized Tomography in soil science 

The application of CT in soil science to investigate the same physical properties plays an 
important role in studying the transportation of water and solutes within this environment. 
The direct transmission of Ǆ or x-rays provides a major contribution in order to solve the 
various problems in the field of soils with results on a scale of the order of millimeters, 
however many responses are still expected on the level of particles, macropores and 
micropores.  
Figure 1 illustrates different CT scanners that are dedicated to soil science and were developed 
and installed at Embrapa Instrumentation (São Carlos, SP - Brazil), which are based on sources 
of Ǆ and x-rays  for the study of soils and plants and also allow the use of various sources of 
radiation and intensities of energy. Several studies have been developed to improve the 
visualization of the images acquired and the reconstruction algorithm, as well as the 
equipment developed (Venturini, 1995; Minatel, 1997; Granato 1998; Mascarenhas et al, 1999). 
 

 

Fig. 1. Scanners developed  at Embrapa Instrumentation: a. mini CT scanner developed for 
agricultural applications (Cruvinel, 1987); b. portable CT scanner for field use (Naime, 1994); 
c. tomography with micrometric precision (Macedo, 1997) and d. Compton scattering 
scanner (Cruvinel & Balogun, 2006) 

Compared to classical methods, such as the direct transmission of Ǆ-ray and gravimetric tests, 
the CT scanner presents the advantage of measuring a) heterogeneities in the soil b) the 
density of the soil and c) the moisture content pixel by pixel, and also gets a two-dimensional 
picture or three-dimensional soil samples from non-invasive and independent of the geometry 
and shape, even by using different energies and radioactive sources (Cruvinel et al. 1990). 
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Basically, a CT indicates the amount of radiation absorbed by each portion of the analyzed 
section, translates these variations into gray scale and also produces an image. As the x-ray 
absorption capacity of a material is closely related to its density, different density areas will 
present different intensities, which can be seen in monochromatic color and if you apply a 
mask of pseudo-color, it allows their distinction more clearly. Thus, each signal value 
corresponds to the average absorption of the tissue in the area, expressed in Hounsfield 
units (named after the creator of CT machines). Each projection represents an average and 
each set is stored in a projection matrix. Based on the intensity emitted by the x-ray source 
and the intensity captured by the detector at the other end of the propagation line, one can 
determine the attenuation weight due to the object that is located between the source and 
the detector. The data on the attenuation weight is crucial to the reconstruction process and 
enables a mapping of the linear attenuation coefficient of the object cross section. 
This coefficient mapping is represented by pixels whose values are given by the so-called 
CT Numbers. These numbers are normalized according to the water attenuation coefficient 
µwater. In other words, the CT numbers are defined in equation 1: 

ݎܾ݁݉ݑܰ	ܶܥ  = ఓିఓೢೌ೟೐ೝఓೢೌ೟೐ೝ × ͳͲͲͲ (1) 

where µ is the linear attenuation coefficient of the analyzed body. 
From this number, it is possible to obtain a map of the attenuation coefficients, which allows 
a more detailed analysis of the body being studied. In medicine, it was agreed that the water 
CT number is equivalent to 0 (zero).  
The integration function of the object along the ray is represented by a line integral. Each set 
of line integrals of parallel rays form a parallel projection (Figure 2), which can be treated 
having the signal theory as its base. 
The main advantage of CT is to allow the study of cross sections without intrusion, that is, 
an unparalleled improvement in relation to techniques of soil analysis, which, in general, are 
invasive and can destroy important features that could be preserved. It is important to 
obtain a perfect image quality that prevents materials found in the soil from being 
erroneously interpreted. This is achieved when the material in focus is the same found by an 
intrusive manual search. 
 

 

Fig. 2. Two parallel projections of an object expressed by a two-dimensional function 
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2.2 Noise that can occur in CT 

In CT there are three main processes related with the interaction of the radiation with the 

matter, which are the photoelectric effect, the Compton effect and pair production effect 

(Cruvinel et al. 1990). Besides the issues that are related to the effects arising from the energy 

range used in the source, others also influence the measurement in computed tomography, 

like the statistics of photon counting. The probability of detecting photons in a range of 

exposure time t can be estimated by the distribution function of Poisson (Deremack & 

Crowe, 1984), (Cruvinel,  1987). 

 ௦ܲሺߣ, ሻݐ = ൫ఒഥ൯೙ఒ!௘೙   (2) 

where ߣ is the number of photons  and ̅ߣ is the average number of photons emitted in the 

time interval t and n indicates the efficiency of the photomultiplier, as shown in the 

following expression: 

ߣ̅  =  (3)  ݐܯߦ

where M is the average ratio of photons (photons / second) and ξ is the quantum efficiency 

of the photomultiplier. The uncertainty or noise is given by the standard deviation 

ߪ  = ඥ̅ߣ = ඥ(4)  .ݐܯߦ 

Therefore, the signal to noise ratio (SNR), presented by the incident signal, is: 

 ܴܵܰ = ఒഥఙ = ඥ̅(5)  .ߣ 

In this ratio, it is estimated that, for a small number of photons, there can be considerable 

noise, however, as ̅ߣ increases, the noise might be negligible. The thermionic emission of 

electrons in the photo multiplier cathode can cause an increase in the noise. Considering that 

the photo-cathode emits electrons randomly due to the cathode current, a new signal to 

noise ratio equation is given by equation 7: 

 ඥሺܯߦ +  (6)  ݐሻܯ

 ܴܵܰ = √௧కெඥకெାெ (7)  

In the display of a tomographic image, there is granularity, which is significant for viewing 

low contrast objects. During the analysis of a CT image, there is presence of granularity, 

which is significant for viewing low contrast objects. The term noise in tomography images 

refers to the variation of the attenuation coefficient at the average value and it is obtained 

when an image of a uniform object is used. (Hender, 1983). The image noise can be based 

on the calculus of the standard deviation and also on the Weiner power spectrum of the 

noise, which is seen as a function of spatial frequency. In other words, it allows observing 

the intensity and the type of noise that involves the system also influences the image 

obtained. 

The noise in CT images involves rounding errors in the reconstruction program (algorithm 

noise), electronic noise and noise caused by the display system. The main source of noise in 
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CT images is the change in quantum (quantus mottle), defined as the statistical spatial and 

the temporal variation in the number of x-ray photons absorbed by the detector. 

The noise of the algorithm depends on the pixel size of the display device and also 

influences the image noise, since it leads to larger pixels to reduce the image noise, however 

with less quality resolution. Reconstruction algorithms typically make use of anti-aliasing 

filters to minimize the visual effect of the noise but also present some loss in the spatial 

resolution. 

The electronic noise can be generated by non-ideal electronic devices such as non pure 

resistors and capacitors, non ideal contact terminals, leakage current of transistors, Joule, 

and it may also be independent of the signal, due to external interference (electrical or 

mechanical) (Ziel, 1976). 

Besides the noise, the CT images are subject to various artifacts and distortions as poly-

chromatic sources (non-ideal or monochromatic), caused by the following effects: beam 

hardening, aliasing, different materials in the same voxel (partial volume), displacement of 

the sample or of the equipment (Duerinckx & Macocski, 1978; Joseph & Spital, 1978; Ibbott, 

1980; Granato, 1998). 

The low-pass and the median filters can be used to solve problems of signal noise, however 

they can cause a crucial losses of informations. Systems having different sources of noise do 

not present an optimal solution when using these types of filters.  

3. The Kalman Filter 

The Kalman Filter is a mathematical tool, created more than 30 years ago, which is widely 

used to solve statistical problems. It is considered a good estimator for a large class of 

problems and an effective and useful estimator for other classes.  It has recently been used in 

computer graphics for applications involving the simulation of musical instruments in 

virtual reality (VR), for the reading of speaker’s lips in video sequences, among other 

applications (Pereira, 2000). In 1960, Rudolf Emil Kalman published a paper describing a 

recursive solution to the problem of linear filtering for discrete data (Kalman, 1960). 

Stanley F. Schmidt, who worked on the Apollo project at NASA, has been the first to apply 

it in a practical way, since he aimed at taking a spacecraft to the moon and bring it back. For 

this, he had to solve problems in the estimation of trajectories and control. Schmidt worked 

with what would be the first full implementation of the Kalman filter and it had the same 

integral control system of Apollo and from this experience, it has been used in most on 

board estimation systems and also in trajectory control of aircrafts. 

The Kalman filter is considered to be an advance concerning the estimation theory. It is 

used, for example, to estimate a linear-quadratic Gaussian problem, which addresses the 

difficulty of state estimation of a dynamic linear system disturbed by white Gaussian noise, 

by using measurements that are linearly related to these states and also corrupted by this 

noise. This filter consists of a set of mathematical equations that provide a significant and 

efficient computational solution (recursively) to estimate the state of a process, so that the 

mean square error can be minimized. The filter allows that states (past, present and even 

future) are estimated and may do so even when the precise nature of the modeled system is 

unknown (Welch & Bishop, 2004). 

Several models can be found, such as: increased, extended, dual estimation, joint estimation, 

unscented, among others.  
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3.1 Discrete Kalman filter 

The process to be estimated solves the general problem of estimating a state x, which is a 
process controlled in a discrete time and generated by a linear stochastic differential 
equation, ie: 

௞ݔ  = ௞ିଵݔܣ + ௞ݑܤ + ݊௞ିଵ,  (8) 

with a measurement z, which is 

௞ݖ  = ௞ݔܪ +  ௞.  (9)ݒ

The random variables 	݊௞ିଵ and ݒ௞ represent the process noise and the measurement 
(respectively). They are assumed to be independent (between them) and are considered 
white noise with the normal probability distributions: 

 ܲሺ݊ሻ~ܰሺͲ, ܳሻ  (10) 

 ܲሺݒሻ~ܰሺͲ, ܴሻ  (11) 

In practice, the covariance matrixes of the process noise (covariance Q) and of the 
measurement noise (covariance R) can change at each measurement. 
The discrete Kalman filter (DKF) estimates a process by using a kind of feedback, in which it 
estimates the process state at some time and then obtains feedback in the form of (noisy) 
measurement. Thus, the equations can be divided into two stages: the ones to update the 
time and the ones to update the measures. 
The equations that update the time are responsible for projecting an a priori (in time) 
estimate of the current state and of the error covariance to obtain an a priori estimate for the 
next step. 
The equations that update or correct measures are responsible for the feedback - for 
example, the incorporation of a new measure into the a priori estimate for an a posteriori 
estimate. 
The equations that update or predict the time can also be considered prediction equations, 
while the equations that update the measures can be treated as correction equations. Thus, 
the estimation algorithm is a predictor-corrector algorithm for solving numerical problems. 
Time update equations (predictor) 

ො௞ିݔ  = ො௞ିଵݔܣ +  ௞  (12)ݑܤ

 ௞ܲି = ܣ ௞ܲିଵ்ܣ + ܳ.  (13) 

Note that these equations refer to time and covariance estimation over time from step  ݇ − ͳ 
to step ݇. 
Measurement update equations (corrector) 

௞ܭ  = ௞ܲି ܪሺ்ܪ ௞ܲି ்ܪ + ܴሻିଵ  (14) 

ො௞ݔ  = ො௞ିݔ + ௞ݖ௞ሺܭ − ௞ିݔܪ ሻ  (15) 

 ௞ܲ = ሺܫ − ሻܪ௞ܭ ௞ܲି .  (16) 

The first task during the update of the measure is to compute the Kalman gain, ܭ௞ . The next 
one is to measure the update process and find the ݖ௞ value and, then, generate an a 
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posteriori state estimate by incorporating it as in equation 15. The final step is to obtain an 
estimated covariance error by using equation 16. 

3.2 Extended Kalman filter 

A solution to nonlinear systems is the extended Kalman filter (EKF) (Welch and Bishop 
2004). By analyzing the prediction function of the Kalman filter, illustrated in equation 12, it 
is possible to observe that the filter behaves linearly. By applying a nonlinear function, one 
can obtain a good prediction for the next states, the extended Kalman filter. This algorithm 
applies the Kalman filter to nonlinear systems simply by linearizing all nonlinear models, so 
that the traditional equations of the filter can be applied. The nonlinear system can be 
rewritten as: 

௞ݔ  = ݂ሺݔ௞ , ݊௞ ,  ௞ሻ,   (17)ݑ

௞ݖ  = ℎሺݔ௞,  ௞ሻ.  (18)ݒ

The algorithm is also adapted to solve nonlinear problems through the use of functions, as 
seen below: 
Time update equations (predictor) 

ො௞ିݔ  = ݂ሺݔො௞, Ͳ,  ௞ሻ  (19)ݑ

 ௞ܲି = ௞ܨ ௞ܲିଵܨ௞் + ܳ.  (20) 

Measure update equations (corrector) 

௞ܭ  = ௞ܲି ௞்ܪ ൫ܪ௞ ௞ܲି ௞்ܪ + ܴ൯ିଵ
  (21) 

ො௞ݔ  = ො௞ିݔ + ௞ݖ௞ሺܭ − ℎሺݔ௞ି , Ͳሻሻ (22) 

 ௞ܲ = ሺܫ − ௞ሻܪ௞ܭ ௞ܲି   (23) 

For the propagation of variances, one must know the Jacobian or the Hessian transition 
matrices and observe the state functions given by Equations 17 and 18, respectively. 

3.3 Unscented Kalman filter 

The unscented Kalman filter (UKF) is similar to the extended version (Julier & Uhlmann, 
1997). The distribution of states is represented by a Gaussian random variable, however it is 
specified by using a minimum set of sampling points, which are chosen carefully. The 
sampled points capture the true mean and the covariance of a random variable and when it 
propagates through a truly non-linear system, it captures the mean and the covariance 
accurately to promote a third order estimation for any nonlinearity. Thus, this is done 
through the use of unscented processing.  
The unscented transformation is a method used to calculate the statistics of a random 
variable that undergoes a nonlinear transformation (Wan & Merwe, 2000). Considering a 
spread of a random variable (with dimension L) through a nonlinear function	ݕ = ݃ሺݔሻ, one 
assumes that it must present a mean ݔ and a covariance ௫ܲ to calculate the statistics ݕ. It 
should form a matrix ܺ of ʹܮ + ͳ sigma vectors (with corresponding weights ௜ܹ), according 
to the following: 
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 ௜ܺ =  (24)  ݔ

 ௜ܺ = ݔ + ሺඥሺܮ + ǌሻ ௫ܲሻ௜, for ݅ = ͳ, . . . ,  (25)  ܮ

 〉ܺ = ݔ − ሺඥሺܮ + ǌሻ ௫ܲሻ௜, for ݅ = ܮ + ͳ, . . .  (26)  ܮʹ,

 ௢ܹሺ௠ሻ = ǌ/ሺܮ + ǌሻ  (27) 

 ௢ܹሺ௖ሻ = ǌ/ሺܮ + ǌሻ + ሺͳ − ǂଶ + ǃሻ  (28) 

 ௜ܹሺ௠ሻ = ௜ܹሺ௖ሻ = ͳ/{ʹሺܮ + ǌሻ}, for ݅ = ͳ, . . .  (29)  ܮʹ,

where ǌ = ǂଶሺܮ + ݇ሻ −  is a scalar parameter. The variable ǂ determines the sigma ܮ
scattering point around the mean	ݔ and is always a minimum positive value. k is a 
secondary scalar parameter defined as 0 and ǃ is used to incorporate the a priori knowledge 

of the distribution of x (for Gaussian distributions, ǃ = ʹ is optimal). ሺඥሺܮ + ǌሻ ௫ܲሻ௜ is the i-

ism line of the square root matrix. The sigma vectors are propagated through the nonlinear 
function: 

௜ݕ  = ݃ሺ ௜ܺሻ  for ݅ = Ͳ, . . .  (30)  ܮʹ,

The mean and the covariance ݕ௜ are approximated by using the mean and the covariance of 
the sample (Figure 3) of the posterior sigma points 

ݕ  ≈ ∑ ௜ܹሺ௠ሻݕ௜ଶ௅௜ୀ଴   (31) 

 ௬ܲ ≈ ∑ ௜ܹሺ௖ሻ{ݕ௜ − ௜ݕ}{ݕ − ଶ௅௜ୀ଴்{ݕ .  (32) 

 

 

Fig. 3. The unscented transform 

This method differs from the general methods of sampling (the Monte-Carlo method such as 
particle filters), which requires orders of magnitude with more sampling points as an 
attempt to define and propagate the state (possibly non-Gaussian) distributions. The 
unscented approaches result in more accuracy for the third order of Gaussian inputs for all 
nonlinearities.  

Unscented

Transform
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The unscented Kalman filter is a direct extension of the unscented transform for the 

equation recursive estimation 

ො௞ݔ  = ො௞ିݔ + ௞ܭ ⋅ ௞ݕ] − ො௞ିݕ ሻ]  (33) 

where the state of the random variable is redefined with the concatenation of the original 

states and the noise: 

௞௔ݔ  = ௞்ݔ] ௞்ݒ ݊௞்]்.   (34) 

The selection of sigma points is applied to a new random variable state to select and 

calculate the corresponding sigma matrix	ݔ௞௔. The unscented Kalman filter is pointed out by 

equations 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, and 45. 

The Jacobian or the Hessians matrices do not need to be calculated and the calculation total 

numbers are the same of the extended filters related to the nonlinear controls that require 

feedback from the states. In these applications, the dynamic model is a physically-based 

parametric model, which is assumed as known.  

Unscented Kalman filter algorithm  

Sigma points calculation: 

  ܺ௞௡ = ො௞ିଵ௔ݔ] ො௞ିଵ௔ݔ ± ඥሺܮ + ሻߣ ௞ܲିଵ௔ ] (35) 

where X is the set of points with unscented transformation based on the mean and on the a 

priori covariance. 

Prediction equations: 

 xො௞ି = ∑ ௜ܹሺ௠ሻଶ௅௜ୀ଴ ௜,௞|௞ିଵ௫ݔ    (36) 

where W(m) represents the set of sigma point weights used for true mean reconstruction. 

 ௞ܲି = ∑ ௜ܹሺ௖ሻ[ݔ௜,௞|௞ିଵ௫ − ො௞ିݔ ]ଶ௅௜ୀ଴ ௜,௞|௞ିଵ௫ݔ] − ො௞ିݔ ]் (37) 

where W(c) represents the set of sigma point weights used for true covariance reconstruction. 
 

 ܺ௞|௞ିଵ௫ = ሺܺ௞ିଵ௫ܨ , ܺ௞ିଵ௩ ሻ  (38) 

where F is the function of sigma propagation for state transitions. 

Correction equations:  

 ௞ܻ|௞ିଵ = ሺܺ௞ିଵ௫ܪ , ܺ௞ିଵ௡ ሻ  (39) 

where H is the system function of sigma point generation for observation states Y. 

ො௞ିݕ  = ∑ ௜ܹሺ௠ሻଶ௅௜ୀ଴ ௜ܻ,௞|௞ିଵ௫   (40) 

where y is the observed state estimation reconstructed for the sigma points. 

 ௬ܲොೖ௬ොೖି = ∑ ௜ܹሺ௖ሻ[ ௜ܻ,௞|௞ିଵ − ො௞ିݕ ]ଶ௅௜ୀ଴ [ ௜ܻ,௞|௞ିଵ − ො௞ିݕ ]் (41) 

 ܲ௫ೖ௬ොೖ = ∑ ௜ܹሺ௖ሻ[ ௜ܺ,௞|௞ିଵ − ො௞ିݔ ]ଶ௅௜ୀ଴ [ ௜ܻ,௞|௞ିଵ − ො௞ିݕ ]் (42) 
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ܭ  = ௫ܲೖ௬ೖሺܲ௬ොೖ௬ොೖሻିଵ   (43) 

where K is the Kalman gain obtained through the noisy covariance   

ො௞ݔ  = ො௞ିݔ + ௞ݕሺܭ − ො௞ିݕ ሻ   (44) 

this equation represents the correction of a priori and 

 ௞ܲ = ௞ܲି −  (45)   ்ܭሺܲ௬ොೖ௬ොೖሻܭ

represents the correction of the a priori covariance. 
The Kalman filter was originally designed to solve a problem of state estimation and has 
been used in many applications. This newer filter also provides a better performance. Thus, 
the unscented Kalman filter and the extended filter present the same order of complexity.  
Due to the numerical instability of the noise and the use of the Cholesky factorization to 
determine the square root of the probability matrix, van der Merwe and Wan have 
developed the Square-Root Unscented Kalman Filter (SRUKF) (Merwe & Wan, 2001), which 
allows a better control of the variance matrix values and bypasses the problem of becoming 
a negative or indefinite matrix. As the original unscented Kalman filter, the square root filter 
is initialized by calculating the square root of the covariance matrix states by the Cholesky 
factorization: 

 ܵ଴ = ܿℎܧ}݈݋[ሺݔ଴ − ଴ݔො଴ሻሺݔ −  ො଴ሻ்]}    (46)ݔ

However, the spread factor and the Cholesky update are then done in subsequent iterations 

to directly form the sigma points. In the equation below, the update time of the Cholesky 

factor is calculated by using a QR decomposition of the matrix composed of the propagated 

sigma point weights and the square root of the covariance matrix of the additive noise case: 

 ܵ௞ି = ට]}ݎݍ ଵܹሺ௖ሻ൫ ଵܺ:ଶ௅,௞|௞ିଵ∗ − ො௞ିݔ ൯	√ܴ௩	]}  (47) 

A subsequent Cholesky update (or regression) in the equation below is needed since the 

weight zero is perhaps negative: 

 ܵ௞ି = ܿℎ݁ݐܽ݀݌ݑ݈݋{ܵ௞ି , ܺ଴,௞∗ − ො௞ିݔ , ଴ܹሺ௖ሻ} (48) 

These two steps replace the time update. They are also used to calculate the Cholesky 

factorization and the error covariance of the observation:  

 ܵ௬ത	௞ି = ට]}ݎݍ ଵܹሺ௖ሻ൫ ଵܻ:ଶ௅,௞ − ො௞ିݕ ൯	√ܴ௡	]} (49) 

 ܵ௬ത	௞ି = ܿℎ݁ݐܽ݀݌ݑ݈݋{ܵ௬ത	௞ି , ଴ܻ,௞ − ො௞ିݕ , ଴ܹሺ௖ሻ}. (50) 

Unlike the way in which the gain of Kalman filter is calculated in standard unscented, it is 
calculated here by using two inversions: 

௞்	௞ܵ௬ത	௞ሺܵ௬തܭ  ሻ =  ௞   (51)ݕ௞ݔܲ

Since it is square and triangular, efficient replacements can be used to solve it directly, 
without having to invert the matrix. Finally, the Cholesky factoration updates the state 
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covariance in the equation below and it is calculated by applying sequential Cholesky 
regressions:  

 ܵ௞ = ܿℎ݁ݐܽ݀݌ݑ݈݋{ܵ௞ି , ܷ, −ͳ}  (52) 

The vectors are represented by the columns of the equation regression 53. This update 
replaces the previous equation 45: 

 ܷ =  ௞  (53)	௞ܵ௬തܭ

By knowing the process function and with a Kalman filter that supports non linear 

functions, it is possible to have a significant improvement in the signal. Another solution is 

to use a neural network to promote a better function of the mapping process by reducing the 

projections noise. For an estimation of the neural network weights together with the state 

estimates, two methods of filtering can be used: the estimation and the dual estimation. 

These arrangements are used to determine the filtering when the initial weights are known 

and the next state is obtained through a linear mapping as the previous one. 

3.4 Joint estimation 

Since the transfer function is not known and with the aim of increasing the filter order, a 

new estimation method has been used, in which it is possible to estimate new parameters 

from the states of the hidden chains of the Markov model. The main problem involves the 

identification of functions required to estimate states and parameters. The prediction 

equations can be described as: 

௞ݔ  = ݂ሺݔ௞ିଵ, ݊௞ሻ       (54) 

௞ݖ   = ℎሺݔ௞ ,  ௞ሻ                      (55)ݒ

The parameter estimation involves the determination of a nonlinear mapping 

௞ݕ  = ݃ሺݔ௞, ܹሻ  (56) 

where xk is the input, W is the weight and yk is the output. The nonlinear mapping g is 

parameterized by the vector W. The nonlinear mapping can be done by an artificial neural 

network. The learning corresponds to estimating the parameters of W. Training can be done 

with pairs of samples, consisting of a known input and a desired output (xk, dk). The 

machine error is defined by equation 57. The learning objective is to minimize the expected 

squared error. 

 ݁௞ = ݀௞ − ݃ሺݔ௞, ܹሻ  (57) 

The UKF can be used to estimate the parameters by using a model for network training that 

writes a new state-space representation: 

௞ݓ  = ௞ିଵݓ +  ௞  (58)ݒ

௞ݕ  = ݃ሺݔ௞, ௞ሻݓ + ݁௞  (59) 

where the parameter wk correspond to a stationary process with an identity matrix of state 
transition, governed by a procedural noise vk (the choice of variances determines the 
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filtering performance). The output yk corresponds to a nonlinear observation wk. The 
extended Kalman filter can be applied directly as an efficient technique for the correction of 
second order parameters. 
As the problem in focus is to work with unobserved input xk and requires an estimation of 
states and parameters, one should consider a dual estimation problem, taking a dynamic 
and discrete-time nonlinear system into account 

௞ାଵݔ  = ݂ሺݔ௞, ,௞ݒ ܹሻ  (60) 

௞ݖ  = ℎሺݔ௞, ݊௞ሻ  (61) 

where states are xk and the set of parameters W of the dynamic system should be estimated 
only from the noisy signal yk. 
The dynamic system can be seen as a neural network, where W is the set of weights and 

function f corresponds to a function of neural network that uses an input xk. Thus, by 

applying these equations to the unscented Kalman filter, one can have a new function for 

estimating and observing new states. One approach to neural networks can be seen in (Laia 

& Cruvinel, 2008b; Laia & Cruvinel, 2009). 

4. System modeling 

The physical model of photon counting is defined by the equation: 

୩ܫ  =  ଴݁ିఓౡௗ  (62)ܫ

where I0 is the number of photons leaving the source, Ǎ is the material degree of absorption, 
d is the distance between the source and the detector and I is the number of photons that 
cross the material and reach the detector. The counting of photon is affected by a Poisson-
type noise. For a closer model to the physical one, each projection is analyzed individually, 
as if they were in time-varying positions. This classical approach enabled to develop a 
dynamic estimation of noise-free projections (Figure 4): 

௣௞ܫ  = ݂ሺܫ௣௞ିଵ,  ୩ିଵሻ   (63)ݍ

௦୩ܫ  = ℎሺܫ௣௞,  ௞ሻ   (64)ݎ

where ܫ௣ is a noise-free projection and ܫ௦, a projection disturbed by noise. The variables q 

and r represent the white noise, ie, present distribution q ~ N(0, Q) and r ~ N(0, R), 
respectively. Function f can be used as a mapping neural network or as a transfer state 
matrix. Function h hides the unobserved states and can also be an array. It can also be 
adjusted by using the Poisson noise and the Anscombe transform. Some of the previous 
studies that focused on this approach and obtained good results are (Laia et al, 2007; Laia & 
Cruvinel, 2008b; Laia & Cruvinel, 2009). 
A filtering proposal is needed for a new model (based on the physical one) to determine the 
process variables and how the observation is carried out. The equation of a process defines 
the previous state xk-1, and through a transformation influenced by a function f and white 
noise qk, one can reach a new state xk-1. These states can be hidden from the system output. 
Thus, it is possible to define a new function g that transforms this variable according to what 
is observed.  
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Fig. 4. The process for projections acquisition considering an object based in previous 
studies 

The uncertainty estimation process of the current value has a confidence interval that 
consists of photon counting and is given by Poisson noise. This uncertainty can be filtered 
with an estimation of other measures of the equation that are independent on the confidence 
interval. Thus what ends up being filtered is the noise from the detector, ie, mechanical and 
electronic noise.  
In order to increase confidence and get more reliable values, one can change the focus on 
what is being estimated.   
The different distributions can be mapped with specific non-linear transformations that 
alter the Gaussian distributions, such as the Anscombe (Poisson) or the inverse Box-
Muller (Uniform), however they are linear approximations that present cumulative errors. 
The Kalman filter is limited to solving stochastic problems, given by the following 
equations: 

௞ߤ  = ݂ሺߤ୩ିଵ,  ୩ሻ  (65)ݍ

୩ܫ  = ℎሺܫ଴, ,୩ߤ ݀,  ୩ሻ  (66)ݎ

Equation 65 is the transition function that updates the measure of the attenuation coefficient 
or the material degree of absorption while variable q is the uncertainty of this process 
equation. Equation 66 is the observation function that generates the final projection from the 
degree of absorption and d the distance between the source and the photon detector. 
Variable r is the noise that is transferred to the projection. This model can be approximated 
by a second order filter in order to estimate the variables of the process equation and to use 
the Anscombe transform to the observation equation: 
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 ቂ ୩ߤ
Δߤ୩ቃ = ቂͳ ͳͲ ͳቃ ቂ ୩ିଵߤ

Δߤ୩ିଵቃ + ൤ Ͳݍ୩൨  (67) 

୩ܫ  = ℎሺܫ଴݁ିఓೖௗ ,  ௞ሻ  (68)ݎ

Function h is related to the Anscombe transform (Anscombe, 1948), which transforms a 

Poisson noise into a Gaussian noise, with variance value close to 1. As the noise variation 

presents a Poisson distribution, the mean and the variance of values are equivalent to the 

counting of photons. A new system can be defined based on an equation, in which the ray 

sum μk is the variable used in the process (Equation 76) and it also allows the observation of 

the projection, as it is presented in the array of projections:  

௞ߤ  = ݂ሺߤ௞ିଵ, ௞ݑ ,  ௞ሻ   (69)ݍ

௞ܫ  = ℎሺܫ଴݁ିఓೖௗ ,  ௞ሻ  (70)ݎ

Variable uk consists of an external input that is related to the prediction of new states. In 

order to promote a better estimation of the states without noise, one can use neural network 

to determine the behavior of the equation of the process that uses the Kalman filter for a 

dual estimation:  

௞ߤ  = ݂ሺߤ௞ , ௞ݓ ,  ௞ሻ   (71)ݍ

௞ܫ  = ,଴ܫሺܣ  ௞ሻ݁ିఓ೔ௗ  (72)ݎ

୩ݓ  = ୩ݓ + ܽ୩  (73) 

 ݁௞ = ݃ሺߤ୩ିଵ, ୩ሻݓ −  ୩  (74)ߤ

where ak is used to update the weight and ek indicates the error between inputs and the 

desirable outputs. 

To promote a better estimation of the transition states of the process, an artificial neural 

network can be used:  

 ቂ ௞ܹ௞ቃߤ = ൤݃ሺߤ௞ିଵ, ௞ݑ , ௞ܹିଵሻ + ௞௞ܹିଵݍ + ܽ௞ ൨  (75) 

௞ܫ  = ℎሺܫ଴݁ିఓೖௗ , r௞ሻ.  (76) 

Now, by focusing on the observation equation, the observation noise variance can be treated 

with the Anscombe transform through the use combined with its inverse. 

௞ܫ  = ଴݁ିఓೖௗሻܫሺܣଵሺିܣ + r௞ሻ  (77) 

where A represents the transformation and its inverse A-1. This makes it possible to work 

with a Gaussian noise with distribution r ~N (0,1). 

In this model, the input has been used as the current observation of the system (ie, the 

attenuation coefficient of the noise) so that one could take advantage of the neural network 

functionality which provides a nonlinear mapping. The neural network itself consists of the 

interaction between the value measured before and the noise presented now, in order to 

better predict the data. 
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An equation based on equation 5 can be developed in order to determine the Poisson noise 
given by the following expression: 

ܫ  ±  (78)   . ܫ√

Thus, the observation equation can be written as follows: 

௞ܫ  = ଴݁ିఓೖܫ + ඥܫ଴݁ିఓೖௗr௞.   (79) 

where r, since it presents a Gaussian distribution, can assume a negative or zero value. 
This alternative is allowed to deviate what is considered to be only an approximation from 
the use of the Anscombe transform. 
Another model for the equation could be simplified as: 

௞ܫ  = ଴݁ିఓೖௗܫ + r௞. (80) 

where r is replaced by a variance given by the signal noise ratio of 

  
ூౡඥூౡ . (81)  

This approach allows the inclusion of other noises in the system of photon counting through 
the propagation of errors. In order to set the noise variance R being treated, one has to take 
the number of primary quantities into account. It is measured from the observation of the 
system variables {Io, μ}. The value of I depend on the relationship between these variables. 
In formal language, that is: 

ܫ  = ,଴ܫሺܩ ,ߤ ݀ሻ. (82) 

In case the errors with the measured magnitudes Io , µ and d are Δ Io , Δ µ and Δ d, the 
photon counting error Δ I is given by the expression: 

ܫ∆  = ቚ డூడூబቚ ଴ܫ∆ + ቚడூడஜቚ ∆μ. (83) 

The values of Δ Io and Δ µ are given by mean standard deviation or by their estimator as 
there are many or few magnitude measures Io and µ. 
When the sample size is adequate, it can determine the statistical error of independent 
magnitudes and these can become the dependent magnitude variance for calculating the 
statistical error. 

ூଶߪ  = ቀ డூడூబቁଶ ூబଶߪ + ቀడூడஜቁଶ ஜଶߪ + ቀ డூడௗஜቁଶ  ௗଶ. (84)ߪ

Besides the uncertainty of the system variables, the detector presents a characteristic noise. 
This noise variation is known when the detector closes, in other words, as no photons are 
released to it, it still gives the score. As it is associated directly to an additive noise, you can 
add the noise variation into the equation as an error for variable I: 

ூଶߪ  = ቀ డூడூబቁଶ ூబଶߪ + ቀడூడஜቁଶ ஜଶߪ + ቀడூడௗቁଶ ଶୢߪ + ቀడூడூቁଶ  ூଶ is used to define the noise variance R of the observation equation of the filter. Then, it isߪ ௘ଶ.      (85)ߪ
necessary to define the variance of the process. In the literature, Haykins (Haykins, 2001) has 
defined several ways to infer on the process variance Q. Since the signal is observed, the 
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noisy signal variance can be used. As the process variance is directly linked at the μ vector, 
the equation can be changed for a noise μ : 

ߤ  = ݈݊ ቀூబூ ቁ /݀ (86) 

From this vector, a variance Q needs to enter the filter. It can be obtained as follows:  

 ܳ =  ஜଶ (87)ߪ

Another important step is the definition of the control constants: ǂ, ǃ and ǋ.  
As the process variable µ magnitude differs from the observation of variable I, ǂ = 1 has 
been chosen. In case this value is greater or lower than ideal, there is no possibility of 
filtering or causing numerical instabilities. 
As suggested in the literature, for a parameter or a joint estimation filters, the variable 
remained ǃ = 2, while the ǋ value was given 3 - the number of neurons. 
With the aims of comparing the efficiency of the filter and setting up a filter to ensure a 
desirable image quality, both of the algorithms have been applied to various soil samples.  
The first sample consists of sand grains in a Plexiglas envelope. The second and third samples 
are portion of natural soil. The fourth and the fifth are present in degraded soil bulks and the 
sixth shows a portion of naturally cemented soil. In an artificial neural network there are two 
neurons in the input layer, two in the intermediate and one in the output layer.  
For the inputs of the filter, the same uncertainty was used, as all of the samples have been 
generated in the same CT scanner. The variance ߪூబଶ  was obtained by the maximum of vector 

projections. After the filtering process, it has been applied to the maximum of the projection 

matrix. The variance ߪఓଶ was the same used in the process variance Q. For the variance ߪௗଶ, 
the value used was 0.05, corresponding to the uncertainty of measurement in millimeters. 
For the errors in the photon counting detector, the value used was 100 for the variance ߪ௘ଶ. 
The results obtained from this new modeling system are presented below. In Figures 5, 7, 9, 
11 and 13, it is possible to visualize the comparison between the signals of a set of 
projections by using the samples filtered with the SRUKF: Original projections (red), Linear 
estimation (blue) and non linear estimation with ANN (green). In Figures 6, 8, 10, 12, 14 and 
16, it is possible to visualize the reconstructed images by using the filtered back-projection 
algorithm. 
 

 

Fig. 5. Comparison between the projections of sand grains 
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Fig. 6. Comparison between the reconstructed images of sand grains. a. Original projections, 
b. Projections filtered with the SRUKF and the ANN and c. Projections filtered with linear 
estimation 

 

 

Fig. 7. Comparison between the projections of soil bulk samples 

 

 

Fig. 8. Comparison between the agricultural soil reconstructed images for the visualization 
of bulk information. a. Original projections, b. Projections filtered with the SRUKF and the 
ANN and c. Projections filtered with linear estimation 
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Fig. 9. Comparison between projections of the soil bulk sample 

 

 

Fig. 10. Comparison between the agricultural soil reconstructed images for the visualization 
of bulk information. a. Original projections, b. Projected filtered projections with the SRUKF 
and the ANN and c. Projections filtered with linear estimation  

 

 

Fig. 11. Comparison between the projections of degraded soil samples 
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Fig. 12. Comparison between the reconstructed images of degraded soil sample. a. Original 
projections, b. Projections filtered with the SRUKF and the ANN and c. Projections filtered 
with linear estimation 

 

 

Fig. 13. Comparison between the degraded projections of a soil sample 

 

 

Fig. 14. Comparison between the reconstructed images: a. Original projections, b. Projections 
filtered with the SRUKF and the ANN and c. Projections filtered with linear estimation. 
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Fig. 15. Comparison between the projections of cemented soil samples 

 

Fig. 16. Comparison between the reconstructed images of cemented soil sample: a. Original 
projections, b. Projections filtered with the SRUKF and the ANN and c. Projections filtered 
with linear estimation 

In the signal comparisons it is possible to see the estimation errors. These errors in linear 

estimation promote false artifacts and excessive anti-aliasing. Also, the excessive filtering 

process with linear estimation has promoted losses in the images details. The SRKUF with 
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of low values of photon counting. Every single detail is preserved in the signal filtered with 

the SRUKF. 

The signal filtered with the ANN algorithm presents the details better, a precise correction 

and the interest object (the porosity of soil bulk) is preserved while the signal filtered with 

the linear estimation promotes excessive anti-aliasing and detail loss. The false porosity (due 

to granularity of Poisson noise) has been eliminated in the images as it can be observed in 

the outer parts of the sample. In the image obtained by the filtering with the ANN, the 

contrast has been preserved as well as small-pointed (critical) elements in the image.  

The low-contrast in this image is changed due to the false estimation in the projections like a 

high value estimated by filter. The single elements are either preserved or changed a little 

due to the contrast. With the linear estimation, the excessive filtering provoked a decrease in 

the contrast, which lead to the elimination of pores and high-contrastive elements. The 

outlines of the objects in the image are also lost when there is an excessive smoothing. 
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Another important factor is the separation between porosity and granularity of the images. 

The granularity can generate false micro-pores or fake elements. On the other hand, 

excessive smoothing can hide the pores and the major elements in the soil composition. 

5. Conclusions 

The Kalman filtering that uses linear estimation promotes a smoothing of values and do 
respect the nature of data distribution (linear attenuation coefficients), which present a 
uniform distribution, while the filter is limited to working with a Gaussian process. 
By analyzing the results presented in Figures 4, 5, 6, 7, 8 and 9, it was possible to observe 
smoothed projections and estimation errors, while Figures 10, 11, 12, 13, 14 and 15 presented 
losses of important details, such as micro pores and other important elements of the soil, 
which enables to characterize it. 
Nowadays, with the use of artificial neural networks, the results already show a better 
transition among the variables for the estimation process. Besides mapping the behavior of 
the sample data, the nonlinear function also makes the necessary transformation of the 
process uncertainties, which helps to preserve a greater number of details on an original 
image. 
Besides, the regular presence of artifacts or distortions on the image were due to three 
factors: the limitation of the reconstruction algorithm because of the ramp filter, which is 
necessary to observe the contrast of different materials and soil porosity; the inaccurate 
choice of the noise variances because of the different resolutions of the samples obtained 
and due the equipment noise during data collection. 
A better measurement of the noise variations in the detector should be made in real time. 
The closer the variance value is to the real value, the less it is prone to reconstruction errors 
or smoothing. 
Tests conducted earlier have proved that the increase of neurons, layers or number of states 
has not affected the filter efficiency but the processing time was longer. 
More recent researches involve the implementation of the filters shown in this study in an 
embedded system in order to ensure better results when filter variables are fed directly 
according to the state of the CT scanners. 
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